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Abstract: This study investigated the effects of silibinin, derived from milk thistle (Silybum marianum),
on lipopolysaccharide (LPS)-induced morphological changes in mouse macrophages. Silibinin was
treated at various doses and time points to assess its effects on macrophage activation, including
morphological changes and phagocytosis. Silibinin effectively inhibited LPS-induced pseudopodia
formation and size increase, while unstimulated cells remained round. Silibinin’s impact on phagocy-
tosis was dose- and time-dependent, showing a decrease. We explored its mechanism of action on
kinases using a MAPK array. Among the three MAPK family members tested, silibinin had a limited
effect on JNK and p38 but significantly inhibited ERK1/2 and related RSK1/2. Silibinin also inhibited
MKK6, AKT3, MSK2, p70S6K, and GSK-3β. These findings highlight silibinin’s potent inhibitory
effects on phagocytosis and morphological changes in macrophages. We suggest its potential as an
anti-inflammatory agent due to its ability to target key inflammatory pathways involving ERK1/2
and related kinases. Overall, this study demonstrates the promising therapeutic properties of silibinin
in modulating macrophage function and inflammation.
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1. Introduction

Silibinin, a prominent constituent of silymarin, represents a key bioactive compound
derived from the seeds of the milk thistle plant (Silybum marianum) [1]. With a history deeply
rooted in traditional medicine, it has been harnessed for ages in the treatment of various
liver disorders. Robust scientific inquiry has unveiled the impressive hepatoprotective
potential of silymarin, with silibinin at its core, countering the detrimental effects of an
array of chemical agents, including microcystin, ochratoxin, ethanol, phenylhydrazine, and
acetaminophen [2–5]. Beyond its remarkable hepatoprotective attributes, silibinin exhibits
a diverse spectrum of biological activities. These encompass anti-inflammatory properties
and its compelling role as an anti-carcinogenic agent, further expanding its potential
therapeutic utility [6–9]. Such multifaceted characteristics underscore the significance of
silibinin in both traditional medicine and modern pharmacology.

Macrophages, recognized as one of the most versatile cell types within the immune
system, fulfill indispensable roles in maintaining overall physiological equilibrium. Their
paramount function centers around phagocytosis, an intricate process through which they
engulf and digest a diverse array of entities, encompassing microbial invaders, detritus
from deceased cells, and even cancerous cells [10]. However, the multifaceted contributions
of macrophages extend far beyond phagocytosis. Macrophages actively participate in the
orchestration of immune responses by recruiting other lymphocytes and finely modulating
adaptive immunity, guided by environmental cues. This dynamic behavior leads to a
process of polarization and differentiation, giving rise to two distinct phenotypes: M1 and
M2 macrophages, each characterized by its unique functional profile [11]. M1 macrophages
emerge as pivotal sentinels in the arena of host defense, staunchly combating viral, bacterial,
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and tumorous threats. In contrast, M2-polarized macrophages, often referred to as activated
macrophages, redirect their efforts towards tissue repair and the resolution of inflamma-
tory processes. Notably, a close relative of M2 macrophages, known as tumor-associated
macrophages (TAMs), assumes a prominent role in shaping the tumor microenvironment.
Their intricate interplay involves the regulation of factors that significantly influence onco-
genesis, thus underscoring the profound impact of macrophages on diverse physiological
and pathological processes [12,13].

M1 macrophages, one of the pivotal cellular components of the immune system, re-
spond to a cadre of stimulating factors that encompass lipopolysaccharide (LPS), interferon-
gamma (IFN-γ), and granulocyte–macrophage colony-stimulating factor (GM-CSF) [14]. In
particular, LPS, through its interaction with toll-like receptor 4 (TLR4), assumes a central
role in inciting classical macrophage activation, thereby orchestrating the upregulation
of genes integral to cytokine receptors, cell adhesion molecules, and activation markers.
Simultaneously, IFN-γ, predominantly secreted by Th1 lymphocytes, serves as a potent
stimulator of macrophages, and GM-CSF operates as an additional promoter of M1 polariza-
tion [14]. M1 macrophages, thus activated, unleash a torrent of pro-inflammatory cytokines
and unleash a slew of toxic substances, including nitric oxide (NO) and reactive oxygen
intermediates. These formidable armaments are strategically employed in the service of
host defense against invading pathogens and malignant tumors [14,15]. Nevertheless, it
is essential to acknowledge that while M1 macrophages play a crucial role in immune
responses, their unrestrained activation can potentially precipitate inflammatory disorders,
thereby exerting adverse consequences on host health.

The activation of macrophages induced by LPS has a profound impact on their mor-
phology, giving rise to a spectrum of alterations [16]. These changes encompass an increase
in cell size, the emergence of lamellipodia and filopodia, and significant modifications in
cell adhesion, migration, and phagocytosis processes [16]. Lamellipodia, distinguished by
their resemblance to thin sheets and their location at the leading cellular edge, are partic-
ularly rich in the cytoskeletal protein actin. In contrast, filopodia are slender, actin-laden
protrusions that extend beyond the confines of lamellipodia [17]. These intricate structures
are of paramount importance for the phagocytic prowess of macrophages. In the realm of
macrophage physiology, lamellipodia perform a dual role: they serve as both the engine
propelling cell migration and as essential participants in the process of phagocytosis. In
migration, lamellipodia function akin to a motor, exerting forces that pull the cell forward,
facilitating its movement [18–20]. On the other hand, filopodia play a pivotal role in phago-
cytosis by attaching to objects of interest and exerting pulling forces to draw these objects
closer to the cell, thereby aiding in their engulfment [18–20]. This orchestration of cytoskele-
tal dynamics and adhesion processes, integral to cellular migration, is tightly regulated by
Rho GTPases. These regulatory molecules, which encompass RhoA, a member of the Rac
subfamily, and Cdc42, play pivotal roles in governing the intricate dance of the cell during
migration [21]. Further complicating this landscape of cellular dynamics is the influence
of the nuclear transcription factor NF-κB. It wields a significant role in modulating actin
filament dynamics through integrin-mediated signaling pathways. Additionally, NF-κB
exerts control over morphological transformations within the cell, including the formation
of lamellipodia [22].

In the current study, we investigated the effects of silibinin on phagocytosis function
of macrophages and morphological changes, including lamellipodia and filopodia, which
are crucial for the phagocytic function of macrophages. These structures facilitate the move-
ment of macrophages towards bacteria and the attachment and pulling of bound objects.

2. Materials and Methods
2.1. Materials

The following materials were purchased for the study: silibinin and LPS (Salmonella
typhosa) from Sigma (St. Louis, MO, USA); the anti-F-actin antibody from Santa Cruz
Biotechnology (Santa Cruz, CA, USA); a human phospho-MAPK array kit from R&D
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Systems (Minneapolis, MN, USA); and pHrodo® green Escherichia coli bioparticles from
Essen BioScience (Ann Arbor, MI, USA).

2.2. Cell Culture and Adhesion Assay

RAW 264.7 cells were obtained from the American Type Culture Collection (Bethesda,
MD, USA) and cultured in a 5% CO2 environment at 37 ◦C. Macrophages were cultured in
DMEM supplemented with 10% FBS, 2 mM L-glutamine, and penicillin-streptomycin. Cells
were treated with silibinin (50 µg/mL) in the presence of LPS (200 ng/mL) for 18 h. Cells
were collected and re-plated at a density of 1 × 105 cells/mL. After 30 min, unattached cells
were removed by washing with phosphate-buffered saline (PBS) 3 times. Cell adhesion was
calculated by counting the attached cells and expressing this number as a percentage of the
total cells. Cytotoxicity was assessed using the 3-(4,5-dimethylthiazol-2-yl)2,5-diphenyl
tetrazolium bromide (MTT) cleavage assay conducted with an Elx800 microplate reader.
Cells were exposed to silibinin and/or LPS for 18 h. The MTT reagent was added directly
to the cell culture medium. Following a 4 h incubation, the medium containing MTT
was removed, and the formazan crystals were solubilized with dimethyl sulfoxide. The
absorbance was measured at 570 nm. The MTT assay results indicated that the viability of
all treated cells exceeded 80%.

2.3. Immunofluorescence Staining

Macrophages were exposed to LPS on cover slides. The cells were washed with PBS
three times, fixed with 4% paraformaldehyde for 10 min at 25 ◦C, and rinsed again with
PBS. Subsequently, the cells were blocked with 1% bovine serum albumin and incubated
with the primary antibody overnight. After the incubation, the cells were washed with
TBS and incubated with fluorescein isothiocyanate-conjugated IgG for 1 h. Following a
rinse, the cells were mounted and observed at 488 nm using a confocal microscope (FV300;
Olympus, Tokyo, Japan).

2.4. Scanning Electron Microscopy

Cover slides containing macrophages were subjected to culture with silibinin and/or
LPS for varying durations of 0.5, 1.5, 3, 6, 12, or 24 h. Afterward, the plates were washed
three times with PBS and left to air-dry at 25 ◦C. The cells were then fixed with 2% osmium
tetroxide in PBS (2 mL per well) for 4 h and washed three times with PBS. To facilitate
dehydration, the cells were immersed in ethanol of increasing concentrations (40, 50, 60, 70,
80, 90, or 100%) for 10 min. Following this, the slides were air-dried and coated with an
E-1030 ion sputtering coating machine (Hitachi High-Technologies, Tokyo, Japan). Finally,
an S-4800 field emission scanning electron microscope (Hitachi High-Technologies) was
utilized to observe the slides for a duration of 30 min.

2.5. Phagocytosis Assay

Macrophages were exposed to silibinin and/or LPS for 24 h in 96-well plates. The
phagocytosis activities were assessed using the IncuCyte® ZOOM live-cell imaging system
(software 2015A). Time-lapse movies were captured using the IncuCyte® ZOOM, enabling
real-time visualization of mouse macrophage cells engulfing pHrodo green E. coli bioparti-
cles. The fluorescence of the phagosome, which indicates the acidic environment, increased.
The integrated image analysis tools of IncuCyte® ZOOM were employed to detect and
quantify the green fluorescent signals throughout the entire duration of the assay.

2.6. MAPKs Array

Macrophages were exposed to silibinin for 1 h and treated with LPS for 20 min. Cell
lysates were then prepared and analyzed the MAPK phosphorylation using human phsoho-
MAPK array kit. Cell lysates were diluted, mixed with a cocktail of biotinylated detection
antibodies, and incubated overnight with the nitrocellulose membranes spotted capture and
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control antibodies. The membranes were then washed and detected the chimiluminescence.
The intensity of the dots was quantified by densitometric analysis.

2.7. Statistical Analysis

The experiments were conducted quantitatively, and each experiment was indepen-
dently repeated at least three times. The data presented in the results represent the mean
value along with the standard deviation (SD) for each experimental group. Unless stated
otherwise in the figures, a p-value of less than 0.05 was considered significant. Statistical
analyses were performed using the Student’s t-test.

3. Results
3.1. Inhibition of Macrophage Activation by Silibinin in LPS-Stimulated RAW264.7 Cells

RAW 264.7 cells were cultured in the presence of silibinin and LPS for 18 h. The
cells were collected and analyzed the adhesion activity. Cell attachment activities were
strongly increased by LPS stimulation, whereas LPS-induced cell adhesion activity was
significantly inhibited by silibinin (Figure 1A). MTT assay showed that no cytotoxic effects
of the silibinin were observed. Immunofluorescence staining of the cells further confirmed
that silibinin inhibited the morphological changes induced by LPS (Figure 1B).
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Figure 1. Silibinin inhibited macrophage activation in LPS-stimulated macrophages. (A) RAW264.7 cells
were treated with silibinin (50 µg/mL) in the presence of LPS for 18 h. Cells were harvested, washed,
plated in 6-well plates (5 × 105/mL) for 30 min, washed, and analyzed for adhesion using microscopy.
Attached cells were counted before and after washing. Each column shows the mean ± SD of triplicate
measurements. * p < 0.05 compared with the control, as determined by Student’s t-test. (B) The cells were
treated with silibinin (50 µg g/mL) in the presence of LPS for 18 h on cover slides and then subjected to
immunofluorescence staining for F-actin and DAPI staining.

To further examine the morphological changes, scanning electron microscopy was
employed. In the presence of LPS, macrophages were treated with silibinin for varying
durations of 0.5, 1.5, 3, 6, 12, or 24 h. Interestingly, some cells treated with silibinin
maintained their inactivated round sphere shape (Figure 2A). Partially activated cells
displayed attachment and spreading of lamellipodia while maintaining a round shape.
Fully activated macrophages exhibited an irregular shape with more extensively extended
lamellipodia (Figure 2B). The quantification of fully activated cells indicated that silibinin
treatment inhibited LPS-induced morphological changes in macrophages (Figure 2C).
These findings provide compelling evidence of the potent role of silibinin in curtailing
morphological alterations in mouse macrophages, shedding light on its regulatory impact
in this context.
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cells were treated with silibinin (50 µg/mL) in the presence of LPS for 0.5, 1.5, 3, 6, 12, or 24 h on cover
slides. The cells were then subjected to scanning electron microscopy. (B) Representative photographs
of macrophages. (C) Fully activated cells were counted, and the results are expressed as a percentage
of the total number of cells. Each column shows the mean ± SD of triplicate measurements. * p < 0.05
compared with the control, as determined by Student’s t-test.

3.2. Inhibition of Phagocytosis by Silibinin in LPS-Stimulated Macrophages

To assess the impact of silibinin on macrophage function, RAW264.7 cells were treated
with silibinin in the presence of LPS, and their phagocytic activity was examined using
the IncuCyte® ZOOM live-cell imaging system. The results revealed that LPS stimulation
led to an increase in macrophage engulfment of E. coli bioparticles, accompanied by a
time-dependent rise in green fluorescence (Figure 3A). Interestingly, it was observed that
even the LPS-untreated control macrophages exhibited heightened phagocytosis activities.
This phenomenon could potentially be attributed to the inherent stimulatory effects of
the E. coli bioparticles themselves on the macrophages. Significantly, when subjected to
silibinin treatment, the phagocytic activities of the macrophages were distinctly hindered.
This inhibition was evident in the form of weaker fluorescence compared to the control
cells, as vividly depicted in the representative photographs showcased in Figure 3B.

The relationship between morphological changes and phagocytosis activities in
macrophages was further investigated. RAW264.7 cells were exposed to E. coli bioparticles,
and their fluorescence and morphological changes were examined using merged images
of bright-fields and fluorescence (Figure 4). Several observations were made: (a) some
macrophages remained inactive in phagocytosis (labeled as “a”); (b) other macrophages
actively engulfed the bioparticles, resulting in an enlargement of their size, and eventually
underwent cell death; (c) some macrophages displayed active phagocytosis, exhibited
movement, growth, and division; (d) macrophages that engaged in phagocytosis but did
not divide became multinucleated giant cells with cytoplasmic projections on their cel-
lular surface; (e) certain macrophages showed elongated cell bodies with cytoplasmic
projections at the apical ends but had low phagocytosis activity. Macrophages demonstrat-
ing high phagocytosis activities (b and c) were identified as M1-polarized macrophages,
whereas those with low phagocytosis activities (d and e) were classified as M2-polarized
macrophages. To comprehensively investigate the effects of silibinin on macrophage differ-
entiation, it would be beneficial to quantify both M1- and M2-polarized cells and assess
markers associated with these polarization states.
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with the control, as determined by Student’s t-test.
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Figure 4. Morphological changes and phagocytosis activity in macrophage cultures. RAW264.7
cells were incubated with E. coli bioparticles for 36 h in 96-well plates. Morphological changes
and phagocytosis activities were analyzed using the IncuCyte® ZOOM live-cell imaging system.
Snapshot of bright-field and florescence photographs were taken at 6, 10, 14, 18, 22, 26, 30, 33, and
36 h. Macrophages with changes in morphology and phagocytosis activities are shown (a; black, b;
blue, c; red, d; yellow, e; green).

3.3. Inhibition of MAPKs by Silibinin in LPS-Stimulated RAW264.7 Cells

The effects of silibinin on the MAPK signaling pathway were investigated to un-
derstand its mechanism of action. Macrophage cells were treated with silibinin for 1 h,
followed by LPS treatment for 20 min. The phosphorylation of various MAPK proteins was
analyzed using a MAPK array kit in cell lysates (Figure 5). While some antibodies indicated
cross-reactivity with mouse phospho-MAPK, and LPS stimulation notably induced phos-
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phorylation, it is important to acknowledge the potential for nonspecific antibody detection.
Therefore, we primarily analyzed the MAPK array results in terms of their broader impact
on MAPK pathways rather than focusing solely on specific kinases.
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Figure 5. Effects of silibinin on LPS-induced MAPK activation. RAW264.7 cells were pretreated with
silibinin (50 µg/mL) for 1 h and then treated with LPS for 20 min. Cell lysates were prepared and
used for MAPK phosphorylation analysis using a MAPK array kit. The intensity of the dots was
quantified by densitometric analysis.

LPS stimulation significantly increased the phosphorylation of AKT, ERK, RSK, JNK,
p38, MKK6, MSK2, p70S6K, and GSK-3β. Silibinin did not inhibit the phosphorylation
of JNK and p38, but it significantly inhibited the phosphorylation of ERK1/2 (Figure 5).
Additionally, silibinin decreased the phosphorylation levels of RSK1/2, MKK6, MSK2, and
p70S6K, which were initially increased by LPS stimulation.

These findings indicate that silibinin acts on the MAPK pathway by selectively inhibit-
ing the phosphorylation of ERK1/2 and modulating the phosphorylation of downstream
targets, including RSK1/2, MKK6, MSK2, and p70S6K.

4. Discussion

Silibinin, a polyphenolic flavonoid and a major component of milk thistle extract,
was found to have strong anti-inflammatory properties, as demonstrated in this study.
The research showed that silibinin effectively inhibited phagocytosis, a key inflammatory
function of macrophages responsible for engulfing and digesting foreign and endogenous
substances to protect the host from pathogens and cancer cells [10]. The study utilized E. coli
bioparticles to assess phagocytosis, and the results indicated that silibinin dose- and time-
dependently inhibited this process (Figure 3A). Additionally, the study used a pH-sensitive
dye-conjugated E. coli assay to observe phagocytosis in LPS-activated macrophages, where
the dye emitted green fluorescence in acidic phagosomes (Figure 3B). Notably, even in
the absence of LPS stimulation, macrophages displayed significant phagocytic activity,
likely due to the presence of LPS in the bacteria, which activated macrophages through
membrane receptors such as TLR4. TLR4 is a pattern recognition receptor (PRR) found
on macrophages and other innate immune cells, recognizing pathogen-associated molec-
ular patterns (PAMPs) from microorganisms. Activation of TLRs initiates inflammatory
responses [23]. TLR4, in particular, recognizes LPS, while other TLRs recognize different
components of bacteria, such as lipopeptides, peptide glycans, or nucleic acids, thus acti-
vating downstream signaling pathways and transcription factors such as NF-κB, leading to
the expression of inflammatory cytokine genes [24].
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Another observation made in this study was the inhibitory effect of silibinin on
morphological changes in LPS-stimulated macrophages, specifically the formation of lamel-
lipodia and filopodia (Figure 2). Scanning electron microscopy revealed that LPS induced
changes in macrophage morphology, including increased cell size and the formation of
lamellipodia and filopodia. Lamellipodia are thin, actin-rich protrusions at the leading edge
of the cell, while filopodia are spike-like extensions extending beyond lamellipodia [17].
Since both lamellipodia and filopodia are essential for macrophage phagocytic function, the
inhibition of these morphological changes by silibinin correlated well with the observed
inhibition of phagocytosis. During phagocytosis, lamellipodia and filopodia aid in cell
movement towards bacteria and facilitate attachment and pulling of the bound material
towards the cell [18–20]. The inhibitory effects of silibinin on phagocytosis and macrophage
morphology provide further evidence of its potential as an anti-inflammatory agent. These
findings align with previous studies that demonstrated the anti-inflammatory effects of
silibinin in models of endotoxin-induced uveitis and lung injury [25,26]. Silibinin treatment
in rats significantly reduced inflammatory cell infiltration in the eyes and inhibited the pro-
duction of inflammatory markers, such as protein, NO, PGE2, iNOS, and COX-2. Silibinin
also suppressed the recruitment of airway inflammatory cells, including macrophages, in
a lung injury model. Moreover, silibinin has been shown to decrease the production of
inflammatory cytokines, including IL-1β and TNF-α [27]. These effects on macrophage
function and morphology, along with the attenuation of inflammatory responses, support
the potential of silibinin as an anti-inflammatory agent.

To explore the underlying mechanism of silibinin’s inhibitory effect on macrophage
activation, the study investigated its impact on kinases using a MAPK array. Upon LPS
stimulation, macrophages activate MAPK family members, including ERK1/2, p38, and
JNK, through phosphorylation [28]. The study revealed that silibinin significantly inhibited
the phosphorylation of ERK1/2 and its downstream target RSK1/2. However, the effects
of silibinin on p38 and JNK were not conclusive; it inhibited p38γ and JNK3 but not p38α,
p38β, p38δ, JNK1, JNK2, and JNKpan. Silibinin also inhibited other kinases such as MKK6,
AKT3, MSK2, p70S6K, and GSK-3β. Previous studies have shown that silibinin can prevent
the activation of MAPKs and NF-κB in different cell types and signaling pathways, such as
osteoclast precursor cells, thyroid and breast cancer cells, and gastric cancer cells [29–32].
Silibinin inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogen-
esis from RAW264.7 cells, as well as from bone marrow-derived monocyte/macrophage
cells [29]. Although silibinin’s inhibition of MAPK phosphorylation has been observed in
various studies, the exact direct targets of silibinin in these pathways have yet to be identi-
fied. Further analysis of MAPK phosphorylation is required to investigate the mechanism
of silibinin on phagocytosis inhibition.

An important finding of this study was the inhibition of phagocytosis by silibinin.
This inhibition may be attributed to the prevention of morphological changes, particularly
the formation of lamellipodia and filopodia. During phagocytosis, cellular receptors bind
to bacterial surface antigens, facilitated by unique molecular patterns, opsonins, and
apoptotic cells (Figure 6). Macrophages possess several PRRs that specifically bind to
PAMPs. Examples include the mannose receptor and Dectin-1, which bind to fungi with
surface polysaccharides [33,34]. Scavenger receptors like SR-A and MARCO recognize
surface molecules on both Gram-negative and Gram-positive bacteria [35–37]. Fragment
crystallizable receptors on phagocytes recognize opsonins such as immunoglobulin G (IgG),
C3b, or iC3b bound to foreign materials [38,39]. Phagocytosis of apoptotic cells is also
vital for cell turnover in the body. Although the study demonstrated the inhibition of
macrophage activation by silibinin, it remains unclear whether silibinin directly blocks
receptor–ligand interactions.
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phagosomal processes, transcription factors such NF-κB are activated, and they subsequently induce
the gene expression of proteins involved in phagocytosis. Abbreviations: TLR, toll-like receptor; FcR,
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Silibinin’s inhibition of phagocytosis and macrophage activation may involve the
inflammatory transcription factor NF-κB. NF-κB is activated by cellular receptors and
ligand binding and plays a crucial role in phagocytosis by regulating gene expression
(Figure 6). NF-κB is known to regulate actin cytoskeleton dynamics and induce morpholog-
ical changes such as lamellipodia formation [22]. Additionally, NF-κB drives the expression
of inflammatory mediators including iNOS, COX-2, and cytokines [40]. Cell adhesion
molecules such as VCAM-1, ICAM-1, and E-selectin may also be targeted by NF-κB to
mediate macrophage morphological changes [41–43].

The remarkable capacity of silibinin to inhibit the production of ROS and NO is indeed
noteworthy. This inhibition, in turn, acts as a barrier to the activation of NF-κB, a pivotal
player in the macrophage activation process triggered by oxidative stress. Silibinin, known
for its potent antioxidant properties, has been substantiated in prior research as a formidable
inhibitor of ROS and NO production [27,44]. Given the critical role of these pathways
in inflammation, silibinin holds promise as a potential anti-inflammatory agent. These
findings underscore the far-reaching implications of silibinin in the context of inflammation
and its therapeutic promise.

One limitation of our study is the reliance on a single mouse cell line, RAW264.7 cells.
To strengthen the evidence supporting silibinin’s effects, further investigations should
encompass a broader spectrum of cell types, including human monocyte cell lines such
as THP-1, primary human peripheral blood mononuclear cells (PBMCs), and murine
bone marrow-derived macrophages (BMDMs). Human cell lines and primary cells yield
results that hold more direct relevance to human biology. This becomes particularly critical
when examining diseases or conditions characterized by substantial disparities between
human and mouse physiology. The use of THP-1 cells, PBMCs, and BMDMs enables
a more precise exploration of human-specific inflammatory responses, which may not
be faithfully recapitulated in mouse cell lines. Such an approach is indispensable for
gaining insights into the intricate role of inflammation in various diseases. In summary,
while mouse cell lines, such as RAW264.7, undeniably serve their purpose in research, the
inclusion of human cell lines and primary cells enriches our investigations, providing a
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more comprehensive and clinically pertinent perspective. This becomes especially valuable
when delving into the realms of human diseases, immunology, drug responses, and the
complexities of inflammation.

In summary, the present study demonstrated that silibinin, a polyphenolic flavonoid
derived from milk thistle, possesses potent anti-inflammatory properties. Silibinin inhibited
phagocytosis and morphological changes in LPS-stimulated macrophages. The inhibition
of phagocytosis by silibinin correlated with its ability to prevent the formation of lamel-
lipodia and filopodia, which are essential for macrophage function. Silibinin also showed
inhibitory effects on various kinases, particularly ERK1/2, and downstream signaling
molecules. The precise direct targets of silibinin in these pathways require further investi-
gation. Moreover, silibinin’s inhibition of phagocytosis and macrophage activation may
involve the modulation of receptor–ligand interactions and the inflammatory transcription
factor NF-κB. Silibinin’s antioxidative properties, by inhibiting ROS and NO production,
further contribute to its anti-inflammatory effects. Overall, these findings highlight the
potential of silibinin as a promising anti-inflammatory agent, but additional research is
needed in order to fully elucidate its molecular mechanisms of action.
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