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Abstract: In recent decades, given the important role of gamma-aminobutyric acid (GABA) in hu-

man health, scientists have paid great attention to the enrichment of this chemical compound in 

food using various methods, including microbial fermentation. Moreover, GABA or GABA-rich 

products have been successfully commercialized as food additives or functional dietary supple-

ments. Several microorganisms can produce GABA, including bacteria, fungi, and yeasts. Among 

GABA-producing microorganisms, lactic acid bacteria (LAB) are commonly used in the production 

of many fermented foods. Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a LAB 

species that has a long history of natural occurrence and safe use in a wide variety of fermented 

foods and beverages. Within this species, some strains possess not only good pro-technological 

properties but also the ability to produce various bioactive compounds, including GABA. The pre-

sent review aims, after a preliminary excursus on the function and biosynthesis of GABA, to provide 

an overview of the current uses of microorganisms and, in particular, of L. plantarum in the produc-

tion of GABA, with a detailed focus on fermented foods. The results of the studies reported in this 

review highlight that the selection of new probiotic strains of L. plantarum with the ability to syn-

thesize GABA may offer concrete opportunities for the design of new functional foods. 
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1. Introduction 

Gamma (γ)-Aminobutyric acid (GABA), also named 4-aminobutyric acid, is a four-

carbon non-protein amino acid that is widely distributed in an extensive variety of organ-

isms including algae, bacteria, fungi, animals, plants, and cyanobacteria [1–7]. 

Although GABA is present in many foods such as fruits, vegetables and grains, its 

content in them is relatively low [8,9]. As a result, over the years many studies have been 

devoted to the most suitable strategies to increase the amount of GABA in food [10,11] 

such as through chemical synthesis [12], plant enrichment [13], or microbial fermentation 

[3]. 

Microbial synthesis of GABA may be much more promising than chemical synthesis 

methods since the former is characterized by high specificity, environmental friendliness 

and cost-effectiveness [3]. 

In addition, GABA production by beneficial and pro-technological microorganisms 

has the potential to increase the functional effect of some fermented foods and beverages 

[11,14]. So far, various studies have confirmed that several microorganisms like fungi, 

bacteria, and yeasts have the ability to synthesize GABA [3,15,16]. 

Lactic acid bacteria (LAB) are ubiquitous microorganisms and are often naturally 

present in some traditional fermented foods as well. Many LAB species are used as start-

ers in some industrial food fermentations for their pro-technological properties [17,18]. 
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Some LAB species are capable of producing high amounts of GABA [19–21] and 

could be exploited for the production of GABA-fortified foods [14]. 

Among GABA-producing LAB, Lactiplantibacillus plantarum (formerly Lactobacillus 

plantarum) is a facultative heterofermentative species with high adaptability to many dif-

ferent conditions, being isolated from various ecological niches including milk, fruit, ce-

real crops, vegetables, bee bread, fresh meat [22–25] and fermented foods [26,27]. This 

bacterial species L. plantarum is a normal inhabitant of the gastro-intestinal tract of insects, 

fish and mammals, including humans [28–32] and is included in the QPS (Qualified Pre-

sumption of Safety) and in GRAS (Generally Recognised as Safe) lists [33,34]. 

Because of many of its intrinsic properties, numerous strains belonging to this species 

are proposed as animal and human probiotics [31,32,35–40]. 

L. plantarum is widely used as a starter culture in the fermentation of raw materials 

from plant and animal origin, where it contributes to enhancing the sensorial quality and 

shelf life of fermented products [38,39,41–44]. Some L. plantarum strains also increase the 

functional properties of various fermented foods by producing a variety of bioactive com-

pounds, including GABA [19,45]. 

The present review aims, after a preliminary excursus on the function and biosynthe-

sis of GABA, to provide an overview of the current uses of microorganisms and, in par-

ticular, of L. plantarum in the production of GABA, with a detailed focus on fermented 

foods. 

2. GABA Function and Metabolism 

GABA is produced by bacteria [3,46] fungi [47,48], plants [49,50], vertebrate animals 

and invertebrates [51–53]. Furthermore, Archaea possesses enzyme genes involved in 

GABA biosynthesis [54–56]. 

Due to this pervasive presence in biological kingdoms and ecosystems, we tend to 

consider the GABA molecule more as a ubiquitous signaling molecule than as a specific 

synaptic neurotransmitter [57,58]. 

GABA-mediated interregnum communication has been observed between algae and 

invertebrates [59], plants and fungi [60], plants and insects [61], and plants and bacteria 

[62]. 

In plants, GABA is an endogenous signaling molecule involved in various physio-

logical and biochemical processes that promote plant growth and development, and me-

diate responses to abiotic and biotic stresses, including pathogen and insect attacks 

[1,63,64]. In addition, GABA improves photosynthetic processes, inhibiting the produc-

tion of reactive oxygen species (ROS), activating antioxidant enzymes, and regulating sto-

matal opening in case of water stress [65]. 

In plants, GABA is synthesized from glutamate or arginine and transferred by 

GABA-permease to mitochondria, where GABA is catabolized by GABA transaminase 

and succinate semialdehyde dehydrogenase to succinate. The succinate enters the tricar-

boxylic acid (TCA) cycle to maintain the C/N balance in cells [1]. 
Over the last several decades GABA has attracted great attention due to its many 

positive effects on mammalian physiology [10,15,66]. 

As known, in fact, GABA is the most common inhibitory neurotransmitter in the hu-

man central nervous system [67]. Furthermore, besides being an important antidepressant 

[68], GABA also performs other functions including neuroprotective, anti-inflammatory, 

antioxidant and antihypertensive effects [66], enhancement of immunity under stress con-

ditions [69], prevention of cancer cell proliferation [70], prevention of diabetic conditions 

[71], and cholesterol-lowering effect [72]. 

In mammalian, GABA is synthesized from L-glutamate in the cytoplasm of neuronal 

and glial cells by the enzyme glutamate decarboxylase (GAD; EC4.1.1.15) using pyridoxal 

5′-phosphate (PLP) as an enzyme cofactor [73] (Figure 1). GABA can also be synthesized 

through deamination and decarboxylation reactions of putrescine, spermine, spermidine, 

ornithine, and L-glutamine [2]. 
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As for mammalian species, in microorganisms, GABA is produced from L-glutamate 

through a GAD enzyme-mediated decarboxylation [58] with PLP as a cofactor (Figure 1). 

 

Figure 1. GABA production from L-glutamate by glutamate decarboxylase (GAD) with pyridoxal-

5′-phosphate (PLP) as a cofactor. 

Through a well-established pathway of enzymes known as GABA shunt (Figure 2), 

some bacteria catabolize GABA [74,75]. The GABA shunt is characterized by a group of 

enzymes that convert GABA to succinate to fuel the tricarboxylic acid (TCA) cycle in the 

production of energy and essential metabolic intermediates as carbon skeletons for the 

cell. In the shunt of GABA, microbial enzymes such as GABA transaminase and succinic 

semialdehyde dehydrogenase have an optimal pH in the alkaline range of around 8. These 

observations have led some scholars to advance the hypothesis that the GABA shunt, in 

addition to representing the link between nitrogen and carbon metabolism, has an im-

portant function in the maintenance of pH homeostasis in acidic environments [75,76]. 

 

Figure 2. Metabolic pathway of GABA production from the TCA cycle (adapted from Sahab et al. 

[11]). For higher clarity, this scheme reports only enzymes and relevant substrates/products, omit-

ting coenzymes and other compounds involved in the reactions showed. Abbreviations: PDH, py-

ruvate dehydrogenase; GDH, glutamate dehydrogenase; GAD, glutamate decarboxylase; GABA-T, 

GABA transaminase; SSADH, succinic semialdehyde dehydrogenase. 

As reported above, microbial GABA synthesis is strictly dependent on the GAD en-

zyme which is encoded by gadA or gadB genes in bacterial cells. Glutamate is transported 

into a cell through an antiporter, and then decarboxylation occurs. Finally, the GABA 

product is secreted from the cell by the glutamate/GABA antiporter, which is encoded by 

the gadC gene [77]. 

In recent years, many researchers have studied L. plantarum for its ability to synthe-

size GABA using the GAD system. 

Only Levilactobacillus brevis possesses two GAD genes that produce isozyme GADs 

among the LAB examined so far [78,79]. The glutamic acid decarboxylase (GAD) system 
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encoded by the gad operon is responsible for glutamate decarboxylation and GABA se-

cretion in bacteria and consists of two important elements: Glu/GABA antiporter gadC and 

the glutamate decarboxylase enzyme encoded either by gadA, gadB genes [80]. This system 

converts glutamate into GABA and while doing so consumes protons thus maintaining 

cytosolic pH homeostasis [79]. 

Unlike L. brevis, L. plantarum has only one GAD coding enzyme in its genome, the 

gadB and there may not be a specific glutamate/GABA antiporter (gadC) gene [80]. 

In a study conducted by Nakatani et al. on the genome of L. plantarum KB1253, it was 

found that this strain contains two gadB genes coding for glutamate decarboxylase [81]. 

Many studies showed that L. plantarum can produce appreciable amounts of GABA, 

so there must be a transporter responsible for transporting glutamate and GABA in and 

out of the cell. A glutamate/gamma-aminobutyrate transporter family protein coded by 

the yjeM gene can be the best candidate for such a transporter [82]. 

Further investigation, conducted by Surachat et al. indicates that L. plantarum is a key 

GABA-producing species in nature since almost all strains encoded the GAD operon in 

their genome [83]. 

3. Production of GABA by Microorganisms  

GABA can be obtained not only from natural sources but also through plant enrich-

ment, chemical synthesis, enzymatic process and microbial metabolism [15,84]. Due to the 

low GABA content in natural animal- and plant- associated food products, high GABA-

producing microorganisms are of great importance to produce food-grade GABA and 

GABA-rich fermented foods via fermentations [85]. 

The biosynthesis of GABA by microorganisms is safe and eco-friendly and provides 

the possibility of production of new naturally fermented health-oriented products [16,86]. 

3.1. Production of GABA by Fungi 

Other than bacteria, various yeasts and molds that belong to the kingdom of fungi, 

have also been reported to as able to produce GABA. 

Some Rhizopus oligosporus and Rhizopus oryzae strains have been shown to produce 

GABA during tempeh fermentation (fermented soybean) [87]. 

Similarly, Rhizopus monosporus strain 5351 has been reported to increase GABA con-

tent in soybean and mung bean [88,89]. 

Marine yeasts Pichia guilliermondii and Pichia anomala isolated from the Pacific Ocean 

off Japan have high GABA-producing abilities [90,91]. 

Actinomucor elegans AS 3.227 has been reported to increase the GABA concentration 

in sufu (traditional fermented soybean food from China) manufacturing using solid-state 

fermentation [92]. 

Glutamic acid decarboxylase has also been identified in yeasts such as Saccharomyces 

cerevisiae and Kluyveromyces marxianus isolated from fermented products [93–95]. 

Other yeasts belonging to the species Kazachstania unispora, Sporobolomyces carnicolor, 

Sporobolomyces ruberrimus, Nakazawaea holstiiand, and Pichia scolyti, isolated from wild 

flowers, also have GAD activity [96]. 

Aspergillus oryzae NSK is a GABA-generating mold used as a starter culture to fer-

ment rice koji for sake production and soy sauce koji [97–101]. 

Cai et al. demonstrated that oats fermented by A. oryzae var. effuses 3.2825, A. oryzae 

3.5232 and R. oryzae 3.2751 can be recommended as tempeh-like functional foods with 

higher GABA [102]. 

In other studies, fermentations by Monascus pilosus IFO 4520 [103] and Monascus pur-

pureus CCRC 31615 [104] increase the content of γ-aminobutyric acid (GABA) in the beni-

koji and in the fermented rice. 
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3.2. Production of GABA by Bacteria 

GABA is naturally synthesized by several bacteria. Indeed, not all strains within one 

species can produce GABA, as the ability depends on the presence of GAD genes and 

glutamate/GABA antiporter [74]. 

Bacillus is a commonly reported bacteria that can produce GABA [105,106]. Besides 

Bacillus, Corynebacterium glutamicum was found to produce endogenous L-glutamate [107], 

Streptomyces bacillaris and Streptomyces cinereus were reported to increase the GABA con-

tent in fermented tea [108]. Otaru et al. have shown that human intestinal Bacteroides are 

able to synthesize GABA [109]. 

Recent studies revealed that the increased level of GABA in the human gut could be 

derived from the ability of the intestinal microbiota or ingested probiotics, such as Bac-

teroides, bifidobacteria, and some LAB (lactobacilli), to metabolize dietary monosodium glu-

tamate [109–111]. Therefore, numerous research has been directed towards isolating and 

characterizing GABA-producing bacteria to be used as starters for the production of 

GABA-enriched fermented food [3]. 

Because of their GRAS status, some LAB are widely used in the production of fer-

mented foods [18] and act as potential probiotic cultures. Actually, in addition to pro-

technological functions, LAB also offer beneficial functions such as antioxidant and anti-

microbial activities, as well as the formation of bioactive compounds such as GABA 

[112,113]. 

Therefore, the use of GABA-producing LAB has been considered a promising possi-

bility in order to increase the nutritional, functional, sensory and technological properties 

of some fermented food products [10,19,114]. 

GABA can be biosynthesized by various LAB strains mainly belonging to the genera 

of Lactobacillus, Lactococcus, Pediococcus, Leuconostoc, Enterococcus, Streptococcus, Weissella, 

Lacticaseibacillus, Lactiplantibacillus and recently, Levilactobacillus and Secundilactobacillus 

[21,115–121]. 

Nowadays, Lactiplantibacillus plantarum (formerly classified as Lactobacillus planta-

rum) is among the main LAB species proposed to be used as probiotic starter cultures to 

produce GABA in the fermented food and beverage industry [35,122,123]. 

4. Production of GABA by L. plantarum 

The production of GABA varies among various LAB strains and is affected by several 

factors such as pH, fermentation temperature, fermentation time, L-glutamic acid concen-

tration, media additives, and carbon and nitrogen sources [3,85,114,124]. The optimization 

of these parameters could maximize the amount of GABA contained in some LAB-fer-

mented foods [3,112]. 

In recent years, many researchers have studied L. plantarum, in particular, for its abil-

ity to synthesize GABA in different substrates and growing conditions. 

Table 1 summarizes the results of studies investigating the ability of different strains 

of L. plantarum to produce GABA in different growing media. 

Table 1. GABA production by Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in 

different culture media. 

Microorganism 
Isolation 

Source 
Culture Medium 

GABA 

Production 
Comments Refs. 

L. plantarum C48 cheese MRS 16.0 mg/kg 
Survival and GABA production in simulated 

GI conditions 
[115] 

L. plantarum 

CCARM 0067 
CCARM CDM ≈700 mM (48 h) 

Anti-proliferative and anti-metastatic activity 

in HT-29/5FUR cell line 
[70] 

L. plantarum DM5 Marcha of Sikkim 
MRS + 100 

mM MSG 
not quantified 

GABA production has been qualitatively 

identified by the TLC 
[125] 

L. plantarum KCTC 3103 Unknown MRS modified 0.67 g/L 
Two-stage fermentation: cell grown (stage 1); 

GABA production (stage 2) 
[126] 
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L. plantarum K154 kimchi 
broth fortified with skim 

milk and 2% MSG 
15.53 mg/mL Co-culture with Ceriporia lacerata [127] 

L. plantarum EJ2014 Rice bran SM 19.8 g/L 
Optimization of production by the addition 

of yeast extract 
[124] 

L. plantarum K154 kimchi MRS + 30 g/L MSG 0.2 g/L 

Potential probiotic: good resistance to vanco-

mycin and polymyxin B, tolerance to bile 

juice and low pH 

[128] 

L. plantarum Taj-Apis362 

honeycomb and 

stomach of hon-

eybee 

MRS + 50 mM MSG 7.15 mM 
culture temperature of 36 °C, initial pH of 

5.31 and incubation time of 60 h 
[129] 

L. plantarum 45a 
cambodian fer-

mented foods 
MRS + 2% MSG 20.34 mM 

Two other strains of L. plantarum capable of 

synthesizing GABA have been identified: 44d 

(16.47 mM GABA) and 37e (5.63 mM GABA) 

[130] 

L. plantarum FNCC 260 
indonesian fer-

mented foods 
MRS + 25–100 mM MSG 809.2 mg/L 

MSG, PLP, and pyridoxine were shown 

to positively affect GABA production 
[131] 

L. plantarum BC114 

Sichuan paocai 

(fermented vege-

table) 

MRS + 20 g/L MSG 3.45 g/L 

L. plantarum BC114 

highlighted the ability to produce GABA and 

reduce nitrates 

[132] 

L. plantarum LSI2- 1 
Thailand fer-

mented food 
GYP + 3% MSG 22.94 g/L 

Only the gadA as 

glutamate decarboxylase 

(GAD) was found in the genome 

[133] 

L. plantarum MNZ 
fermented soy-

bean 
MRS 3.96 mM 

6% glucose, 0.7% ammonium nitrate, pH 4.5 

and temperature 37 °C. 
[134] 

L. plantarum K255 kimchi MRS + 3% MSG 821.2 µg/mL 
the K255 strain was incubated at 37 °C for 18 

h. 
[135] 

L. plantarum FBT215 kimchi 

MRS modified (1% 

fructose; 2% tryptone, 50 

mM MSG) 

103.7 µg/mL 
PLP is a major factor influencing 

GABA production 
[123] 

L. plantarum B-134 Makgeolli MRS + 3% MSG 25 mM 
optimum culture condition: 37 °C, pH 5.7 

without NaCl 
[136] 

L. plantarum N1-2 Nham MRS + 5% MSG 0.13 mg/10 g pH of 5.7, without NaCl [137] 

L. plantarum Y7 kimchi 

MRS modified (2% fruc-

tose, 2% peptone and 175 

mM MSG) 

4.9 µg/mL 
culture conditions: 37 °C, 

pH 6.5, and 48 h. 
[138] 

L. plantarum L10-11 Plaa-som MRS + 4% MSG 15.74 g/L 
addition of NaCl by up to 7% (w/v) 

did not suppress GABA production 
[139] 

L. plantarum FRT7 Paocai 
MRS 3% MSG and 2 

mmol/L of PLP 
1158.6 mg/L 40 °C; pH of 7.0 for 48 h [140] 

L. plantarum HUC2W  MRS + 4% MSG 3.92 g/L at 37 °C for 24 h [141] 

Abbreviations: MRS, de Man, Rogosa and Sharp medium; GI, gastrointestinal; CCARM, Culture 

Collection of Antimicrobial Resistant Microbes; CDM, chemical defined medium; HT-29/5FUR, hu-

man colon adenocarcinoma cell line (HT-29) resistant to 5-fluorouracil (5-FU); MSG, mono-sodic 

glutamate; TLC, thin layer chromatography; SM, synthetic medium (consisting of 100 g/L Yeast ex-

tract, 10 g/L dextrose, and 22.5 g/L MSG); PLP, pyridoxal 5′-phosphate; GYP, Glucose-yeast extract-

peptone; GAD, glutamic decarboxylase. 

The most commonly used culture medium is MRS (de Man, Rogosa and Sharp), a 

standard substrate designed to promote LAB growth [142]. Monosodium glutamate 

(MSG), as a source of L-glutamine, is usually supplemented directly into MRS to enhance 

GABA synthesis from L. plantarum strains [82]. 

However, the optimal concentration of MSG depends on the bacterial strain. For ex-

ample, Yogeswara et al. investigated the GABA production from L. plantarum FNCC 260 

strain using a wide range of MSG concentrations. The results showed a maximum GABA 

production (1226 mg/L) by adding 100 mM of MSG to the MRS medium and then incu-

bating at 37 °C for 108 h [131]. 
In another study, after 18 h at 34 °C, L. plantarum K74 produced 134.52 µg/mL of 

GABA in MRS broth containing 1% MSG, 212.27 µg/mL of GABA in MRS broth containing 

2% MSG, and 234.63 µg/mL of GABA in MRS broth containing 3% MSG [135]. 

Gomaa et al. examined the effect of MSG and PLP on GABA production from L. brevis 
and L. plantarum strains, isolated from Egyptian dairy products. The culture medium used 
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was the following composition: 50 g/L glucose; 25 g/L soya peptone; 0.01 g/L MnSO4C4H2O 

and 2 mL Tween 80. The results of the aforementioned study show that the amount of 

extracellular GABA produced is proportional to the amounts of MSG and PLP added. Co-

culture of L. brevis and L. plantarum produced the highest amount of GABA, 160.57 mM 

and 224.69 mM, in the presence of 750 M MSG and 200 µM PLP, respectively [143]. 

Park et al. have obtained high amounts of GABA (19.8 g/L) at 30 °C from L. plantarum 

EJ2014 using the following culture medium: 100 g/L Yeast extract, 10 g/L dextrose, and 

22.5 g/L (w/v) MSG [124]. 

In a study conducted by Shan et al. L. plantarum NDC75017 produced 3.2 g/kg of 

GABA, at 30 °C for 48 h, in skimmed milk with 80 mM MSG and 18 µM PLP [144]. 

As evidenced in all the studies mentioned above, the amount of monosodium gluta-

mate initially available is an important factor in the production of GABA [145]. 

In fact, as also confirmed in other studies cited below, an initial excessive concentra-

tion of MSG may inhibit cell growth or inhibit GABA production due to osmotic stress, 

while a low concentration of MSG may not meet the requirements of high GABA produc-

tion [146]. As far as the incubation time is concerned, we have observed that the amount 

of GABA after reaching the maximum amount after a certain period of time, tends to de-

crease subsequently. This effect may be caused by a lower availability of precursors (e.g., 

MSG) but also be linked to degradation, by GABA aminotransferase, of GABA to succinic 

semialdehyde, which is subsequently converted by succinic semialdehyde dehydrogen-

ase for entry into TCA [11]. 

Temperature and pH have been reported as the main environmental factors that can 

modulate gad gene expression [147]. Therefore, adjusting pH and temperature during fer-

mentation is a very effective way to increase microbial GABA production. 

LAB employ a complex but efficient combination of different acid resistance systems 

[148]. 

Among the various types of tolerance mechanisms to the acidic environment, the 

GAD system is considered one of the most effective acid mitigation pathways. 

In this system, intracellular protons are consumed through decarboxylation of gluta-

mate in the cytoplasm [74]. 

Shin et al. showed that 40 °C and a pH of 4.5 were the best parameters for the expres-

sion of gadB gene encoding GAD from L. plantarum ATCC 14,917 in E. coli BL21 (DE3) 

[149]. 

Variation in pH enhances activation of the GAD pathway since it is considered one 

of the mechanisms that preserve cell homeostasis [150]. Wu et al. evaluated the perfor-

mance of the GAD pathway in comparison with other acid resistance mechanisms and 

highlighted how the GAD system is an essential mechanism to maintain metabolic activity 

under intra- and extracellular acidity [79]. 

Therefore, the pH of the environment is crucial for the synthesis of GABA. However, 

it seems that this depends on the bacterial strain [149]. 

Zhang et al. tested how initial pH affects GABA production by L. plantarum BC114. 

The best concentration of GABA was detected at pH 5.5, obtaining double the amount of 

GABA yielded at pH 4.0 [132]. Similar results have been obtained in other studies 

[129,139,140]. 

Tajabadi et al. found that after 60 h L. plantarum Taj-Apis362 produces the highest 

amount of GABA (7.15 mM; 0.74 g/L) at 36 °C in modified MRS: 497.97 mM glutamate, pH 

5.31 [129]. Tanamool et al. found that the highest GABA production (15.74 g/L) by L. planta-

rum L10-11 cultured in MRS with 4% MSG at 30 °C was obtained within 48 h, with a pH 

range of 5–6 [139]. 

Very recently, Cai et al. reported that L. plantarum FRT7 after 48 h produced approx-

imately 1.2 g/L in MRS supplemented with 3% MSG and 2 mmol/L of PLP at 40° C with 

an initial pH of 7.0 [140]. 

In a recent study conducted by Kim J et al., the optimal conditions for efficient GABA 

production by L. plantarum FBT215 in modified MRS broth containing 50 mM MSG were 



Curr. Issues Mol. Biol. 2024, 46 207 
 

 

investigated. Therefore, the optimal culture temperature for GABA production (103.67 

µg/mL) was 37 °C and this efficiency was highest at pH 7.5 and 8.5 and decreased under 

acidic conditions [123]. 

Instead, Yogeswara et al. found that GABA production from L. plantarum FNCC 260 

was greatly improved under acidic conditions (pH 3.8) in Pigeon pea (Cajanus cajan) milk 

fermentation [151]. This result is in line with a previous study by Yogeswara et al. where 

maximum GABA production from L. plantarum FNCC 260 in MRS was observed at pH 4.0 

[131]. 

Regarding the temperature, Yang et al. reported that GAD functionality is directly 

related to an increase in temperature until it reaches an optimum, after which GAD activ-

ity decreases until thermal inactivation [152]. Another study with L. plantarum showed an 

increase in GAD activity up to 40 °C, achieving optimal GABA production at 35 °C [144]. 

Importantly, L. plantarum is a mesophilic bacterium with an optimal growth temper-

ature of around 37 °C. This evidence explains why, in all the studies cited in this review, 

the optimal temperatures for maximum GABA production were in the range of 30–40 °C. 

GABA Production by L. plantarum in Fermented Foods 

According to the available data, naturally occurring GABA in foods is usually low 

[85,153]; therefore, the food industry has shown great interest in GABA-enriched foods, 

through microbial fermentation. 

Currently, L. plantarum is a LAB species commonly found in various fermented foods 

and beverages. Therefore, some food scientists have proposed strains of L. plantarum as 

starters in single culture (Table 2) or in co-culture with other microbial species (Table 3) to 

enrich GABA in some traditional or innovative fermented foods, particularly from plant-

based sources. 

Table 2 summarizes the results obtained from the use of L. plantarum as a single 

starter in different fermented foods. 

Table 2. GABA production by Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in 

different fermented foods. 

Microorganism 
Isolation 

Source 
Fermented Food 

GABA 

Production 
Comments Refs. 

L. plantarum C48 cheese 

buckwheat, 

amaranth, chickpea 

and quinoa flours 

504 mg/kg in bread 
Good organoleptic properties of bread enriched of 

GABA 
[154] 

L. plantarum DSM19463 cheese grape must 

8.9 g/kg in 

fermented grape 

must 

In vitro potential anti-hypertensive effect and 

dermatological protection. 
[155] 

L. plantarum KB1253 pickles tomato juice 41 mM   GABA-enriched fermented tomato juice  [156] 

L. plantarum KCTC 3105 Unknown  soya milk  424.67 µg/g DW 

Soya yogurt with high levels of GABA, produced 

using a co-culture of L. acidophilus, L. plantarum 

and L. brevis strains 

[157] 

L. plantarum NDC75017 fermented milk 
12% skim milk + 80 

mM MSG 
314.56 mg/100 g 

Good flavor and texture of fermented milk-based 

product  
[144] 

L. plantarum NTU102 cabbage pickles 
8% skim milk + 1% 

(w/v) MSG 
629 mg/L 

together with GABA, production of ACEI was also 

found, suggesting a possible use of fermented 

products as potential functional food 

(hypertension regulation) 

[158] 

L. plantarum C48 cheese 
wholemeal wheat 

flour 
100 mg/K 

low ACE inhibitory activity (15%) due to synthesis 

of ACEI  
[159] 

L. plantarum GB01-21  cassava powder 

80.5 g/L  

2.68 g/L h 

(productivity) 

two-step production with Corynebacterium 

glutamicum G01 (to produce 

glutamate) and L. plantarum GB01-21  

[152] 

L. plantarum Dad-13 FNCC pigeon pea milk 5.6 g/L  

The supplementation of sucrose, MSG, and whey 

isolate significantly increased GABA levels in 

fermented pigeon pea 

[151] 
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L. plantarum NRRL B-59151  
FOE and HFOE 

(oat)  

GABA content: 7.35 

mg/100 g in FOE 

and 8.49 mg/100 g 

in HFOE 

Fermented oat 

demonstrated antidiabetic 

effects 

[160,161] 

Lactobacillus plantarum HU-

C2W 
 litchi juice 134 mg/100 mL Fermentation condition: 37 °C for 40 h [141] 

L. plantarum DW12 
fermented red 

seaweed 

red seaweed+ 1% 

MSG 
4 g/L 

Fermentation at 30 °C after 60 days. Substrate 

composition: red seaweed, cane sugar and potable 

water in a ratio of 3:1:10, pH 6 

[162] 

L. plantarum DW12 
fermented red 

seaweed 

red seaweed + 0.5% 

MSG 
1284 mg/L 

Fermentation at 30 °C after 60 days. 

Substrate composition: red seaweed, cane sugar 

and potable water in a ratio of 3:1:10, pH 6 

[163] 

L. plantarum DW12 
fermented red 

seaweed 
MCW + 0.5% MSG 12.8 mg/100 mL 

MCW supplemented with 0.5% MSG and 1% 

sugarcane, pH 6 after 72 h of fermentation 
[164] 

Abbreviations: DW, dry weight; MSG, mono-sodic glutamate; ACEI, angiotensin converting en-

zyme inhibitor; ACE, angiotensin converting enzyme; FNCC, Food and Nutrition Culture Collec-

tion; HFOE, fermented oat + honey; FOE, Fermented Oat; MCW, mature coconut water. 

In a recent study [151], it has been proposed a drink prepared from germinated pi-

geon pea (Cajanus cajan) and fermented using probiotic L. plantarum Dad-13, isolated from 

dadih, fermented buffalo milk [165]. C. cajan commonly known as pigeon pea, red gram 

or gungo pea is an important grain legume crop, particularly in rain-fed agricultural re-

gions in the semi-arid tropics, including Asia, Africa and the Caribbean [166]. 

Additional nutrients such as MSG 1%, whey 4%, and sucrose 3% were added to pi-

geon pea extract and fermentation was carried out in a closed container at 30 °C for 48 h 

without shaking. Maximum GABA production (5.6 g/L) was obtained after 12 h of fermen-

tation. 

Wang et al. have shown that it is possible to increase the production of GABA in 

fermented lychee juice by L. plantarum HU-C2W [141]. Litchi (Litchi chinensis Sonn.) is a 

well-known tropical fruit originating from Asia [167]. After 40 h at 37 °C, a GABA content 

of 134 mg/100 mL was observed [141]. 

In various studies, L. plantarum DW12, isolated by Ratanaburee et al. from a fer-

mented red seaweed, has been successfully used as probiotic and starter culture to pro-

duce fermented foods and beverages due to its safety aspects and ability to produce 

GABA [83,162–164]. 

The results obtained in [162] reported that L. plantarum DW12 produces 4 g/L GABA 

in red seaweed fermentation (red seaweed-cane sugar-potable water = 3:1:10, w/w/v) at 30 

°C after 60 days. The red seaweed Gracilaria fisheri is commonly found along the coast of 

south-east Asian countries and used as a fresh vegetable and as a dried product [168]. 

In another study conducted by Hayisama-Ae et al., a novel functional beverage was 

produced from red seaweed Gracilaria fisheri (known as Pom Nang seaweed in Thailand), 

using L. plantarum DW12 as a starter culture [163]. Fermented red seaweed beverage was 

produced as follows: red seaweed, cane sugar and potable water in a ratio of 3:1:10 with 

an addition of 0.5% of MSG and an initial pH of 6.0. After 60 days the fermented red sea-

weed beverage (FSB) contained 1.28 g/L GABA. 

A study conducted by Kantachote et al. aimed to add value to mature coconut water 

by using the probiotic L. plantarum DW12 for the production of GABA-enriched fermented 

beverages. Coconut water, with an initial pH of 5.0, was supplemented with 0.5% mono-

sodium glutamate and 1% sugarcane and fermented from L. plantarum DW12. After 48 h, 

the fermented product contained 128 µg/mL of GABA [164]. 

Coconut (Cocos nucifera L.) is an important fruit tree found in tropical regions and its 

fruit can be made into a variety of foods and beverages [169]. 

Zarei et al. investigated the potential of GABA production by a L. plantarum strain in 

whey protein beverage [170], building on previous research, in which this strain, isolated 

from traditional doogh (yogurt, herbs and water) from west region of Iran, have shown a 

high concentration of GABA production (170.492 ppm) in MRS broth [171]. The best 
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growing conditions that caused the highest GABA production were temperature 37 °C, 

pH 5.19, glutamic acid 250 mM, and time 72 h. The highest amount of GABA (195.5 ppm) 

after 30 days of storage was detected in whey protein drinks containing banana concen-

trate and stored at 25 °C. 

L. plantarum NDC75017 (isolated from a traditional fermented dairy product from 

Inner Mongolia, China) was used as a starter for fermentation at 36°of Skim Milk and 80 

mM L-MSG and 18 µM PLP. Under these conditions, GABA production was about 310 

mg/100 g [144]. 

In a study conducted by Di Cagno et al., the use of L. plantarum DSM19463 (formerly 

L. plantarum C48) for the production of a functional grape-based beverage was evaluated 

[155]. The grape must, diluted with water, was enriched with yeast extract and 18.4 mM 

of L-glutamate and left to ferment at 30 °C. After 72 h L. plantarum DSM19463 synthesizes 

4.83 mM of GABA [155]. 

In another study, the L. plantarum C48 has been used in sourdough fermentation 

[154]. 

The use of a blend of buckwheat, amaranth, chickpea and quinoa flours (ratio 

1:1:5.3:1) subjected to sourdough fermentation by L. plantarum C48 allowed the manufac-

ture of a bread enriched with GABA (504 mg/kg) [159]. The sourdough starter obtained 

with L. plantarum C48 had GABA concentrations of 12.65, 100.71 and 44.61 mg/kg for 

white, whole wheat and rye flours, respectively [159]. 

In another recent study, L. plantarum VL1 was used for the production of Nem Chua 

(traditionally Vietnamese fermented meat product). Fresh pork without fat was minced 

and mixed with 5% salt, 20% sugar, and 1% sodium glutamate. L. plantarum VL1, was 

added to the mixture and after 72 h of fermentation at 37 °C the meat mixture (pH 4.59) 

contained 1.1 mg/g of GABA [172]. 

In a study conducted by Nakatani et al. L. plantarum KB1253, isolated from Japanese 

pickles, is used in GABA-enriched tomato juice production [156]. This strain produces 41.0 

mM GABA from 46.8 mM glutamate in tomato juice (pH 4.0, 20°Bx) incubated for 24 h at 

35°. 

In another study conducted by Rezaei et al., the GABA-producing strain L. plantarum 

IBRC (10817) was used in the production of a probiotic beverage made from black grapes. 

After 21 days, the fermented beverage had a concentration of 117.33 mg/L GABA [173]. 

L. plantarum K16 isolated from kimchi has been used to valorize some agri-food by-

products [174], obtained from tomatoes, apples, oranges and green peppers. The agri-food 

by-products were enriched with 25 g/L of glucose, 12 g/L of yeast extract and 500 mM of 

MSG. Subsequently, the pH was adjusted to 5.5, and the media were inoculated with L. 

plantarum K16 and incubated at 34 °C for 96 h. L. plantarum K16 produced the following 

concentrations of GABA: 1166.81 mg/L, 1280.01 mg/L, 1626.52 mg/L and 1776.75 mg/L in 

apple, orange, green pepper and tomato by-products, respectively [122]. 

GABA is an important molecule naturally present in food matrices of plant and ani-

mal origin. However, plant-based foods contain a comparatively lower amount of GABA 

than animal-based foods [8,175]. 

Considering its potential health benefits, the studies mentioned above have shown 

that it is possible to increase the amount of GABA not only in some animal products but 

also in some fermented plant-based foods and beverages, improving their functional 

properties. In particular, it has been shown that through the use of L. plantarum as a single 

starter, it has been possible to produce fermented foods from legumes, cereals, fruit juices 

and some agri-food by-products containing high amounts of GABA. 

Besides its use as a single culture, the use of L. plantarum in co-culture (co-fermenta-

tion or two-stage fermentation) with other microbial strains belonging to different species 

is gaining increasing interest. Table 3 summarizes the relevant reports in this field. 

In a study conducted by Hussin et al. [146], the effect of different carbohydrates was 

investigated on enhancing GABA production in yogurt cultured using a mixture of 

UPMC90 and UPMC91, self-cloned LAB strains (L. plantarum Taj-Apis362, previously 
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isolated from the stomach of honeybee Apis dorsata and engineered by Tajabadi et al. 

[129,176]). Glucose induced more GABA production (58.56 mg/100 g) compared to inu-

line, FOS e GOS as prebiotics (34.19–40.51 mg/100 g), and the control sample with added 

PLP (48.01 mg/100 g) [146]. 

In other similar study, conducted by Hussin et al., self-cloned and expressed L. planta-

rum Taj-Apis362 recombinant cells, UPMC90 and UPMC91 were used to improve the 

GABA production in yogurt. Fermentation of skimmed milk added with glutamate (11.5 

mM) after 7.25 h at 39.0 °C produced GABA-rich yogurt (29.96 mg/100 g) [177]. 

While many studies reported the use of single-strain LAB to generate GABA, only a 

few reported the production of GABA by co-culturing different bacterial strains [178]. 

Table 3. GABA production by Lactiplantibacillus plantarum (previously Lactobacillus plantarum) in co-

culture with other microbial species. 

L. plantarum Strains 
Cooperative Spe-

cies/Strain 

Food or 

Culture Medium 

GABA 

Production 
Notes Refs. 

L. plantarum EJ2014 B. subtilis HA pumpkin 1.47% Two-step fermentation [179] 

L. plantarum K154 B. subtilis HA 

turmeric (Curcuma 

longa)/roasted soybean meal 

mixture + 5% MSG 

1.78% Two-step fermentation [180] 

L. plantarum K154 B. subtilis HA 
defined medium fortified with 

glutamate and skim milk 
4800 µg/mL Two-step fermentation [181] 

L. plantarum K154 
Leuconostoc mesenteroides 

SM 
Water dropwort 100 mM Two-step fermentation  [182] 

L. plantarum BC114 S. cerevisiae SC125 mulberry beverage brewing 2.42 g/L Co-fermentation [93] 

L. plantarum GB01-21 C. glutamicum G01 cassava powder 80.5 g/L Two-step fermentation [152] 

L. plantarum Taj-

Apis362 

Streptococcus thermophilus 

and Lactobacillus del-

brueckii ssp. bulgaricus 

Skim milk + 2% glucose and 

11.5 mM MSG 
59.0 mg/100 g Co-fermentation [177] 

L. plantarum K154 Ceriporia lacerata 
broth fortified with skim milk 

and 2% MSG 
15.53 mg/mL Two-step fermentation [127] 

L. plantarum (KCTC 

3105) 

Lactobacillus brevis OPY-1 

L. acidophilus 

KCCM 40265 

Soya milk 424.67 µg/g Co-fermentation [157] 

L. plantarum L10-11 

Lactococcus lactis spp. lac-

tis and Lactococcus lactis 

spp. cremonis 

milk 11.3 mg/100 mL Co-fermentation [183] 

L. plantarum JLSC2-6 
Levilactobacillus brevis 

YSJ3 
cauliflower stems 35.00 mg/L Co-fermentation [184] 

L. plantarum MCM4 
Lactococcus lactis subsp. 

lactis 
whey-based formulate 

365.6 mg/100 

mL 
Co-fermentation [185] 

L. plantarum DSM749 
L. brevis 

NM101-1 
PM  224.69 mM Co-fermentation [143] 

L. plantarum C48 

Lactobacillus paracasei 

15N, Streptococcus 

thermophilus DPPMAST1, 

Lactobacillus delbruecki 

subsp. bulgarigus 

DPPMALDb5 

Milk + 100 or mg/L of olive 

vegetation water phenolic 

extract 

67 mg/L Co-fermentation [186] 

Abbreviations: MSG, mono-sodic glutamate; PM, production medium (50 g/L glucose; 25 g/L pep-

tone; 0.01 g/L MnSO4 . 4 H2O; 2 mL Tween 80; 200 µM PLP); PLP, pyridoxal 5-phosphate. 

In a study carried out by Lim et al., the co-fermentation of turmeric (Curcuma 

longa)/roasted soybean meal mixture, containing 5% MSG, was optimized to fortify it with 

bioactive compounds including GABA [180]. Bacillus subtilis HA was used for the first 

fermentation and L. plantarum K154 isolated from fermented kimchi was used for the sec-

ond fermentation. The results showed that the amount of GABA increased from 0.01% 

before fermentation to 1.78% after the second fermentation [128]. 

In a further study, a two-step fermentation of pumpkin (Cucurbita moschata) was per-

formed using B. subtilis HA and L. plantarum EJ2014, with the aim of producing a novel 
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food ingredient enriched with GABA [179]. Bacillus subtilis HA (KCCM 10775P) strain was 

isolated from cheonggukjang (traditional Korean fermented soybean) while L. plantarum 

EJ2014 (KCCM 11545P) was isolated from rice bran [187]. The co-fermented pumpkin con-

tained 1.47% GABA. Bacillus subtilis HA was also used in a two step-fermentation with L. 

plantarum K154, obtaining a high level of GABA production (about 4800 µg/mL) in a de-

fined medium fortified with glutamate and skim milk [181]. Instead, Yang et al. proposed 

a two-step method to produce GABA from cassava powder using C. glutamicum G01 and 

L. plantarum GB01-21 [152]. In this study, glutamic acid was first obtained from cassava 

powder by saccharification and simultaneous fermentation with C. glutamicum G01, fol-

lowed by biotransformation of glutamic acid into GABA with resting cells of L. plantarum 

GB01-21. C. glutamicum G01 was isolated from soil and L. plantarum GB01-21 was obtained 

through multi-mutagenesis as described in our previous study [188]. After optimizing the 

reaction conditions (35 °C, pH 7), the maximum concentration of GABA reached 80.5 g/L 

[152]. 

In another study, two self-cloned L. plantarum Taj-Apis362 strains possessing high 

intracellular GAD activity (UPMC90) and high extracellular GAD activity (UPMC91) and 

a wild-type L. plantarum Taj-Apis362 (UPMC1065) were co-cultured with a starter culture 

(a mixture of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus) to pro-

duce GABA-rich yogurt [129]. 

The wild-type L. plantarum Taj-Apis362 (UPMC1065) was previously isolated from 

the stomach of a honeybee Apis dorsata [176] and used as a host for GAD gene overexpres-

sion to produce UPMC90 and UPMC91 strains. After 7 h of fermentation at 39.0 °C, the 

starter co-culture in skim milk with 2% glucose and 11.5 mM glutamate produces 59.00 

mg/100 g of GABA. 

Water dropwort (Oenanthe javanica DC), a common aquatic perennial plant widely 

cultivated in most Southeast Asian countries, was co-fermented with Leuconostoc mesen-

teroides SM and L. plantarum K154 to produce a novel functional food ingredient enriched 

with GABA (100 mM) [182]. The acidity of the fermented broth, the low concentration of 

sugar remaining for the second fermentation and the presence of nitrogen sources, stim-

ulated L. plantarum K154 to produce GABA. These data seem to confirm that the produc-

tion of GABA by bacteria is a bacterial mechanism of response towards acid stress [74]. 

Woraratphoka et al. used a co-culture of L. plantarum L10-11, Lactococcus lactis spp. 

lactis and L. lactis spp. cremonis in fresh cheese production [183]. L. plantarum L10-11 which 

was isolated from Thai fermented fish (Plaa-som) while Lactococcus lactis spp. lactis and L. 

lactis spp. cremonis they were commercial strains (Lyofast MWO030, SACCO, Italy). After 

18 h the fermented milk by single-L10-11 and co-L10-11 contained 1.21 and 11.30 mg/100 

mL of GABA, respectively. Thus, this suggested that in the co-culture test, by transform-

ing lactose into lactic acid, the commercial strains decreased the pH value, creating a fa-

vorable condition for the enzymatic activity (GAD) of L. plantarum L10-11 that catalyzes 

the conversion of glutamate to GABA. Therefore, co-fermentation by L. plantarum L10-11 

with other LAB strains could possibly increase the rate of GABA production [183]. 

In a previous study, it was reported that L. plantarum L10-11 was clearly involved in 

the conversion of MSG to GABA and the highest GABA production was obtained when 

the initial pH of MRS was in the range of 5.0–6.0 [139]. 

The data emerging from the above studies confirm that the optimal pH for GABA 

production by L. plantarum is placed in an acidic pH range of 4–6 [3]. 

Zhang et al. evaluated the effects on GABA production by co-culture of Levilactoba-

cillus brevis YSJ3 and L. plantarum JLSC2-6. The results indicate that co-culturing these two 

strains can improve GABA yield (35.00 ± 1.15 mg/L) in fermented cauliflower stems (Bras-

sica oleracea L. var. botrytis) [184]. 

Functional milk-based beverages enriched with 100 mg/L and 200 mg/L of olive veg-

etation water phenolic extract (OVWPE) were obtained via fermentation at 40 °C using L. 

plantarum C48, L. paracasei 15N, S. thermophilus DPPMAST1 and L. delbruecki subsp. 
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bulgarigus DPPMALDb5. The highest amount of GABA (67 mg/L) was detected after 30 

days at 4 °C [186]. 

The results obtained from the above studies have shown that co-culture fermentation 

using L. plantarum with other bacterial species is a novel technology to improve fermen-

tation quality and promote GABA synthesis. The increase in GABA production by L. 

plantarum in co-culture with other bacteria may be related to the greater availability of 

nutrients released by the metabolism of the bacterium used in co-cultures [152,182] which 

also generates acidic end products of fermentation, which accumulate in the extracellular 

environment, increasing its acidity and thus promoting GABA synthesis [182–185]. 

Other studies, cited below, have shown that some L. plantarum strains improve 

GABA production even when used in co-culture with fungi. 

Co-fermentation of L. plantarum K154 and fungus Ceriporia lacerate efficiently pro-

duced GABA (15.53 mg/mL) in a defined medium containing 3% glucose, 3% soybean 

flour, 0.15% MgSO4, and 5% rice bran for 7 days at 25 °C [127]. 

The increase in GABA production in co-culture could be related to the fact that C. 

lacerate, thanks to its enzymatic activities (protease, α-amylase, cellulase, β-1,3-glucanase 

and phosphatase) [189], increased the availability of nutrients useful for the growth and 

survival of L. plantarum. 

In a study conducted by Zhang et al., S. cerevisiae SC125 and L. plantarum BC114 were 

used in co-culture to ferment mulberry (Morus alba L.) and produce a functional beverage 

enriched with GABA [93]. L. plantarum BC114 and S. cerevisiae SC125 were inoculated in 

pasteurized mulberry substrate with 5 g/L L-glutamate and incubated at 30 °C for 72 h. 

Compared to single fermentations with L. plantarum BC114 and S. cerevisiae SC125, 

which resulted in low GABA production (1.45 g/L and 1.03 g/L, respectively), co-culture 

produced a higher amount of GABA (2.42 g/L) [93]. 

The results obtained in this study confirm that the increased ability of L. plantarum to 

synthesize GABA could be linked to an increased availability of nutrients produced by 

yeasts, in particular, amino acids [190]. 

Therefore, co-cultures of selected fungi with GABA-producing strains belonging to 

L. plantarum species may be a promising approach for the production of GABA-enriched 

foods, and therefore, this biotechnological application would also merit further scientific 

investigation. 

5. Conclusions and Future Perspectives 

In recent decades, consumers’ needs in the field of food production have increased 

significantly, not only in terms of organoleptic aspects but also in terms of health and well-

being. Among the various functional compounds contained in foods, GABA has attracted 

more and more attention due to its multiple health benefits. 

Although GABA is present in many foods such as fruits, vegetables and grains, its 

content in them is relatively low. In this context, GABA-fortified foods have been signifi-

cantly considered by researchers for their important biological and functional properties. 

At present, GABA can be synthesized using different methods, including chemical and 

enzymatic synthesis, plant enrichment, and microbial production. 

The numerous studies conducted on this topic highlighted that GABA production 

from LAB can play an important role in the food industry. In particular, fermentation by 

GABA-producing L. plantarum strains can be considered a promising possibility to in-

crease the nutritional, sensory and functional properties of specific fermented foods. 

The studies cited in this review have shown that the optimal conditions for GABA 

are significantly influenced by substrate composition and environmental conditions. 

Therefore, it is essential to optimize these parameters to improve the production of GABA, 

according to the production process adopted to obtain a specific fermented food. 

Considering that microbial fermentation is an important technology to increase the 

GABA content in some fermented foods, we believe that the selection of new high-GABA-

producing strains belonging to the species L. plantarum should remain a focus of interest 
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in future research because it can offer concrete opportunities for the design of new func-

tional foods. 
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