
Citation: Gurler, B.; Gencay, G.;

Baloglu, E. Hypoxia and HIF-1α

Regulate the Activity and Expression

of Na,K-ATPase Subunits in H9c2

Cardiomyoblasts. Curr. Issues Mol.

Biol. 2023, 45, 8277–8288. https://

doi.org/10.3390/cimb45100522

Academic Editor: Delia Lidia Şălaru
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Abstract: The optimal function of the Na,K-ATPase (NKA) pump is essential for the heart. In ischemic
heart disease, NKA activity decreases due to the decreased expression of the pump subunits. Here,
we tested whether the hypoxia-inducible transcription factor (HIF-1α), the key signaling molecule
regulating the adaptation of cells to hypoxia, is involved in controlling the expression and cellular
dynamics of α1- and β1-NKA isoforms and of NKA activity in in-vitro hypoxic H9c2 cardiomyoblasts.
HIF-1α was silenced through adenoviral infection, and cells were kept in normoxia (19% O2) or
hypoxia (1% O2) for 24 h. We investigated the mRNA and protein expression of α1-, β1-NKA
using RT-qPCR and Western blot in whole-cell lysates, cell membranes, and cytoplasmic fractions
after labeling the cell surface with NHS-SS-biotin and immunoprecipitation. NKA activity and
intracellular ATP levels were also measured. We found that in hypoxia, silencing HIF-1α prevented
the decreased mRNA expression of α1-NKA but not of β1-NKA. Hypoxia decreased the plasma
membrane expression of α1-NKA and β1- NKA compared to normoxic cells. In hypoxic cells, HIF-1α
silencing prevented this effect by inhibiting the internalization of α1-NKA. Total protein expression
was not affected. The decreased activity of NKA in hypoxic cells was fully prevented by silencing
HIF-1α independent of cellular ATP levels. This study is the first to show that in hypoxic H9c2
cardiomyoblasts, HIF-1α controls the internalization and membrane insertion of α1-NKA subunit
and of NKA activity. The mechanism behind this regulation needs further investigation.
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1. Introduction

The Na,K-ATPase (NKA) enzyme or pump first described by Skou et al. is a member of
the P-type ATPase family that actively transports a variety of cations across cell membranes.
NKA is ubiquitously expressed in all mammalian cells and tissues [1]. By using the energy
obtained from the hydrolysis of ATP, it transports 3Na+ ions out of the cell and 2K+ ions
into the cell. In the heart muscle, NKA activity is required for maintaining Na+ and Ca2+

ion gradients, excitability, propagation of action potentials, electro-mechanical coupling,
trans-membrane Na+, K+ and Ca2+ gradients, contractility, intracellular pH, glucose, and
amino acid transport into the cells [2]. Thus, the dysfunction of NKA may have detrimental
effects on cardiac muscle function. NKA is also the receptor for cardiac glycosides, which
are used as positive inotropic agents in the treatment of end-stage congestive heart failure
in some patients. In addition to the well-known functions of NKA, studies by the group
of Xie at al. demonstrated that NKA is also a signaling molecule and mediates signal
transduction by tyrosine kinase Src, epidermal growth factor receptor, reactive oxygen
species (ROS), Ras and p42/44 mitogen-activated protein kinases, and Ca2+ [3–13].
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NKA is a hetero-oligomeric protein, and it consists of a catalytic α subunit, a regulatory
β subunit, and a γ subunit, which is a member of the FXYD proteins involved in regulating
the function of NKA [2,14]. The α-NKA has binding sites for Na+, K+, Mg2+, ATP, and
cardiac glycosides.

Four isoforms of α-NKA (α1, α2, α3, and α4) are expressed at different levels depend-
ing on the tissues and species [15]. Alpha1 NKA is the ubiquitous isoform and is expressed
in all cell-types; α2- and α3- isoforms are expressed mostly in the heart, skeletal muscle,
and neurons. The α4- isoform is found in the testes and regulates sperm fertility [16].
In human ventricular myocardium, α1-, α2-, and α3- isoforms are expressed; in mouse
and rat myocardium, α1- and α2- isoforms are expressed [17,18]. In ventricular myocytes,
α1-isoform is the major and house-keeping isoform [19], which is located densely and
diffusely in the plasma membrane, whereas α2- and α3- isoforms are mostly found in
T-tubules [17]. The β-subunit is a single transmembrane protein with three isoforms (β1,
β2, and β3). In the heart muscle, β1-isoform dominates over others, and it is required for
the functionality of NKA by regulating the correct orientation and membrane stabilization
of the α-isoform [20,21]. The functional determinant of the pump has been attributed to
αβFXYD combination with a 1:1:1 stoichiometry [22].

A mismatch between the demand and supply of oxygen and nutrients leads to hy-
poxia and ischemia of the myocardium. Myocardial hypoxia is a common finding in
myocardial infarction, pulmonary and systemic hypertension, and hypertrophic heart
failure [23]. Under hypoxic conditions, hypoxia-inducible transcription factors (HIFs)
play key roles in the adjustment of cells to low oxygen levels [24]. Cellular responses
to hypoxia vary depending on the tissue, degree, and duration of hypoxia. HIF levels
increase in myocardial ventricular-biopsy specimens in patients undergoing coronary
bypass surgery [25] and in animal models of myocardial infarction [26,27], cardiac hyper-
trophy [28,29], arrhythmia [27], and pulmonary hypertension [30].

NKA activity decreases in necropsy materials from ischemic heart and animal models
of heart disease [31–35], which causes elevated intracellular Na+, increased activities of
Na+/H+ and Na+/Ca2+ exchangers, intracellular Ca2+accumulation, deterioration of dias-
tolic function, arrhythmias, and compromised cell metabolism [36–39]. In patient tissues
with heart failure and in animal models of ischemic heart disease, NKA activity decreased
by 30–43% [32,33,37]. The decreased activity of NKA has been attributed to decrease in
the mRNA and protein expression of the α1-, α2-, and β1- isoforms [32,34,37,40]. Some
studies that used tissues from human heart failure reported decreased protein expression
of α1-, α3-, and β1- NKA [32,34]; some reported no changes in α1- and β1- mRNA and
protein levels [33,41,42]; while some others showed increased expression of α2- and α3-
isoforms [32,42,43]. Discrepant findings also exist in tissues from various animal models.
Semb et al. showed the decreased capacity of NKA without any changes in the mRNA
and protein expressions of α1- and β1-NKA in a cardiac hypertrophy model; another
study reported decreased α1- and α2- isoforms [33,34]. In hypertrophied myocardium of
renovascular hypertension in rats, Book et al. reported no changes in α1-isoform expression
but decreased β1-isoform [44]. Fedorova et al. showed increased expression of α1- isoform
in a model of left ventricular hypertrophy while NKA activity decreased. In the same
model, during the transition to heart failure, the abundance of α1- isoform decreased, while
α3- isoform increased along with changes in the sensitivity to cardiotonic steroids [43].
Collectively, these expression studies do not clarify the reported decreased activity of NKA,
and the inconsistent findings do not link to impaired pump activity.

A common condition in these models and ischemic heart disease is the hypoxia of
the myocardium. It is yet unknown whether tissue hypoxia and HIF-1α is involved in
regulating the expression and activity of NKA [23]. The aim of this study is to investigate
the expression of α1-and β1-NKA and activity of NKA in a precisely controlled in-vitro
hypoxic environment using rat ventricular H9c2 cardiomyoblasts as a model and to test the
involvement of HIF-1α. Here, we report for the first time that hypoxia decreases the activity
of NKA and the plasma membrane expression of α1-NKA in a HIF-1α dependent manner.
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2. Materials and Methods
2.1. Cell Culture

H9c2 cells (rat ventricular cardiomyoblasts) (ATCC, Manassas, VA, USA) were used for
the study. Cells were cultured according to ATCC directions with complete DMEM (c-DMEM,
Gibco™, #31885023, Paisley, UK), supplemented with 100U Penicillin–Streptomycin (Sigma,
St. Louis, MO, USA, #P4433), 5 mM HEPES (Capricorn, Ebsdorfergrund, Germany), and
10% fetal bovine serum (FBS, Capricorn), in an incubator at 5% CO2 at 37 ◦C. The medium
was replaced every two days, and cells were grown until confluency reached 80%. For the
experiments, cells were seeded at a density of 2 × 105/cm2. Twenty-four after-seeding cells
were infected with adenoviral vectors based on cell seeding density.

2.2. HIF-1α Silencing Experiments and In Vitro Hypoxia

Adenoviral vectors containing shRNA sequences to silence rat HIF-1α (shHIF-1α),
and a scrambled sequence (scr.co.) serving as control, has been generated and previously
reported [45]. H9c2 cells were infected with 100 MOI (multiplicity of infection) in c-DMEM
without antibiotics for 16 h. Then, the medium was replaced with c-DMEM. For invitro
hypoxia experiments, cells were kept in an incubator in 1% O2 + 5% CO2, residual N2 gas
at 37 ◦C, for 24 h (Binder, Tuttlingen, Germany). Normoxic cells were kept in 19% O2. The
silencing efficiency of HIF-1α was tested on the mRNA level and protein expression in
nuclear extracts.

2.3. RNA Isolation and Quantitative RT-PCR

H9c2 cells were washed with phosphate-buffered saline (PBS) and were lysed using
the RLT reagent (Qiagen, Hilden, Germany). Total RNA was isolated with the RNeasy
micro kit that included DNase digestion step (Qiagen, Hilden, Germany) according to the
manufacturer’s instructions. RNA was transcribed with SensiFAST cDNA Synthesis Kit
(#BIO-65054, Bioline, London, UK), and real-time quantitative-PCR was performed using
the SensiFAST SYBR No-ROX (Bioline) and QuantiTect® primers according to manufac-
turer’s instructions (QuantiTect®, Qiagen; the sequences are not available due to company’s
policy). Results were analyzed using the delta-deltaCT method [46], with 28SrRNA as
a reference gene, and represented as normalized values of normoxic scrambled control
treated cells.

2.4. Preparation of Nuclear Extracts

Under hypoxic conditions, stabilized HIF-1α translocates into cell nucleus and binds to
hypoxia response elements in the promoter of some genes. To check the silencing efficiency
of HIF-1α, we measured protein expression in nuclear extracts from normoxic, hypoxic, or
HIF-1α silenced cells. The cells were washed with ice-cold PBS; lysed with a buffer com-
posed of (in mM) 150 NaCl, 50 Tris (pH:7.5), 5 EDTA, 0.5% NP-40, 1% Triton-X100, 1 DTT,
10 NaF, 1 NaVO3, and 1× protease inhibitor cocktail (Roche, #11836170001,Mannheim,
Germany); incubated for 15 min at 4 ◦C; and centrifuged at 12,000× g for 1 min at 4 ◦C.
Pellets were washed briefly with PBS, and nuclei were lysed with a buffer composed of
(in mM) 300 NaCl, 50 KCl, 50 Hepes-KOH (pH: 7.9), 0.1 EDTA, 10% Glycerol, 1 DTT, 10 NaF,
1 NaVO3, and 1× protease inhibitor cocktail by incubating them for 30 min at 4 ◦C and
vortexing repeatedly. Lysates were collected after centrifugation at 12,000× g for 20 min at
4 ◦C and were aliquoted and immediately frozen at −80 ◦C. Protein levels were measured
using Bradford reagent (Bio-Rad Protein Assay Kit II).

2.5. Cell Surface Biotinylation Experiments

The cell surface expression of α1-and β1-NKA was measured after biotinylation of
plasma membrane proteins using cell-impermeable EZ-Link Sulfo-NHS-SS-Biotin (Thermo
Scientific, #21331, Rockford, IL, USA), followed by immunoprecipitation and Western
blot. Cells were washed three times with ice-cold PBS; incubated with 1.25 µg/mL of
Sulfo-NHS-SS-Biotin in a buffer composed of 150 mM NaCl, 10 mM Triethanolamine, 2 mM
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CaCl2, and pH 7.5 for 20 min at 4 ◦C; and washed 3 times with PBS containing glycine
(100 mM). Cells were lysed with a buffer composed of 1% Triton X-100, 150 mM NaCl,
5 mM EDTA, 50 mM Tris, pH 7.5, 1 mM NaVO3, 1 mM PMSF, and 1× protease inhibitor
cocktail for 20 min at 4 ◦C and centrifuged at 14,000× g for 20 min at 4 ◦C. A total of
150–200 µg of protein was incubated with 100 µL of 50% slurry of Streptavidin-agarose
beads (Pierce™ Streptavidin Agarose, #20349, Rockford, IL, USA) overnight at 4 ◦C. Beads
were pelleted by centrifugation at 12,000 rpm for 2 min at 4 ◦C. Supernatants containing
the non-biotinylated fraction representing intracellular proteins were collected. The beads
were washed three times with lysis buffer, two times with high salt wash buffer (0.1%
Triton X-100, 500 mM NaCl, 5 mM EDTA, 50 mM Tris pH: 7.5), and once with 10 mM Tris
pH: 7.5. Biotinylated proteins representing membrane fraction were eluted by heating to
37 ◦C for 30 min or 95 ◦C for 5 min in 2× Laemmli sample buffer for detecting α1-NKA
and β1-NKA, respectively. Equal amounts of non-biotinylated and biotinylated samples
were used for SDS-PAGE and Western blotting. The success of cell surface biotinylation
was considered by not detecting β-actin in surface (biotinylated) membrane fraction but
only in the intracellular pool.

2.6. Preparation of Total Cell Lysates

For total protein expression studies, cells were washed three times with ice-cold PBS
and lysed in a buffer composed of 1% Triton X-100, 150 mM NaCl, 5 mM EDTA, 50 mM Tris,
pH 7.5, 1 mM NaVO3, 1 mM PMSF, and 1× protease inhibitor cocktail for 20 min at 4 ◦C and
centrifuged at 14,000× g for 20 min at 4 ◦C. Supernatants containing total cellular proteins
were frozen at −80 ◦C until use. Ten 30 µg of total cell lysates were used for SDS-PAGE and
Western blotting to investigate the expression of α1-NKA and β1-NKA, respectively.

2.7. Western Blotting

For HIF-1α expression experiments, 20–30 µg of nuclear extracts were separated on
10% SDS-PAGE and transferred onto nitrocellulose membranes. Rabbit HIF-1α antibody
(rabbit, #14179, Cell Signaling Technology, 1:1000 dilution) was used for Western blotting.
For α1- and β1-NKA expression studies, mouse α1-NKA (ab7671, Abcam, Cambridge, UK,
1:2000 dilution) or rabbit β1-NKA antibody (Proteintech, UK, 15192-1-AP, 1:2000 dilution)
were used. Beta-actin was used to normalize band densities as housekeeping (mouse,
#A2228, Sigma, 1:10,000 dilution). Anti-mouse (GE Healthcare/Amersham, UK, #NA931,
1:2000–1:10,000 dilution) or anti-rabbit (#401315, Sigma, 1:2000) secondary antibodies
conjugated with horseradish peroxidase and enhanced chemiluminescence (Amersham)
were used for detection. Band densities were measured using the Image J 1.42q software
(NIH, Bethesda, MD, USA).

2.8. NKA Activity Measurements

Ouabain sensitive ATPase activity was measured in cell membranes isolated from
normoxic, hypoxic, or HIF-1α silenced H9c2 cells. Cells were scraped off the plates in
ice-cold PBS and centrifuged at 1000× g for 5 min at 4 ◦C. Cell pellets were incubated for
30 min at 4 ◦C in 600 mM Sucrose and 10 mM Imidazole (pH 7.4) and passed through 27G
needle. Crude homogenates were centrifugated at 2000× g for 10 min at 4 ◦C. Membrane
pellets were obtained after centrifugation of the supernatants at 20,000× g for 30 min at
4 ◦C; they were suspended in a buffer composed of 250 mM Sucrose and 30 mM Imidazole
(pH 7.4) and kept frozen at −80 ◦C until use.

For NKA activity measurements, 5–10 µg of plasma membrane proteins were incu-
bated at 37 ◦C for 10 min in a buffer composed of (mM) NaCl 130, KCl 20, Tris 50 (pH 7.5),
EGTA 1 (pH 7.5), NaN3 5, MgCl2 5, Ouabain 2, or DMSO as solvent control. Reaction
was started by adding 5 mM Tris-ATP (pH 7.4) at a final concentration and incubated at
37 ◦C for 10 min. Ouabain-sensitive inorganic phosphate release was measured using the
ammonium molybdate method as described previously [47] and calculated using linear
regression with K2HPO4 as a standard. The difference between inorganic phosphate release
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in the absence or presence of ouabain indicated NKA activity. Values were normalized to
protein amount used and presented as nmol/mg/mL.

2.9. Intracellular ATP Measurements

Total cellular ATP levels in normoxic, hypoxic, or HIF-1α silenced H9c2 cells were
measured using Luminescent ATP Detection Assay Kit in 96 well plates according to the
manufacturer’s suggestion (Abcam, ab113849, UK), and results were normalized to total
protein levels.

2.10. Statistical Analysis

Results are shown as mean ± SD as indicated. Statistical analysis was performed using
analysis of variance (ANOVA) for repeated measures and pair-wise multiple comparisons
(LSD) or t-test as indicated using the SigmaPlot 10.0 (Systat Inc., Erkrath, Germany) software
package. The level of statistical significance was p < 0.05.

3. Results
3.1. Silencing Efficiency of HIF-1α on the mRNA and Protein Expression of HIF-1α

Silencing HIF-1α decreased the HIF-1αmRNA expression by more than 95% (p < 0.001)
compared to the respective control cells (Figure 1A). Western blot experiments in nuclear
extracts from normoxia, hypoxia, or HIF-1α silenced cells showed that HIF-1α was not
detected in normoxia. Twenty-four hours of hypoxia increased the expression of HIF-1α,
and it was totally downregulated in HIF-1α silenced cells (Figure 1B). These results indicate
that the silencing efficiency of HIF-1αwas ~95–100%.
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Figure 1. HIF-1α silencing on the expression of HIF-1αmRNA and protein. H9c2 cells were infected
with 100 MOI scrambled or shHIF-1α containing adenoviral vectors and kept in normoxia (A) (19%
O2) or hypoxia (A,B) (1% O2) for 24 h. mRNA expression was normalized to 28SrRNA. Mean
values ± SD of 4 independent experiments normalized to normoxic scrambled control cells. The
level of significance was p < 0.05: + effect of silencing compared to respective controls p < 0.001.
co: non-infected cells, scr.co: scrambled control, shHIF-1α: HIF-1α silenced cells.

3.2. Effect of Hypoxia and HIF-1α Silencing on the mRNA Expression of α1- and β1-NKA

Figure 2A shows that hypoxia decreased the mRNA expression of α1-NKA by ~25%
compared to normoxic cells (p = 0.015). Silencing HIF-1α totally prevented hypoxic in-
hibition on α1-NKA mRNA expression (p = 0.017). Hypoxia decreased β1-NKA mRNA
expression slightly but significantly by ~15% compared to normoxic cells (p = 0.045).
SilencingHIF-1α did not have any effect on β1-NKA mRNA expression (Figure 2B). These
data indicate that hypoxia inhibits the mRNA expression of α1-NKA and β1-NKA, but
only mRNA expression of α1-NKA in H9c2 cells is controlled by HIF-1α.
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Figure 2. Effects of hypoxia and HIF-1α silencing on the mRNA expression of α1- and β1-NKA. H9c2
cells were infected with 100 MOI scrambled or shHIF-1α containing adenoviral vectors and kept in
normoxia (19% O2) or hypoxia (1% O2) for 24 h. mRNA expression was normalized to 28SrRNA, and
results are given as the normalized values of scr.co. Mean values ± SD of 4 independent experiments
normalized to normoxic scr.co. The level of significance was p < 0.05: * effect of hypoxia compared to
normoxia, + effect of HIF-1α silencing in hypoxic cells compared to hypoxic scr.co. co: non-infected
cells, scr.co: scrambled virus control, shHIF-1α: HIF-1α silenced cells.

3.3. Effect of Hypoxia and HIF-1α Silencing on α1-NKA and β1-NKA Membrane, Intracellular,
and Total Expression

We tested next whether hypoxia and HIF-1α have any influence on the plasma
membrane expression and intracellular trafficking of α1-NKA and β1-NKA proteins.
Figure 3A,B show that the plasma membrane abundance of α1-NKA decreased by ~27% in
hypoxic cells compared to normoxic controls (p = 0.038). Silencing HIF-1α fully prevented
this effect (p = 0.047; hypoxia scr.co. v.s. hypoxia HIF-1α silencing). Hypoxia decreased
the plasma membrane abundance of β1-NKA protein compared to normoxic cells by
~35% (Figure 3A,C, p = 0.001). There was no effect of HIF-1α silencing (p = 0.971). Non-
biotinylated fractions represent the intracellular expression of the proteins. Figure 3D,E
show decreased cytosolic protein levels of α1-NKA in hypoxic cells compared to normoxic
controls (p = 0.029), which was prevented by silencing HIF-1α (p = 0.041). The intracellular
expression of β1-NKA did not change by hypoxia or HIF-1α silencing. Figure 3G–I show
that total protein levels of α1-NKA and β1-NKA were not affected by hypoxia or HIF-1α
silencing. These data indicate that hypoxia caused internalization of α1-NKA from the
plasma membrane, and it is controlled by HIF-1α dependent mechanisms (Figure 3E). The
decrease in the plasma membrane abundance of β1-NKA in hypoxia suggests internal-
ization and degradation (Figure 3F). Together, these data show that hypoxia and HIF-1α
control the intracellular trafficking of α1- and β1-NKA differently.

3.4. Effect of Hypoxia and HIF-1α Silencing on NKA Activity and Total ATP Levels

We also measured the activity of NKA and total ATP levels to interpret any changes
that might have occurred in the pump activity. Figure 4A shows that hypoxia decreased
ouabain-sensitive ATPase activity by ~50% compared to normoxia (p = 0.008) and that
silencing HIF-1α fully prevented hypoxic inhibition (p = 0.018; hypoxia scr.co. v.s. hypoxia
HIF-1α silencing). Cellular ATP levels decreased by hypoxia compared to normoxia by
~17% (p = 0.024, Figure 4B). Silencing HIF-1α in hypoxic cells did not further affect total
ATP levels (p = 0.209). These data indicate that the hypoxic inhibition of NKA activity in
H9c2 cardiomyoblasts is HIF-1α dependent, and the decreased levels of ATP in hypoxic
HIF-1α silenced cells do not limit the functionality of NKA. Moreover, the restored activity
of NKA in HIF-1α silenced cells does not further decline ATP levels (Figure 4A,B).
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with scrambled or shHIF-1α containing adenoviral vectors and kept in normoxia (19% O2) or hy-
poxia (1% O2). Biotinylated fraction is considered plasma membrane proteins; non-biotinylated
is intracellular proteins. Representative blot showing α1-NKA (A,B) and β1-NKA (A,C) surface
expression (biotinylated) and intracellular (non-biotinylated) expression (D–F). Representative blot
showing total protein levels of α1-NKA (G,H) and β1-NKA (G,I). The lack of β -actin expression in
the biotinylated fractions indicates the purity of the membrane pull-down. Mean values ± SD of
5–6 independent experiments normalized to normoxic scr.co. The level of significance was p < 0.05:
* effect of hypoxia compared to normoxia, + effect of HIF-1α silencing in hypoxic cells compared to
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significance was p < 0.05. Total ATP levels were measured by luciferase-luciferin assay, and values
were normalized to total protein (B). Mean values ± SD of 4 independent experiments performed in
triplicates. The level of significance was p < 0.05: * effect of hypoxia compared to normoxia, + effect
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4. Discussion

This study is the first to show that the 24 h hypoxia exposure of H9c2 cardiomyoblasts
decreases plasma membrane abundance and increases the internalization of α1-NKA.
Hypoxia-mediated effects were controlled by HIF-1α because silencing HIF-1α prevented
internalization and, thus, increased insertion of the proteins into the plasma membrane.
Moreover, the decreased activity of NKA in hypoxic H9c2 cardiomyoblasts was HIF-1α
dependent, and declined intracellular ATP level was not limiting to the functionality of
NKA. Our results also showed that the decreased membrane expression of β1-NKA by
hypoxia was due to increased internalization and degradation of the protein.

The function and regulation of NKA in cardiovascular diseases (CVD) has been
extensively studied with human tissue samples from end-stage cardiac-disease patients
and various animal models using different experimental approaches. The decreased activity
of NKA has been mainly associated with the decreased expression of the isoforms. However,
discrepant findings on expression studies do not explain the activity of NKA and lack
mechanisms to clarify the observed effects [23]. Given that tissue hypoxia is a common
feature and clinical finding in CVD, we hypothesized that HIF-1α might be involved in
regulating the expression of NKA isoforms and activity and that the observed inconsistent
findings might be due to varying degrees of the hypoxic stress the tissues were exposed
to. To achieve the conditions of comparable degrees of hypoxia and model-related cardiac
injury, we generated an in-vitro model of hypoxic myocardium using H9c2 rat ventricular
cardiomyoblasts, one of the most used cell lines in studies on cardio-myocyte cellular
functions, and aimed to provide a mechanism of regulation of α1-and β1-NKA and activity
of NKA in the hypoxic heart.

Our result showed that hypoxia decreased mRNA expressions of α1-NKA and β1-NKA
by about 25% and 15%, respectively. The decreased mRNA expression of α1-NKA was
prevented by silencing HIF-1α, indicating its involvement in the regulation. The slight but
significant decrease in the mRNA expression of β1-NKA was not dependent on HIF-1α.
Hypoxia inhibits the transcription and translation of some proteins to adapt and allow cells
to consume less ATP for the maintenance of their viability and survival. Under hypoxic
conditions, HIFs play critical roles for the adjustment of cells to low oxygen levels [48]. Here,
we showed that silencing HIF-1α did not further affect hypoxic inhibition on ATP levels,
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which is in agreement with previous reports [49,50]. Despite the decrease in mRNA levels by
hypoxia, the total protein expression of α1-NKA and β1-NKA did not change, indicating that
the transcriptional changes occurred by hypoxia did not affect translation into protein levels.
Also, the prevention of the decreased mRNA expression of α1-NKA by HIF-1α in hypoxic
cells did not affect total protein expression. These data show that despite the changes in
the transcription of α1-NKA and β1-NKA, the efficiency of mRNA translation can still be
maintained in hypoxia. Therefore, the observed decrease in the membrane abundance of the
α1-NKA and β1-NKA subunits were not due to decreased total protein levels.

Majority of the studies focused on the expression of NKA isoforms in tissues or
cells have used total homogenates or crude membrane fractions, thus providing limited
information. Therefore, the plasma membrane expression of the NKA subunits need to
be accurately measured where the active pump subunits are expressed. In this study,
we used the cell-impermeable Sulfo-NHS-SS-Biotin that binds to extracellular sites of
the proteins and pulled-down biotin-bound proteins; non-biotinylated fraction indicated
intracellular protein pool. Here, we report for the first time that the membrane abundance
of α1- and β1-NKA decreased in hypoxic H9c2 cardiomyoblasts. Hypoxia decreased the
intracellular expression of α1-NKA, indicating the internalization of the protein from the
plasma membrane. HIF-1α silencing in hypoxic cells prevented this effect; thus, it increased
membrane insertion. Hypoxia also decreased the plasma membrane abundance of β1-NKA,
whereas intracellular expression was not affected, suggesting that membrane β1-NKA was
internalized into the cell and degraded. This effect was independent of HIF-1α.

We also showed that the hypoxic inhibition of NKA activity depends on increased
HIF-1α, and decreased cellular ATP is not a limiting factor for restoring decreased pump
activity. The mechanism behind this finding is not known. One possible explanation for
the observed effects might be the increased insertion of α1-NKA into the plasma membrane
in hypoxic HIF-1α silenced cells. In these conditions, the pool of β1-NKA might still be
enough to contribute to the functionality of the pump despite decreased expression. Using
an in-vitro model of acute ischemia reperfusion (I/R) injury, Belliard et al. demonstrated that
internalization of α1-NKA was prevented by ouabain preconditioning in a PKCε-dependent
manner. However, decreased NKA activity in I/R was not reversed by the inhibition of
PKCε [51]. It may be likely that different signaling pathways regulate the expression and
activity of NKA in an acute I/R model. In our study, the long-term effect of hypoxia on
the expression of α1-NKA and activity of NKA in H9c2 cells was HIF-1α dependent. The
signaling molecules mediating the observed effects by HIF-1α remain to be determined.

The decreased activity of NKA in hypoxia was also linked to redox dependent changes
in the cells, such as the increased oxidized-glutathione-dependent modification of the
thiols in the cysteine residue of α1-NKA [52]. Petrushanko et al. reported that in hypoxic
rat myocardium, the S-glutathionylation of the α1-subunit was associated with oxidative
stress, ATP depletion, and decreased NKA activity [53]. In contrast, Kurella et al. reported
that even if the thiol groups of NKA were fully oxidized, it would not be enough to explain
the impaired pump activity [54]. Figtree et al. and Bibert et al. reported that β1-NKA
also undergoes to redox-dependent modifications, causing an inhibition of the pump
activity [55,56]. Given that during prolonged hypoxia, oxidative enzyme capacities, NO,
ROS, and glutathione levels decrease, additional changes that occur might contribute to the
decreased activity of NKA. The mechanism behind the reversal of blunted NKA activity in
hypoxic HIF-1α silenced cells requires further investigation.

The hypoxia-HIF-dependent modulation of the activity and expression of some mem-
brane receptors, ion channels, and transporters has been reported in different cells and
tissues. In hypoxic cells, the plasma membrane expression of the beta2 adrenergic receptor
decreased due to the ubiquitylation of the receptor by von Hippel–Lindau tumor suppres-
sor protein (pVHL)-E3 ligase complex, which regulates HIF-1α expression [57]. In breast
cancer cells and in HL-1 cardiomyocytes, hypoxia increased the expression and activity of
G protein-coupled receptor 30 (GPR30) in HIF-1α-dependent manner [58]. In lung alveolar
epithelial cells, severe hypoxia caused stabilization of the plasma membrane expression of
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α1-NKA by HIF-dependent protein kinase C zeta (PKC ζ) degradation [59]. We recently
showed HIF-2αmediated internalization and degradation of plasma membrane expression
of epithelial Na channels (ENaC) in primary alveolar epithelial cells exposed to in-vitro
hypoxia. We also showed that the instillation of shHIF-2α expressing adenoviral vector
prior to hypoxia exposure improved the lung fluid reabsorption and decreased in in-vivo
hypoxia [45]. Recent studies have reported the regulation of calcium and voltage-activated
potassium channels (BKs) by hypoxia, as well as HIF-1α and its relation to CVD [60]. Fur-
ther experiments are needed to investigate whether HIF mediated regulations of membrane
proteins are restricted to some classes.

Our study has limitations. The results obtained from this study need to also be
tested on the cellular level in an in-vivo model of ischemic heart disease because the
H9c2 cardiomyoblast cell line used in this study does not fully match the phenotype and
functions of mature cardiomyocytes.

5. Conclusions

Taken together, our results showed for the first time that 24 h hypoxia of H9c2 car-
diomyoblasts decreased the plasma membrane expression of α1-and β1-NKA and activity
of NKA. Under hypoxic conditions, α1-NKA was internalized, and HIF-1αwas involved
in this regulation. The β1-NKA was internalized and degraded independently of HIF-1α.
The decreased activity of NKA in hypoxic H9c2 cardiomyoblasts was also regulated by
HIF-1α. Moreover, although cellular ATP decreased, the levels were still enough to drive
the NKA activity in hypoxia and even in the absence of HIF-1α. The mechanism behind
this regulation on the molecular basis and any effects on other Na+ and Ca2+ transporting
systems need further investigation.
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