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Abstract: Mitochondria in mammalian cardiomyocytes display considerable structural heterogeneity,
the significance of which is not currently understood. We use electron microscopic tomography to
analyze a dataset of 68 mitochondrial subvolumes to look for correlations among mitochondrial
size and shape, crista morphology and membrane density, and organelle location within rat cardiac
myocytes. A tomographic analysis guided the definition of four classes of crista morphology: lamellar,
tubular, mixed and transitional, the last associated with remodeling between lamellar and tubular
cristae. Correlations include an apparent bias for mitochondria with lamellar cristae to be located
in the regions between myofibrils and a two-fold larger crista membrane density in mitochondria
with lamellar cristae relative to mitochondria with tubular cristae. The examination of individual
cristae inside mitochondria reveals local variations in crista topology, such as extent of branching,
alignment of fenestrations and progressive changes in membrane morphology and packing density.
The findings suggest both a rationale for the interfibrillar location of lamellar mitochondria and a
pathway for crista remodeling from lamellar to tubular morphology.

Keywords: mitochondria; cristae; cardiomyocytes; myofibrils; membrane remodeling; electron
microscopy; electron tomography

1. Introduction

Mitochondrial bioenergetic output in the form of ATP is maximized by infolding the
energy-transducing inner membrane (IM). Increasing the surface area of the IM packs more
chemiosmotic machinery per mitochondrial volume into eukaryotic cells, freeing up space
for the specialized functions that make eukaryotic life interesting [1]. However, this strategy
for increasing ATP output carries both opportunities and risks [2]. The IM infoldings, called
cristae, are invaginations on the periphery of the membrane (the inner boundary membrane,
IBM) generated at narrow tubular necks or junctions [3–5]. There is growing experimental
and computational evidence that these crista junctions (CJs) restrict the diffusion of ions,
metabolites and soluble proteins, creating crista micro-compartments that are functionally
distinct from the peripheral space between the IBM and outer membrane, OM [6–13]. The
junctions are formed by a large protein–cardiolipin complex, MICOS (mitochondrial contact
site and cristae organizing system), that has its origins in ancestral alpha-proteobacteria [14]
and interacts with respiratory complexes, F1F0-ATP synthase dimers and lipids [15–18].
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Recent studies suggest that crista junctions are dynamic structures that, like the cristae
themselves, are continuously remodeled depending on the metabolic state [19,20]. A
recent computational study indicates that metabolic steady states inside cristae can vary
considerably with crista size and shape [13]. Increasing the crista length slows the return
of ADP into the matrix, which in turn can decrease the flux of ATP synthesis. Since cells
and tissues with high energy needs tend to have larger and more densely packed cristae,
the mitochondrial design must optimize internal diffusion (for energy metabolism) while
dealing with the physical stresses associated with cellular activities, such as transport along
the cytoskeleton in neuronal cells and contraction cycles in the muscle. This paper explores
how this is achieved in cardiac muscle mitochondria, using observations from transmission
electron microscopic (TEM) tomography.

Mitochondria occupy around one-third of the volume of cardiac myocytes (e.g., [21]),
presumably the upper limit that still allows sufficient space for contraction machinery and
essential organelles. There are distinct subpopulations of mitochondria within cardiomy-
ocytes that vary in terms of location and structure. Some mitochondria reside in ordered
rows sandwiched between myofibrils, others occur singly or in clusters, proximal or distal
to myofibrils, some abutting the sarcolemma and others the nuclear envelope, e.g., [22,23].
It is thought that the orderly arrangement of mitochondria between myofibrils provides an
energetic advantage for the muscle [24], although the location may present challenges in
terms of mechanical stresses [25]. Besides variation in cellular locale, cardiac mitochondria
have considerable heterogeneity in interior design, falling broadly into two classes, those
with extended flat lamellar cristae and those with tubular cristae. There is considerable
disagreement in the literature about whether variable crista morphology reflects functional
differences in mitochondria at different locations within myocytes [22,26–28]. This issue
provides a major focus for the current report, which is a survey of the topology of the inner
membranes of mitochondria in normal adult mammalian (rat) ventricular cardiomyocytes
using electron tomography. We devise a classification for crista morphology based on
a dataset of 68 mitochondrial subvolumes in 58 tomograms, and determine significant
correlations within the dataset between mitochondrial structure and cellular location. We
discuss the functional implications of these correlations in terms of the influence of crista
morphology on mitochondrial ATP output and response to physical stress. Finally, we
suggest a pathway for the transition from lamellar to tubular cristae based on the close
examination of cristae within individual mitochondria.

2. Materials and Methods
2.1. Preparation of Rat Ventricular Myocytes for Transmission Electron Microscopy

Isolated ventricular myocytes were obtained from adult male Sprague–Dawley rats
using previously described procedures [29]. Hearts were excised from animals after in-
traperitoneal heparin injection and isoflurane inhalation, quickly immersed in an ice-cold
isolation buffer (130 mM NaCl, 5.4 mM KCl, 0.5 mM MgCl2, 0.33 mM NaH2PO4, 10 mM
D-glucose, 10 mM taurine, 25 mM HEPES and 0.5 mM EGTA; pH adjusted to 7.4 with
NaOH), then perfused for 5 min on a Langendorff apparatus with an isolation buffer at
37◦. Perfusion was switched for 6–8 min to the EGTA-free isolation buffer containing a
protease cocktail. The heart was dismounted, dissected and the ventricles transferred to
an isolation buffer containing 2 mg/mL BSA and 20 mM 2,3-butanedione monoxime, and
was then rapidly minced, disrupted and filtered through a nylon mesh (pore size 300 µm).
The myocyte suspension was allowed to settle and was prepared for TEM according to
the protocol in [30]. Myocytes were fixed by resuspension in 2.5% glutaraldehyde in 0.1 M
cacodylate (pH 7.2) and transferred to the Microscope Facility of the Johns Hopkins School
of Medicine (Baltimore, MD, USA), where the sample was postfixed with 2% osmium
tetroxide in a cacodylate buffer, dehydrated and embedded in Epon 812.
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2.2. Electron Tomography and Structural Analyses

Epon blocks of rat ventricular myocytes were transferred to the Advanced Electron
Microscopy Group at the Wadsworth Center (New York State Department of Health, Albany,
NY, USA) for electron tomographic data collection. Sections were cut by ultramicrotomy to
nominal thicknesses of 250–400 nm, and placed on the center of 200-mesh copper grids,
pre-coated with a 50 nm Formvar film. To promote even penetration into the thick sections,
uranyl acetate and lead citrate stains were applied to both sides for times that were thickness
dependent. For uranyl acetate (which penetrates slowly), a saturated solution was applied
at 60 ◦C for 15 to 30 min, while lead citrate was applied at room temperature for 6 to 10 min.
After staining, a 5 nm carbon film was evaporated on one side of the grids to improve
section stability during data collection, and 20 nm colloidal gold particles were deposited
on the grids as fiducial markers for image alignment.

The tomographic tilt series were recorded using a JEOL JEM-4000FX equipped with a
Gatan GIF2002 energy filter. The microscope was operated at a 400 kV acceleration voltage
with zero-loss energy filtering using a 20-eV slit. The single-axis tilt series were collected at
a 1◦ increment, from +60◦ to −60◦, using a CCD camera with a 1024 × 1024 detector array
(pixel size 1.8 or 1.6 nm). Tomograms were computed by weighted back-projection [31]
and denoised by anisotropic diffusion [32] using IMOD (version 34.12.25) [33] and SPIDER
(version 5mp.106) [34] software.

For visualization and quantitative analyses in Sections 3.1–3.4, rolling averages of
X–Y slices (i.e., slices from tomograms parallel to the section plane and normal to the
electron beam at 0◦ specimen tilt) were computed from every three adjacent slices in the
tomograms. Membrane lengths were measured by manual tracing of tomographic slices
using tools in IMOD, which were also used to render the 3-D surfaces. Mitochondrial cross-
section parameters were measured from displayed tomographic slices using grid overlays.
Segmentation and quantitation in Section 3.5 was done using a novel, semi-automated
protocol [35]. Following denoising by anisotropic diffusion, Frangi filtration [36] was
applied in Microscopy Image Browser (version 2.83) [37] to enhance detection of vessel-like
surfaces. Segmentation was performed by highlighting a few regions of interest (such as
groups of cristae) for thresholding and extracting a polygonal mesh from the isosurface
with the marching cubes algorithm in MATLAB (version 9.12 R2022a). Blender (version
2.93.1) was used for surface rendering and triangulation, and BlendGAMer (version 2.0.7)
for measuring surface areas and volumes.

3. Results
3.1. Classification of Cardiomyocyte Mitochondria

Electron tomograms were obtained of mitochondria in 58 regions of normal adult rat
cardiac muscle, using specimen preparative, image recording and processing protocols as
described in Methods. The tomographically reconstructed volumes are slabs of 1.8 × 1.8 or
1.6 × 1.6 µm2 in area and 0.25 or 0.37 µm thick, containing only a part of the individual
mitochondria which can exceed 1 µm in length. Regions were selected by criteria and were
intended to provide a diverse sampling of mitochondria in terms of crista morphology
and cell location. Thus, each tomogram contains one or a few mitochondria with easily
recognizable cristae (broadly lamellar or tubular) that may be located in the vicinity of
myofibrils (“interfibrillar”) or the plasma membrane (“subsarcolemmal”), in some cases
within closely packed clusters. Since selection was not strictly random, the dataset does
not provide information about the frequency of occurrence within cardiomyocytes of
mitochondria with a particular size, crista morphology or cell location, and global averages
of structural parameters in the dataset are not reliable. However, no attempt was made to
select mitochondria with a particular size or crista morphology at specific locations inside
the cells. Therefore, statistically significant correlations among mitochondrial size, crista
morphology and location within the dataset should be meaningful.

The 58 tomographic volumes sample 68 mitochondria that could be grouped using the
information in the tomograms into four distinct classes of crista morphology: “lamellar”,
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“tubular”, “mixed” and “transitional”, with representative tomographic slices (described in
Section 2.2) shown in Figure 1. Mitochondria classified as “lamellar” (Lam) have cristae
that appear in tomographic slices as pairs of straight or gently curved parallel lines spaced
about 20 nm apart. The cristae are flat, sometimes branched, and generally extend across
the organelle (with crista junctions on either end) and through the entire thickness of the
reconstructed volume. The 2-D profiles of lamellar membranes contain frequent breaks
that correspond to fenestrations (20–80 nm wide), described in detail in [35] (see also [38]).
The mitochondria can be in an orthodox (low density, expanded matrix; Figure 1A) or
condensed (dark, contracted matrix; Figure 1B) conformation [39]. “Tubular” (Tub) mito-
chondria have crista profiles that correspond to transverse (Figure 1C) and longitudinal
(Figure 1D) views of irregularly packed, worm-like curved tubes, typically 50−90 nm in
diameter. Since individual crista tubes wind in and out of the tomographic slabs, their
connectivity at crista junctions was difficult to track and the occurrence of unattached tubu-
lar cristae could not be ruled out. In fact, small, unattached spherical vesicles (diameters
70−90 nm) are sometimes observed within tomograms of this class. “Transitional” (Trans)
mitochondria have a distinctive 2-D signature, namely parallel rows of small (30−60 nm),
circular and elongated membrane cross-sections (Figure 1E,F). In conventional micrographs,
these might be mistaken for lamellar cristae but a tomographic analysis reveals that each
row is composed primarily of tubes, narrower and shorter than those in the “tubular” class,
interconnected with flat lamellar regions (see Sections 3.4 and 3.5). This crista morphology
was named “transitional” because it is similar to that observed in mitochondria of other
cell types under conditions that induce lamellar-to-tubular crista transitions, as discussed
in Section 4.2. “Mixed” (Mix) mitochondria contain roughly equal adjacent regions of two
of the crista morphologies (Figure 1G,H). The overall impression is that the observed crista
classes may represent a continuum and suggest a possible pathway for remodeling (see
Section 4.2).
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3.2. Correlations among Mitochondrial Size, Location and Crista Morphology 

Figure 1. Central slices from tomograms representing the four classes of crista morphology in the
dataset, as described in text. (A,B) Lamellar cristae in orthodox (A) and condensed (B) conformations.
(C,D) Tubular cristae in predominantly transverse (C) and longitudinal (D) views. (E,F) Transitional
crista morphologies. (G,H) Mixed cristae with about equal fractions of lamellar—tubular (G) and
tubular—transitional (H) morphologies. Scale bars in (A,F) represent 250 nm. The scale bar in
(A) also applies to tomographic slices (B−E,G,H).

3.2. Correlations among Mitochondrial Size, Location and Crista Morphology

The 68 mitochondria in the dataset, classified according to crista morphology, were
further characterized in terms of basic structural parameters commonly applied to muscle
mitochondria [40–42]. A plot of the aspect ratios of mitochondrial profiles in the central
tomographic slices (AR = length of longest dimension/length of shortest dimension) vs.
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area of the cross sections (AMIT) is shown in Figure 2A for all mitochondria in the dataset,
and for only Lam and Tub classes in Figure 2B. Lam mitochondria tend to fall to the left side
(smaller areas) of the plot and are distributed over a wider range of aspect ratios than the
other three classes. The converse is certainly true for Tub mitochondria, only one of which
has an aspect ratio above 1.5 and none of which has an area smaller than 0.8 µm2.
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Figure 2. Correlations between aspect ratios and areas (AMIT) of mitochondrial cross sections in
central tomographic slices. (A) All mitochondria. (B) Only mitochondria with lamellar and tubular
crista morphologies. (C) Mitochondria located in interfibrillar regions (IFM). (D) Mitochondria not
located in interfibrillar regions (NonIFM). (E) Rectangular boundaries enclosing all but one IFM
and all but two NonIFM, with corresponding % of mitochondria with lamellar and tubular crista
morphologies. Diagonally striped symbols correspond to mitochondria with a few locally swollen
cristae (described in text).

Differences in the profile parameters (mean areas and aspect ratios) of the four morpho-
logical classes (Figure 2A,B) are quantified in the graphs of Figure 3. There is a progressive
increase in mean AMIT (from 0.70 to 1.08 µm2) and decrease in mean AR (from 1.61 to 1.20)
as crista morphology varies from lamellar to mixed to transitional to tubular. In particular,
differences between Lam and Tub mitochondria are highly significant (p < 0.02) for both
areas and aspect ratios (see legend of Figure 3). Thus, mitochondria in the dataset with
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lamellar cristae tend to be smaller and more irregular in shape, while mitochondria with
tubular cristae tend to be larger and rounder in profile.

Curr. Issues Mol. Biol. 2023, 3, FOR PEER REVIEW 6 
 

 

1.61 to 1.20) as crista morphology varies from lamellar to mixed to transitional to tubular. 

In particular, differences between Lam and Tub mitochondria are highly significant (p < 

0.02) for both areas and aspect ratios (see legend of Figure 3). Thus, mitochondria in the 

dataset with lamellar cristae tend to be smaller and more irregular in shape, while mi-

tochondria with tubular cristae tend to be larger and rounder in profile. 

 

Figure 3. Chart of mean areas and aspect ratios (standard deviations indicated) for the cross-section 

profiles of all mitochondria in the dataset, classified according to crista morphology as described in 

the text. An unpaired T-test (GraphPad Prism 9) was used to compare values for Lam mitochondria 

vs. each of the other three crista morphology classes. Statistically significant two-tailed p-values 

were obtained for areas and aspect ratios with Lam vs. Tub (0.017, 0.009) and Lam vs. Mix (0.027, 

0.017), but not Lam vs. Trans (0.108, 0.07) mitochondria. 

Table 1 summarizes the distribution of mitochondria of different crista morpholo-

gies in terms of location within the myocytes. For the purposes of this analysis, “interfi-

brillar” and “subsarcolemmal” classifications were restricted to include only mitochon-

dria in close proximity (<50 nm) to myofibrils or to the plasma membrane, respectively. 

Mitochondria not meeting these criteria were classified as “other”, even if they were in 

clusters near myofibrils. The location classes were not evenly populated, with 30 interfi-

brillar, 29 other and only 9 clearly subsarcolemmal. Of the 30 interfibrillar mitochondria, 

21 are Lam and another 7 Mix (lamellar/tubular). The 38 non-interfibrillar mitochondria 

in the dataset are roughly evenly distributed between mixed, transitional and tubular 

crista morphologies, although Trans mitochondria are absent from the subsarcolemmal 

region. The distributions of all classes of mitochondria in interfibrillar and 

non-interfibrillar regions on the AR vs. AMIT plot are shown in Figure 2C and Figure 2D, 

respectively, and summarized for Lam and non-Lam mitochondria in Figure 2E. Clearly, 

mitochondria with lamellar crista morphology correlate with interfibrillar location in 

the dataset. 

Table 1. Distribution of mitochondria with different crista morphologies according to location 

within cardiac myocytes *. 

Morphology Interfib Subsarc Other Total Swollen 

Lam 21 1 5 27 0 

Mix 7 4 8 19 1 

Trans 1 0 8 9 3 

Tub 1 4 8 13 2 

Total 30 9 29 68 6 

* Data from Figure 2C,D with crista morphologies and cell locations defined as described in text, as 

are abbreviations for crista morphologies. Interfib = Interfibrillar; Subsarc = Subsarcolemmal. Also 

shown is the distribution of mitochondria with locally swollen cristae (diagonally striped symbols 

in Figure 2). 

Figure 3. Chart of mean areas and aspect ratios (standard deviations indicated) for the cross-section
profiles of all mitochondria in the dataset, classified according to crista morphology as described in
the text. An unpaired T-test (GraphPad Prism 9) was used to compare values for Lam mitochondria
vs. each of the other three crista morphology classes. Statistically significant two-tailed p-values were
obtained for areas and aspect ratios with Lam vs. Tub (0.017, 0.009) and Lam vs. Mix (0.027, 0.017), but
not Lam vs. Trans (0.108, 0.07) mitochondria.

Table 1 summarizes the distribution of mitochondria of different crista morphologies
in terms of location within the myocytes. For the purposes of this analysis, “interfibrillar”
and “subsarcolemmal” classifications were restricted to include only mitochondria in close
proximity (<50 nm) to myofibrils or to the plasma membrane, respectively. Mitochondria
not meeting these criteria were classified as “other”, even if they were in clusters near my-
ofibrils. The location classes were not evenly populated, with 30 interfibrillar, 29 other and
only 9 clearly subsarcolemmal. Of the 30 interfibrillar mitochondria, 21 are Lam and another
7 Mix (lamellar/tubular). The 38 non-interfibrillar mitochondria in the dataset are roughly
evenly distributed between mixed, transitional and tubular crista morphologies, although
Trans mitochondria are absent from the subsarcolemmal region. The distributions of all
classes of mitochondria in interfibrillar and non-interfibrillar regions on the AR vs. AMIT
plot are shown in Figures 2C and 2D, respectively, and summarized for Lam and non-
Lam mitochondria in Figure 2E. Clearly, mitochondria with lamellar crista morphology
correlate with interfibrillar location in the dataset.

Table 1. Distribution of mitochondria with different crista morphologies according to location within
cardiac myocytes *.

Morphology Interfib Subsarc Other Total Swollen

Lam 21 1 5 27 0

Mix 7 4 8 19 1

Trans 1 0 8 9 3

Tub 1 4 8 13 2

Total 30 9 29 68 6
* Data from Figure 2C,D with crista morphologies and cell locations defined as described in text, as are abbrevia-
tions for crista morphologies. Interfib = Interfibrillar; Subsarc = Subsarcolemmal. Also shown is the distribution
of mitochondria with locally swollen cristae (diagonally striped symbols in Figure 2).

3.3. Correlation between Crista Morphology and Membrane Density

As already noted, the evolution of mitochondrial cristae likely was driven by the
selective advantage of packing more ATP-producing chemiosmotic membrane into the cell
volume occupied by mitochondria. Thus, muscle cells (such as cardiac and flight muscle),
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which have a high and variable demand for ATP to power massive contractile machinery,
tend to have mitochondria with the most densely packed cristae, e.g., [43]. Likewise, there
is considerable evidence of physiological regulation of mitochondrial crista density, with
increases correlated with endurance training in the human skeletal muscle [44], thyroid
state in rat liver [45] and switching on oxidative metabolism in cancer cell lines [46],
reviewed in [47]. Comparisons were made of the density of crista membrane packing
for representative mitochondria with lamellar and tubular cristae, as well as for a large
mitochondrion containing predominantly lamellar cristae with small subregions of other
morphologies, and for a Trans mitochondrion with locally swollen cristae (the significance
of which is explained below). Tomograms were selected for analysis in which the majority
of membranes were normal to the viewing plane, which improved the reliability of manual
tracing. Examples of traced images used for crista density measurements, along with partial
3-D renderings of a Tub and Trans mitochondrion, are shown in Figure 4.
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The term “crista density” refers to the surface area of crista membranes contained 

within a mitochondrial volume (SCRIS/VMIT), measured in 2-D images as the length of 

crista membranes divided by the area of the mitochondrial cross section (LCRIS/AMIT). 

Metrics can vary, with “crista density” sometimes reported as the number of cristae per 

mitochondrial length, e.g., [42]. Also, many studies report the surface area of the entire 

inner membrane (SIM), cristae plus the inner boundary membrane (IBM), inside a mito-

Figure 4. Examples of manually traced membranes in tomographic slices used to calculate crista
membrane density. (A) An interfibrillar mitochondrion (IFM) with lamellar cristae. (B,B’) A non-
interfibrillar mitochondrion (nonIFM) with tubular cristae. (C,C’) A nonIFM with transitional cristae
and local swelling of three cristae. (D) The large nonIFM with lamellar cristae. Color coding of traces
in (A,C,C’,D) indicates cristae that are interconnected immediately above or below the central slice
shown. Color coding in (B,B’) is random since interconnectivity of tubular cristae is difficult to assess,
as explained in text. Scale bars correspond to 250 nm. Scale bar in (A) also applies to (B,B’,D). Scale
bar in (C) also applies to (C’).

The term “crista density” refers to the surface area of crista membranes contained
within a mitochondrial volume (SCRIS/VMIT), measured in 2-D images as the length of
crista membranes divided by the area of the mitochondrial cross section (LCRIS/AMIT).
Metrics can vary, with “crista density” sometimes reported as the number of cristae per
mitochondrial length, e.g., [42]. Also, many studies report the surface area of the entire
inner membrane (SIM), cristae plus the inner boundary membrane (IBM), inside a mito-
chondrial volume (SIM/VMIT, measured in 2-D images as LIM/AMIT). Inner membrane
density can vary considerably with cell and tissue type, with mean values for SIM/VMIT
of 21−24 µm−1 for rat liver mitochondria [45,48,49] and 37−41 µm−1 for rat and human
heart mitochondria [50,51].
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Crista densities were compared for eight mitochondria in the tomographic dataset,
seven with cross-section areas near the class mean value (3 Lam, 3 Tub and 1 Trans) and
one Lam mitochondrion with about twice the mean class area. The three smaller Lam
mitochondria are interfibrillar. The mean value of IM density (measured as LIM/AMIT) for
this subset of mitochondria is 25.5 (±9.2) µm−1, below the reported range for rat heart
mitochondria. However, the tomograms in the subset, as in the entire dataset, were not
selected randomly for crista morphology. The mean crista density for the Lam mitochondria
in the subset is 34.3 (±2.7) µm−1, near the reported range for rat muscle mitochondria,
suggesting a variation in density of IM packing with crista morphology that has not been
previously reported. This is illustrated in Figure 5A in terms of crista densities (measured
as LCRIS/AMIT) plotted against mitochondrial area. The mitochondria with tubular cristae
have the lowest crista densities, in the range 11−14 µm−1, while values for Lam mitochon-
dria span 27−33 µm−1 over a range of mitochondrial areas that include those of the Tub
mitochondria. The crista density of the Trans mitochondrion is ~19 µm−1, intermediate
between the Lam and Tub ranges. Clearly, mitochondria with lamellar cristae have the
densest crista membrane packing in the subset. This difference is not a trivial consequence
of the crista geometries. The 3-D models of closely packed lamellar and tubular cristae
(used for computational modeling of mitochondrial metabolism) have similar values for
crista density (32−30 and 29−28 µm−1, respectively) across six-fold ranges in volume [13].
Thus, observed variations in crista membrane density associated with crista morphology
in cardiac myocyte mitochondria reflect actual differences in membrane packing. This is
confirmed by plotting crista density against LCRIS/LIM, a measure of the extent of IM in-
folding, for the mitochondria in the subset (Figure 5B). Increasing inner membrane folding
clearly correlates with increasing crista density, as expected.
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Figure 5. Dependence of crista density on the (A) mitochondrial cross-section area and (B) extent of
inner membrane folding for the subset of cardiomyocyte mitochondria described in the text. Crista
densities were measured for central tomographic slices as LCRIS/AMIT where LCRIS is the length of
crista membranes contained within area AMIT, and extent of IM folding is the ratio of LCRIS to LIM,
the length of crista membranes plus IBM. Symbols are the same as in Figure 2.

3.4. Local Three-Dimensional Analysis of Cristae in a “Transitional” Mitochondrion

The complex morphology of cristae in “transitional” mitochondria was analyzed by
manual tracing and surface rendering of select cristae in the Trans tomogram used for
the crista density analysis (Figure 4C,C’). As evident in the 3-D models of Figure 6, there
are two distinctly different zones in each crista: extended flat membrane regions that are
either closely apposed (as in lamellar cristae) or separated due to crista swelling, and
highly convoluted regions composed of short narrow tubes interconnecting wider flatter
regions. Previously mentioned, crista fenestrations (20−80 nm openings in lamellar cristae
that connect the matrix on either side) are evident in the crista of Figure 6A, but mostly
absent from the flat, apposed crista membrane regions in the other two cristae (circled in
Figure 6B,C). Interestingly, the fenestrations in the crista of Figure 6A appear to align in rows
(arrows) that parallel the separations between tubular regions in the cristae of Figure 6B,C.
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This raises the possibility that the lateral merger of fenestrations, possibly triggered (in this
case) by crista swelling, could create the convoluted, interconnected tubular membrane
regions that are the signature of “transitional” mitochondria (see Section 4).
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Figure 6. Surface models of three cristae from the Trans mitochondrion of Figure 4C,C’, displayed
individually (A–C) and co-aligned as in the mitochondrion (D). Each view in the rows represents
successive rotation by 45◦. Arrows in (A) point to rows of fenestrations. Crista regions with flat,
closely apposed membranes without fenestrations are circled in (B,C), as explained in text. Scale
bar = 250 nm.

3.5. Complete Three-Dimensional Analysis of Cristae in a Large “Lamellar” Mitochondrion

The large, densely packed Lam mitochondrion of Figure 4D was used in the develop-
ment of a novel protocol for the 3-D analysis of complex membranes inside tomograms
using open source tools [35]. Although not yet automated, the protocol provides a facile
new approach to render and extract functionally important structural parameters from
tomographic data sets. Top-down and side views of the membrane surfaces in the Lam
mitochondrion of Figure 4D are presented in Figure 7, along with several dissected indi-
vidual cristae. The mitochondrion displays an obvious gradation in crista topology from
left to right in the top view, changing from lamellar with no or one branch (cristae #1−10)
to extensively branched lamellar (#11−13), transitional (#14) and tubular (#15, 16) mor-
phologies. The high degree of branching occurs near the middle of the mitochondrion and
results in the efficient space-filling of the circular cross-section. This maintains a high crista
membrane density in the lamellar region, 55 µm−1 for cristae #1–10 and 65 µm−1 for cristae
#11–13. By contrast, crista density decreases to 47 µm−1 in the subregion (cristae #14–16)
containing cristae with more tubular shapes. Note that the mean density of crista mem-
branes in this mitochondrion (58 µm−1) is approximately 60% higher than that estimated
from 2-D measurements (Figure 5). There are two apparent reasons for the discrepancy:
(i) membrane surface areas were measured for the model in Figure 7A in which cristae
are sealed on either side of the tomogram, which adds extra membrane surface; (ii) this
surface rendering procedure more closely tracks the texture and complexity of membranes
than manual tracing, which can also miss highly curved surfaces, e.g., [48]. The process
of parameter optimization (spatial filtering, thresholds, mesh sizes) relative to the desired
level of detail and expected resolution in these 3-D volumes is ongoing.

Plots of structural parameters for the “sealed” cristae in Figure 7A are shown in Figure 8.
Despite an order of magnitude increase in crista volume (VCRIS) associated with extensive
branching (cristae #11–14), the surface-to-volume ratios of cristae (SCRIS/VCRIS), important
for processes that depend on facilitated membrane transport, remain constant throughout
the lamellar region, ~110 µm−1, and increases to ~180 µm−1 for the crista region with
more tubular morphology (consistent with simple geometric considerations; Section 4.1.1).
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Numerous crista junctions (CJ) are visible in the side view of the mitochondrion (Figure 7B)
as circular or slot-like openings in the inner boundary membrane, with dimensions that
vary considerably. Round CJ openings fall in the 15–40 nm range while slot openings
can be up to 70 nm in length, generally consistent with previous descriptions [5,8,52].
The ratio of the volume of individual cristae to the number of CJ openings (VCRIS/NCJ),
which impacts processes that are rate-limited by lateral diffusion in and out of cristae,
plateaus at around 1 × 10−3 µm3. The lamellar cristae in this mitochondrion contain
numerous fenestrations, readily visible in Figure 7D,E, that connect the matrix “layers”
on either side of the crista “barriers”. The fenestrations vary in width from 20−80 nm
(mean = 36 nm) and are randomly arranged on most cristae in this Lam mitochondrion,
e.g., Figure 7D; see also [38]. However, there is a suggestion of crowding and the linear
alignment of fenestrations in the “transitional” crista (#14, Figure 7E), similar to that seen
in the Trans mitochondrion (Figure 6A). The functional significance of fenestrations aside
from facilitating “matrix mixing” across cristae is discussed in Section 4.2.
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Figure 7. Surface models of the Lam mitochondrion of Figure 4D. (A) Top view of the tomogram
with individual cristae sealed at top and bottom (for visual simplicity). Cristae are color coded; left
to right: blue #1–4, purple #5–10, green #11, purple #12, brown #13, black #14, green #15, pink #16.
(B) Top view of the upper-right quadrant, with open (unsealed) cristae. 2X zoom and colors changed
to better discern crista branches and junctions with the IBM. (C) Side view of the mitochondrion
(after 90◦ clockwise rotation) revealing the openings in the IBM corresponding to crista junctions
(CJs), several of which are slots in this region. (D) Side view of a typical lamellar crista (#3) showing
fenestrations. (E) Oblique view of the “transitional” crista (#14), which has a length of 1.1 µm. Scale
bars = 200 nm. The scale bar in (C) also applies to (B).
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Figure 8. Structural parameters for individual cristae in the Lam mitochondrion of Figure 7. Cristae
are numbered from left to right as in Figure 7A. (A) Crista volumes, VCRIS. The large increases in VCRIS

correspond to extensive branching near the middle of the mitochondrion. (B) Surface-to-volume
ratios, SCRIS/VCRIS. (C) Volume per crista junction opening, VCRIS/NCJ.

4. Discussion
4.1. Bioenergetic Rationale for Location of “Lamellar” Mitochondria in the Interfibrillar Space

This survey of mitochondria in rat cardiomyocytes utilizes information in a 3-D dataset
provided by transmission electron tomography. Although relatively small compared to 3-D
datasets provided by lower-resolution “volume EM” techniques like serial block-face SEM
(e.g., [53]), significant correlations were found among organelle shape, cell location and
morphology, and density of crista membranes. Zooming in on cristae within individual
mitochondria revealed local variations in membrane topology and packing that may relate
to crista dynamics and remodeling (discussed in Section 4.2).

The high aspect ratios and irregular profiles of the interfibrillar mitochondria in the
dataset (“longitudinal” views) are consistent with previous TEM studies of myocytes,
e.g., [40,41]. “Transverse” views in published micrographs and tomograms [23,54] indi-
cate that interfibrillar mitochondria are closely packed, interconnected cylinders, with
frequent straight interfaces between adjacent organelles, e.g., Figure 1A,B; also Figure 1C,
a mitochondrial cluster near myofibrils. Away from the crowded interfibrillar zones, mi-
tochondrial profiles tend to be rounder and wider, consistent with less elongated, more
spherical/ovular 3-D shapes. The novelty in the current analysis is the apparent bias for mi-
tochondria with lamellar cristae, which predominate in the regions between myofibrils, to
have higher crista membrane densities than mitochondria with tubular cristae. This raises
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an obvious question whether there is an advantage, energetic or otherwise, for positioning
mitochondria with lamellar cristae in the interfibrillar space.

4.1.1. Influence of Crista Morphology on ATP Output

The nano-scale compartmentalization of mitochondria creates barriers to the internal
diffusion of solutes that can impact function. Examples include the incomplete release
of cytochrome c from cristae during apoptosis, and the formation of pH and electrical
gradients within and between cristae [8,9,11]. Computational studies suggest restricted
internal diffusion of metabolites can affect both the rate of synthesis of ATP and its export to
the cytoplasm [12,13]. In the case of cardiac muscle mitochondria, where ATP production is
carefully regulated to meet high and variable energy demands (e.g., [29,55]), crista would be
expected to adopt shapes that minimize the adverse effects of diffusion on ATP production.
The above findings from electron tomography suggest that this is indeed the situation
in cardiomyocytes.

In general, the rates of processes that involve the facilitated membrane transport of
reactants increase with the surface-to-volume (S/V) ratio of the compartments [56]. Tubular
shapes tend to have larger S/V ratios than extended flat compartments, e.g., S/V -> 4/D
for long right-circular cylinders with diameter D, while S/V -> 2/D for wide flat plates
separated by D. Consistent with this expectation, crista S/V ratios inside the mitochondrion
of Figure 7 are greater by almost a factor of two for partly tubular cristae relative to
lamellar cristae (180 µm−1 vs. 110 µm−1, Figure 8B). The higher S/V ratios should confer
an advantage on tubular cristae when ADP is limiting, i.e., the matrix [ADP] regulates
the rate of ATP synthesis [13]. Under these physiological conditions, steady-state ATP
production is tuned to the rate of transport of ADP across the inner membrane via the
adenine nucleotide translocase. Figure 9 is a re-plot of data from computer simulations
in [13], which employ a model for mitochondrial ATP production at a constant inner
membrane potential, based on rate equations in [57]. (Spatial models and parameters used
are described in the figure legend). Under these conditions, the flux of ATP synthase, J(AS),
is predicted to be 25% higher for short tubular cristae compared to large lamellar cristae.
However, when comparing cristae of equivalent lengths (relevant to lateral diffusion of
metabolites in and out of the cristae), the advantage of the tubular shape for J(AS) decreases
to 10% or less. Moreover, when considering equivalent crista volumes, the shape advantage
reverses, with wide lamellar cristae supporting larger fluxes of ATP synthase than narrow
tubes (blue arrows in Figure 9). Thus, remodeling the IM from tubular to increasingly
wide lamellar cristae as mitochondrial size increases would appear to be a bioenergetically
optimal strategy.

Lamellar cristae tend to predominate in the interfibrillar region of striated muscle,
where optimizing ATP production is a priority [24]. Since the dimensions of mitochondria
spanned by cristae in our dataset typically range from 0.5 µm (Figure 4A) to over 1.0 µm
(Figure 7), lamellar cristae would support equivalent or faster ATP synthase fluxes than
longer crista tubes. The two-fold greater density of crista membranes in Lam as compared
to Tub mitochondria would ensure that the former crank out considerably more ATP per
unit volume occupied, since ATP output is the product of flux and membrane surface area,
J(AS) × SCRIS.

Of course, there also may be other considerations besides internal diffusion of metabo-
lites that favor lamellar crista morphology. One relates to the physical organization of the
respiratory chain, in particular, ordered supercomplexes of respiratory complexes I-III-
IV (RSCs) that have been shown to increase efficiency of oxidative phosphorylation [58–60].
There is evidence that the assembly of the large, planar supercomplexes depends on crista
shape, since the remodeling of cristae in mouse fibroblasts, from flat (“tight”) to swollen
by ablation of OPA-1, correlates with decreased RSC formation and respiratory control
ratios [59]. Such a requirement for RSC assembly would provide an additional bioenergetic
advantage to Lam mitochondria.
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[13], which employ a model for mitochondrial ATP production at a constant inner mem-

brane potential, based on rate equations in [57]. (Spatial models and parameters used are 

described in the figure legend). Under these conditions, the flux of ATP synthase, J(AS), is 

predicted to be 25% higher for short tubular cristae compared to large lamellar cristae. 

However, when comparing cristae of equivalent lengths (relevant to lateral diffusion of 

metabolites in and out of the cristae), the advantage of the tubular shape for J(AS) de-

creases to 10% or less. Moreover, when considering equivalent crista volumes, the shape 

advantage reverses, with wide lamellar cristae supporting larger fluxes of ATP synthase 

than narrow tubes (blue arrows in Figure 9). Thus, remodeling the IM from tubular to 

increasingly wide lamellar cristae as mitochondrial size increases would appear to be a 

bioenergetically optimal strategy. 

 

Figure 9. Dependence of flux of ATP Synthase, J(AS), on shape, length and volume (VCRIS) of cristae. 

Data is re-plotted from published computer simulations that used idealized 3-D spatial models of 

Figure 9. Dependence of flux of ATP Synthase, J(AS), on shape, length and volume (VCRIS) of cristae.
Data is re-plotted from published computer simulations that used idealized 3-D spatial models of
mitochondria and a reduced mathematical model for ATP production [13]. Physiological conditions
were used for which J(AS) varies directly with the matrix [ADP] (cytosolic [ADP] set to 37 µM).
Spatial models: circles, 4 × 4 parallel array of 20-nm-wide tubes spaced 20 nm apart; squares, four
parallel lamellar compartments, walls spaced 20 nm apart with widths of 150 nm (open symbols) or
450 nm (closed symbols). Crista lengths are indicated in black and S/V ratios in red. The reference
J(AS)MAX (flux without crista compartments) is the same for all three curves. Vertical blue arrows
connect data points for different crista types of equivalent volumes.

An apparent disadvantage of wide lamellar cristae from the perspective of ATP output
is the paucity of highly curved membrane regions at which ATP synthase dimers normally
reside [61,62]. Most lamellar crista membranes in the dataset extend through the entire
thickness of the tomograms (e.g., Figure 7B), suggesting that they are several hundred
nanometers wide. In this case, the only regions suitably curved for ATP synthase dimers
are the crista rims that run parallel to the IBM between crista junctions. The solution to
this conundrum may be the numerous fenestrations that occur in the cristae, which have a
curvature direction and radius of curvature equivalent to that of crista folds. An important
function of the fenestrations may be to serve as a repository for ATP synthase dimers,
increasing their frequency and evenly distributing them across otherwise flat crista surfaces.
This scenario might improve the efficiency of ATP production, e.g., by a hypothesized
“proton trap” mechanism [61] and/or by reducing lateral metabolite gradients in the
matrix layers between cristae. Fenestrations stabilized by ATP synthase dimers might
also increase the mechanical stability of lamellar cristae and resist crista swelling due to
osmotic fluctuations [2]. Since ATP synthase dimers induce curvature in liposomes, it seems
likely that they participate in the formation of fenestrations in lamellar cristae, certainly a
testable hypothesis.

4.1.2. Crista Responses to Physical Stresses

A recent review on the “energy metabolism design” of the striated muscle draws
attention to a mostly overlooked aspect of myocyte mitochondria, namely, their exposure
to physical stresses in the region between myofibrils [25]. These include shear forces, exac-
erbated by the attachment of mitochondria to fibers in the sarcomeres, in both longitudinal
(stretching) and transverse (compression) directions during the contraction cycle. The
reshaping of interfibrillar mitochondria associated with the stretching and contracture of
rabbit cardiac muscle was inferred in a recent electron tomographic study [54]. The slow
dynamics and turnover of mitochondria in cardiac muscle [23,63] suggest individual or-
ganelles may undergo large numbers (105–106) of deformation cycles due to these physical
stresses. The lamellar cristae of cardiomycyte mitochondria are extended, closely packed
parallel plates, with numerous junctions or connections (every 100 nm or so) to the IBM
(e.g., Figure 7C), which itself has numerous connections via MICOS components to the
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outer membrane [64]. This basic design is roughly analogous to “shear walls”, architectural
elements implemented to survive lateral stresses from seismic events [65]. By contrast,
tubular cristae are long, flexible, generally disorganized structures that connect at single
junctions to the peripheral IBM. It may well be that lamellar cristae are selected for the IFM
because they are more resilient than tubules, better able to reversibly deform in response to
physical stresses inherent to the interfibrillar space.

4.2. Mechanisms of Crista Remodeling

Lamellar and tubular cristae typically co-exist in metazoan mitochondria, with crista
remodeling an ongoing process [20,66]. As already noted, IM topology is regulated by
membrane-shaping proteins and protein complexes, including MICOS, ATP synthase
oligomers and OPA-1, their mutual interactions and their interactions with other proteins
and lipids such as MICU1 and cardiolipin (see also [17,67–70]). Changes in crista mor-
phology are associated with cell development, aging and disease, and can be caused by
mutations in or the processing of membrane-shaping proteins, as well as changes in lipid
composition [42,64,71–73]. There is evidence that cristae originate as tubes extending from
the IBM at the junctions formed by MICOS, and grow by fusion into larger compartments,
which in turn can flatten to form lamellar crista, with sharp bends in the IM induced and/or
stabilized by dimer ribbons of ATP synthase (as noted above) [20,74]. In this scenario, crista
growth by fusion could be favored by conditions that increase inter-crista contact, such as
a reduction in volume of the mitochondrial matrix [2,75]. In the case of cardiomyocytes,
crowding of mitochondria in the interfibrillar space is likely associated with compressive
forces that would decrease the mitochondrial volume [76], thereby favoring crista contact
and fusion. This is consistent with the observation that interfibrillar mitochondria (IFM)
tend to have smaller, more irregular profiles and flat interfaces with neighbors. Conversely,
the lower crista density of Tub non-IFM compared to Lam IFM (Section 3.3) arises primarily
from the former’s 80% larger mean cross-section area (1.14 vs. 0.63 µm2). Thus, cardiomy-
ocyte mitochondria not situated in the rows between myofibrils may not be subject to the
same physical constraints on shape and volume as IFM. In fact, there is compelling evi-
dence that the mitochondria in cardiomyocytes are a single, continuous population [28,40],
suggesting that differences in shape and IM topology might reflect their local environment,
including compressive and osmotic forces (see also [77]).

The “transitional” crista class was so-named because of its similarity to morphologies
previously observed in model systems undergoing transition from lamellar to tubular crista
morphology. The closest examples occur in Drosophila mitochondria in (i) neuronal cells
bearing a disease-causing mtDNA mutation in ATP6 [78] and (ii) the flight muscle after
exposure to oxygen stress or bearing the “swirl” mutation [79,80]. In these systems, tubular
cristae appear as extensions from lamellar regions, similar to crista #14 in the mitochondrion
of Figure 7, which is located between a branched lamellar crista and two tubular cristae.
The cristae in the Trans mitochondrion of Figure 6 suggest successive steps in a pathway
for forming tubular extensions: (1) lateral diffusion of pore-like fenestrations away from a
region of local swelling of lamellar cristae, (2) alignment of the fenestrations in rows and
(3) fusion of the rows into linear “crevices” that define individual tubes in the crista plane.
This model is consistent with the above suggestion that fenestrations are lined with ATP
synthase dimers which, when the fenestrations fuse, might re-assemble into spiral ribbons
that wrap around (or induce the formation of) tubular cristae [81]. Fenestrations may be
needed to supply ATP synthase dimers during remodeling only for large lamellar cristae, in
which crista rims are remote. For smaller mitochondria, which do not normally have crista
fenestrations, ATP synthase dimers released from nearby crista rims by swelling might be
sufficient to initiate tubule formation. Whether the transient formation of fenestrations is
an intermediate step in such cases is another testable hypothesis.

The driving force for crista remodeling by the above mechanism is whatever triggers
crista swelling. This could include an osmotic imbalance (e.g., due to changes in ion
transport) that induces the rapid movement of water from the matrix to the intracristal
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space when crista junctions are “closed” [2,11]. Another candidate is excess mitochondrial
ROS production, associated with mitochondrial dysfunction and hypothesized to decrease
with crista widening [82]. Oxidative stress is implicated in the transitions from lamellar to
tubular cristae in the two Drosophila examples above (see [83]), as well as those observed
with P450 induction in Leydig cells [84] and the onset of ALS in motor neurons of a SOD1
mouse model [85]. Potential ROS targets involved in crista swelling (or tightening [86])
include the aforementioned set of crista-shaping proteins and cardiolipin, although the
actual mechanism is not yet defined.

5. Conclusions

The cell expends considerable resources on regulating mitochondrial inner membrane
topology, consistent with its central role in energy metabolism. This is especially true of
cardiac muscle, where peak ATP production and structural resilience are priorities. The
current structural analysis provides novel, significant evidence (despite the limited size
of the tomographic dataset) that crista morphology and membrane density are optimized
for bioenergetic performance in mitochondria immediately adjacent to myofibrils. More-
over, zooming inside individual mitochondria reveals gradations in membrane topology
not previously reported that suggest a novel crista-remodeling pathway involving fenes-
trations common to lamellar cristae in myocyte mitochondria. Given the central role of
cristae in energy metabolism, and the fact that structural aberrations are associated with
numerous diseases, understanding the factors that regulate inner membrane topology is
fundamentally important. Clearly, further work is needed to shore up these novel obser-
vations and provide additional structural clues to help define the triggers and molecular
players involved in the transitioning of cristae between tubular and lamellar shapes. Elec-
tron tomography (eventually of cryogenically prepared tissue [87]) will continue to be an
important tool for achieving this goal.
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