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Abstract: Genus Provespa contains nocturnal wasps mainly found in the southeastern region of Asia.
There are no complete genome resources available of this genus, which hinders the study of its
phylogenetic evolution and the origin of nocturnal behavior in the Vespidae family. Through high-
throughput sequencing, we obtained the mitochondrial genome of Provespa barthelemyi (Hymenoptera:
Vespidae), which is 17,721 base pairs in length and contains 13 protein-coding genes (PCGs), 22 tRNAs,
and two rRNAs. We identified four gene rearrangement events of P. barthelemyi that frequently
occur in the Vespidae family. We used Maximum Likelihood (ML) methodologies to construct a
phylogenetic tree based on the sequenced mitochondrial genome and the available data of reported
species belonging to Vespinae. Our findings confirmed the monophyly of Vespinae. Our study reports
the first complete mitochondrial genome of Provespa and compares its characteristics with other
mitochondrial genomes in the family Vespidae. This research should shed light on the phylogenetic
relationships and ecological characteristics of the Vespidae family.
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1. Introduction

As an ancient insect group on Earth, Vespidae has a large population and wide
distribution, which is closely related to human life. For one thing, wasps can eat fruit and
trees, which has a negative effect on agricultural production [1]. Female wasps with toxic
stings can cause allergies and even death, which is a hidden danger to human health [2,3].
On the other hand, wasps can feed on agricultural pests and pollinate crops, which make a
great contribution to ecological balance [4–6]. It is of great significance to understand and
study this family.

Containing the representative species of solitary, sub-sociality to true sociality and so
on, the Vespidae is an ideal group to study the social evolution of insects [7–10]. However,
the social evolutionary origin of the family Vespidae and the phylogenetic relationship in
the subfamily and genus remain controversial [11–14]. The Euparagiinae typically leads a
free-roaming lifestyle without fixed communal nests, exhibiting completely solitary behav-
ior [15]. Masarinae resemble bees, with multiple females of individual species sharing the
hive [16,17]. Eumeninae is a subfamily that has the largest population among Vespidae, and
most species are solitary [18,19]. The members of Polistinae already have social characteris-
tics, but there is almost no visible difference between queen bees and working bees [20,21].
Finally, it further evolved into the Vespinae, which has high sociality, a clear division of
labor and a large number of members [7,22]. From these subfamilies, we can see the gradual
evolution of the wasp family from solitary to social [23]. Carpenter largely supported a
single origin of eusociality by studying the living habits and phylogenetic evolutionary
relationships of six subfamilies of Vespidae, believing that the sociality of Euparagiinae
was the lowest, while that of Vespinae was the highest [24,25]. However, in 1998, Schmitz
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and Moritz argued that the sociality of wasps underwent two independent evolutionary
processes, with one branch being Stenogastrinae and the other being (Vespinae + Polistinae),
which was established through nuclear 28S ribosomal DNA sequence analysis [26]. This is
key to solving the phylogenetic problem of Vespidae by further studying the classification
of this family and obtaining more representative species and characteristic data [27].

The genus Provespa is a primitive taxon in the family Vespidae and is important for
the study of the social behavior and evolution of the various groups of the Vespidae [25].
Additionally, Provespa exhibit a remarkable nocturnal lifestyle [28]. They can be attracted to
optical sources in field studies. Little information about the origin of such nocturnal be-
havior in the Vespidae family has been reported so far. Provespa barthelemyi (Hymenoptera:
Vespidae) has a primary geographic range in Southeast Asia, extending from the Indian
Peninsula across southern China to the northern part of the Malay Peninsula [29]. In the
present paper, we sequenced and assembled the mitochondrial genome of P. barthelemyi.
In addition to analyzing the sequence characteristics of the mitochondrial genome, we
discussed the taxonomic status of P. barthelemyi in Vespidea from the mitochondrial genome
level and analyzed the phylogenetic relationships among the subfamilies in combination
with the reported complete mitochondrial genome sequence of wasps.

2. Materials and Methods
2.1. Sampling and DNA Isolation

The samples of P. barthelemyi were collected in the town of Lvchun, Yunnan Province,
China, by using a light trap in the evening. After collection, all of the samples were
immediately restored in pure ethanol for the subsequent chemical and molecular analyses.
The voucher samples were restored at Central South University, Changsha, China. We used
the DNeasy tissue kit (Qiagen, Beijing, China) to extract the DNA using the manufacturer’s
recommended protocol.

2.2. Mitochondrial Genome Sequence Reading and Assemblage

A high-throughput sequencing technique was used to read the mitochondrial DNA
sequences of P. barthelemyi. Illumina TruSeq library was constructed by taking 1 µg of
purified genomic DNA (~500 bp) from each sample (Shanghai, China) using the TruSeq™
Nano DNA Sample Prep Kit (FC-121-4003). The sequencing was then accomplished using
an Illumina NovaSeq 6000 platform with a 150 bp paired-end read length. Before assembly,
Trimmomatic 0.39 was used to filter the raw reads [30]. Three procedures were used to
reconstruct the mitochondrial genome. First, the pair-end reads were assembled into larger
segments called contigs by overlapping using MitoZ v2.3. Potential mitochondrial contigs
were extracted by aligning them against the NCBI mitogenome database [31]. Second,
we used BLAST v 2.8.1+ to perform homologous gene alignment and aligned contigs
(>80% query coverage) were ordered and connected through a manual comparison with the
reference mitochondrial genomes [32,33]. Finally, MUMmer 3.23 was used to check whether
the result of the assembly was circular. Based on the above assembly steps, we obtained a
circle of the P. barthelemyi mitochondrial genome [34]. The sequenced mitochondrial of the
P. barthelemyi was deposited in GenBank under accession number NC_079667.1.

2.3. Mitochondrial Genome Annotation and Characterization

The mitochondrial genes of P. barthelemyi were annotated (predict PCGs, tRNA genes,
and rRNA gene), and secondary structure modeling was completed using the MITOS
WebServer (http://mitos2.bioinf.uni-leipzig.de/index.py. Accessed on 2 March 2023) [35].
The BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi. Accessed on 5 March 2023)
for the reference mitochondrial genome sequence was used to find the position of each
gene on the mitochondrial genome circle. The start/stop codons were manually corrected
in SnapGene Viewer. The circular mitochondrion genome map of P. barthelemyi was drawn
using the Cgview tool (JavaScript version). The skew of A-T and G-C were performed as
following these calculations: AT-skew is equal to the value of A minus T divided by the
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value of A plus T. Similarly, GC-skew is equal to the value of G minus C divided by the value
of G plus C [36]. EMBOSS v6.6.0.0 was used to work out relative synonymous codon usage
(RSCU) [37,38]. The phylogenetic relationship cladogram was generated via the maximum
likelihood (ML) method using IQ-TREE (http://iqtree.cibiv.univie.ac.at/. Accessed on 20
March 2023). MEGA 11 was used to align the protein-coding genes (PCGs) [39]. Using
ModelFinder to obtain the optimal evolutionary model of the target data quickly, ML
analysis was performed with bootstrap confidence estimate repeated 1000 times [40,41].
FigTree v1.4.4 was used to edit and beautify the phylogenetic trees.

3. Results and Discussion

The mitochondrial genome of P. barthelemyi (accession number NC_079667.1) encodes
13 PCGs, 22 tRNAs, and two rRNA genes and was 17,721 bp in length. There are 23 genes
on the J-strand and 14 on the N-strand (Table 1) (Figure 1). The rearrangement events of P.
barthelemyi mitochondrial genome reported in this study were basically consistent with the
known events in the subfamily Vespinae, including the initiation of tRNA arrangement as
trnY-trnI-trnM-trnQ, translocation of trnL1 to the region between trnS2 and nad1 and the
shuffling of trnE and trnS1 [42–47].
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Table 1. Mitochondrial genome of Provespa barthelemyi. arrangement and annotation.

Gene Type Strand Position
(Start-End)

Length
(bp)

Intergenic
Spacer Start Stop Anticodon

trnY-tac tRNA N 350–417 68 - - - ATG
trnI-atc tRNA J 617–687 71 199 - - TAG
trnM-atg tRNA J 1121–1188 68 433 - - TAC
trnQ-caa tRNA N 1222–1289 68 33 - - GTT
nad2 pcg J 1313–2398 1086 23 ATG TAA -
trnW-tga tRNA J 2410–2478 69 11 - - ACT
trnC-tgc tRNA N 2483–2545 63 4 - - ACG
cox1 pcg J 2553–4088 1536 7 TTG TAA -
trnL2-tta tRNA J 4097–4166 70 8 - - AAT
cox2 pcg J 4167–4853 687 0 ATC TAA -
trnK-aag tRNA J 4861–4930 70 7 - - TTC
trnD-gac tRNA J 4999–5065 67 68 - - CTG
atp8 pcg J 5066–5224 159 0 ATT TAA -
atp6 pcg J 5231–5902 672 6 ATT TAA --
cox3 pcg J 5915–>6698 784 12 ATG T -
trnG-gga tRNA J 6699–6764 66 0 - - CCT
nad3 pcg J 6765–7121 357 0 ATA TAA -
trnA-gca tRNA J 7131–7187 57 9 - - CGT
trnR-cga tRNA J 7204–7268 65 16 - - GCT
trnN-aac tRNA J 7468–7533 66 199 - - TTG
trnE-gaa tRNA J 7536–7610 75 2 - - CTT
trnS1-aga tRNA J 7628–7688 61 17 - - TCT
trnF-ttc tRNA N 7879–7945 67 190 - - AAG
nad5 pcg N 8022–9701 1680 76 ATT TAA -
trnH-cac tRNA N 9702–9773 72 0 - - GTG
nad4 pcg N 9954–11,267 1314 180 ATG TAA -
nad4l pcg N 11,261–11,554 294 −7 ATT TAA -
trnT-aca tRNA J 11,604–11,670 67 49 - - TGT
trnP-cca tRNA N 11,677–11,743 67 6 - - GGT
nad6 pcg J 11,831–12,400 570 87 ATG TAA -
cob pcg J 12,397–13,548 1152 −4 ATA TAA -
trnS2-tca tRNA J 13,572–13,637 66 23 - - AGT
trnL1-cta tRNA N 13,935–14,002 68 297 - - GAT
nad1 pcg N 14,380–15,339 960 377 ATT TAG -
rrnL rRNA N 15,423–16,791 1369 83 - - -
trnV-gta tRNA N 16,860–16,925 66 68 - - CAT
rrnS rRNA N 16,926–17,696 771 0 - - -

The base composition of the mitochondrial genome was determined as follows:
A = 38.53%, G = 5.18%, C = 14.84%, and T = 41.45%, with a GC content equal to 20.02% and
an AT content equal to 79.98%, which is similar to other Hymenopteran mitogenomes [48].
Li et al. found that Stenogastrinae had the maximum A + T content value, while Vespinae
had the lowest when sequencing the mitochondrial genome of Vespidae [44]. In Vespinae,
Dolichovespula shows a high AT content, usually more than 80% [46]. The A-T skew (−0.037)
and G-C skew (−0.483) of the P. barthelemyi genome were all negative, indicating that the
percentage of T and C were higher than A and G in the sequence of the mitochondrial
genome, respectively. A-T skew and G-C skew were both negative in PCGs, which were
positive in tRNAs and rRNAs, showing that the content of T and C were higher than A and
G in PCGs, respectively, whereas the opposite was true for tRNAs and rRNAs.

PCGs of the P. barthelemyi mitochondrial genome comprise a total of 3430 codons.
Among the 13 PCGs of the mitochondrial genome, there were five start codons, namely
ATT, ATG, ATA, ATC, and TTG. ATT is the most frequently used start codon (atp6, atp8,
nad1, nad4l, and nad5), followed by ATG (nad2, nad4, nad6, and cox3), ATA (nad3 and
cob), ATC (cox2), and TTG (cox1). Except for nad1 and cox3, which have TAG and T as the
stop codons, respectively, the rest of the PCGs (cox1, cob, nad2, cox2, atp8, atp6, cox3, nad3,
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nad5, nad4, nad4l, and nad6) have TAA as the stop codons. RSCU and amino acid usage
in the PCGs of P. barthelemyi are summed up in Figure 2. If a codon is without preference,
the RSCU value of the codon is equal to 1. When the RSCU value of a codon is above 1,
it means that the codon has relatively high use, and vice versa [49,50]. The three most
common codons for the three amino acids were ATT (Ile), TTA (Leu), and TTT (Phe), with
a codon usage of 376 bp and so on. The base compositions of the above codons were all
A and T, indicating that the codons of the mitochondrial PCGs were biased toward bases
A and T. The most frequently used codon was Leu (15. 4%), followed by Ile (12.1%) and
Phe (10. 9%), which is also common in species of Vespidae [46]. Supplementary Table S2
provides specifics regarding codon usage.
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In the mitochondrial genome of P. barthelemyi, the lengths of 22 tRNAs range from 75 bp
to 57 bp. Nineteen of the twenty-two tRNA genes form typical cloverleaf secondary struc-
tures, except for trnC, trnA, and trnS1 (Figure 3). Both trnA and trnC lack the TψC (T) arm.
The lack of TΨC loop of trnH has been observed in several species of Dolichovespula [51].
TrnS1 gene exhibited the deletion of the Anticodon (AC) arm. Other co-familiar wasps,
such as Parapolybia crocea and Orancistrocerus aterrimus aterrimus, also presented an absent
structure in the trnS1 gene. A truncated trnS1 gene represents a conserved mitochondrial
feature in eumetazoans. Compared with other Vespidae, the duplication of trnM genes in
the Eumeninae is relatively common.

To value the selective pressures working on P. barthelemyi, we calculated non-synonymous
(Ka) and synonymous (Ks) substitution ratios (Ka/Ks) for all PCGs. In this study, 13 PCGs
showed values well below 1, indicating that all genes undergo strong purifying selec-
tions (Figure 4) [51]. The nad4l has the highest Ka/Ks value (0.49), followed by atp8
and nad6, whose Ka/Ks value is 0.33 and 0.32, respectively, indicating that the selection
pressure of these genes was relatively weak. It has been reported that four subfamilies
(Stenogastrinae, Vespinae, Polistinae and Eumenidae) of the Vespidae also has high Ka/Ks
value of nad4l based on PCGs [52]. The evolution of NADH genes is generally faster than
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that of cytochrome oxidase genes. Cox1 has the lowest Ka/Ks value (0.05), followed by
atp8 and nad6, whose Ka/Ks values are 0.09 and 0.10, respectively, indicating that these
genes are subjected to strong selective pressures. Recent studies show that the cox1 of
the Vespidae and the subfamily Eumeninae has the lowest observed values, which sug-
gests that cox1 is highly conservative, has functional stability and is suitable for molecular
barcoding [44,53,54].
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With Polistes jokahamae as an outgroup, the mitochondrial genomes available in the
Genbank database belong to relationship analysis (Figure 5). Based on the nucleotide
sequences of 13 PCGs, the optimal model predicted using ModelFinder was GTR + F
+ I + G4. The molecular evolutionary tree was created using the maximum likelihood
method (ML), bootstrap values (bv) of 1000, with various representatives of Vespinae
(20 sequences, 11,205 nucleotide sites, 4956 parsimony informative sites). Within Vespinae,
the tree shows the relationship among genera is Dolichovespula + (Vespula + (Provespa +
Vespa)), and the monophyly of the Vespinae is strongly supported. Based on the appear-
ance and behavioral characteristics, the cladogram constructed by Carpenter showed that
Vespa was the first clade to diverge, followed by Provespa, with Dolichovespula and Vespula
grouped together [24]. Saito et al. believed that Dolichovespula and Vespula formed sister
clades [29]. The two got together to form sister clades with Provespa, and Vespa is the
sister group of the genera above. Based on nucleotide sequence analysis, the phylogenetic
relationships of four genera identified by Perrard are as follows: Dolichovespula + (Vespula +
(Provespa + Vespa)), but combining morphological and wing venation analysis, completely
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different phylogenetic results were obtained, indicating that there was a contradiction
between morphological classification and molecular classification of Vespinae [55]. The
results of Lopez-Osorio and Pickett’s combined analysis provide strong evidence for the
hypothesis that Dolichovespula and Vespula are sister clades [51]. However, in another
report, Osorio et al. concluded that Dolichovespula is more closely related to Vespa than to
Vespula based on transcriptomic data without Provespa because sequencing data were not
available [56]. Recently, some researchers found the phylogenetic relationships of Vespinae
to be Dolichovespula + (Vespula + Vespa) using mitochondrial sequencing techniques [57–60],
which is basically consistent with our study. Supplementary Tables S1 and S3 show detailed
information for the species included and ML analysis.
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port, Osorio et al. concluded that Dolichovespula is more closely related to Vespa than to 
Vespula based on transcriptomic data without Provespa because sequencing data were not 
available [56]. Recently, some researchers found the phylogenetic relationships of Vespi-
nae to be Dolichovespula + (Vespula + Vespa) using mitochondrial sequencing techniques 
[57–60], which is basically consistent with our study. Supplementary Tables S1 and S3 
show detailed information for the species included and ML analysis. 
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13 PCGs based on Provespa barthelemyi and 19 species of the Vespinae, with one specie of the Polis-
tinae as an outgroup. The number on the branches indicates the ML bootstrap supportvalue. 

  

Figure 5. Construction of phylogenetic tree determined via maximum likelihood (ML) analysis of
13 PCGs based on Provespa barthelemyi and 19 species of the Vespinae, with one specie of the Polistinae
as an outgroup. The number on the branches indicates the ML bootstrap supportvalue.

4. Conclusions

In this study, the complete mitochondrial genome sequence of P. barthelemyi (accession
number NC_079667.1) was sequenced and annotated for the first time, which enriched the
mitochondrial genome sequence information of the Vespidae family and provided useful
molecular data for molecular phylogenetic analysis. At the same time, the analysis of its
structural characteristics and base composition provided basic data for the comparative
analysis of mitochondrial genomics of those nocturnal species. Finally, phylogenetic tree
analysis based on the nucleotide sequences of 13 PCGs from 19 species of Vespinae filled up
the phylogenetic relationship of Provespa in Vespinae and also laid a preliminary molecular
foundation for the establishment of subsequent phylogenetic relationships and taxonomic
status of Vespidae.
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