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Abstract

Transposable elements are characterized by their
ability to spread within a host genome. Many are also
capable of crossing species boundaries to enter new
genomes, a process known as horizontal transfer.
Focusing mostly on animal transposable elements, we
review the occurrence of horizontal transfer and
examine the methods used to detect such transfers.
We then discuss factors that affect the frequency of
horizontal transfer, with emphasis on the mechanism
and regulation of transposition. An intriguing feature
of horizontal transfer is that its frequency differs
among transposable element families. Evidence
summarized in this review indicates that this pattern
is due to fundamental differences between Class I and
Class II elements. There appears to be a gradient in
the incidence of horizontal transfer that reflects the
presence of DNA intermediates during transposition.
Furthermore, horizontal transfer seems to predominate
among families for which copy number is controlled
predominantly by self-regulatory mechanisms that
limit transposition. We contend that these differences
play a major role in the observed predominance of
horizontal transfer among Class II transposable
elements.

Introduction

Transposable elements include a diverse array of DNA
sequences that share an inherent property of mobility. In
spite of ample evidence for the deleterious effect of
mutations caused by the presence and the movement of
transposable elements (Lambert et al., 1988; Berg and
Howe, 1989; Mackay, 1989; Finnegan, 1992; Nuzhdin,
1999), these sequences are ubiquitous in eukaryotic
genomes. One explanation for the persistence of
transposable elements (TEs) is that they represent
quintessential selfish DNA, using a replicative advantage
over non-mobile sequences to increase their copy number

within a genome (Doolittle and Sapienza, 1980; Orgel and
Crick, 1980). Indeed, in studies that simulate genetic
crosses between genomes with and without transposable
elements, a TE that is transmitted to 100% of the resulting
progeny can become fixed in the population even when
reducing fitness by 50% (Hickey, 1982). A second
explanation for the persistence of TEs is that they in fact
benefit the host, providing genetic variability or mediating
favorable structural changes in the genome that increase
host fitness (McDonald, 1993; McFadden and Knowles,
1997; Kidwell and Lisch, 2000). Several recent studies
report the widespread presence of TE-derived sequences
in host genes and regulatory regions (Makalowski, 2000;
Nekrutenko and Li, 2001; Jordan et al., 2003; Silva et al.,
2003). These two hypotheses are not mutually exclusive
and both may play roles in the evolution of transposable
elements.

In addition to their propensity for intragenomic spread,
there is substantial evidence to suggest that TEs can also
cross species boundaries to enter new genomes, a process
known as horizontal (or lateral) transfer. Although more
common for some TEs than others (see below), horizontal
transfer has been reported for virtually all types of TEs,
including some eukaryotic introns. It is this property for
horizontal transfer that may make transposable elements
the most versatile selfish DNA. Here, focusing mostly on
animal TEs, we review the occurrence of horizontal transfer,
examine the methods used to detect such transfers, and
discuss properties of both TE and host that make horizontal
transfer possible.

Classification and History

Transposable elements can be divided into two broad
classes on the basis of their transposition mechanism and
sequence organization (Finnegan, 1989; Capy, 1998).
Class I elements, generally referred to as retroelements,
move by reverse transcription of an RNA intermediate and
include the retrotransposons, group II mitochondrial introns
and retroviruses. Like in retroviruses, the reverse
transcriptase of Class I TEs is usually encoded by the
element itself. The two major subclasses of Class I
elements can be distinguished by the presence or the
absence of long terminal repeats (LTRs), which flank the
body of the element. Among the best-known LTR-
containing retrotransposons (or LTR retrotransposons) are
the Ty1-copia and Ty3-gypsy superfamilies and the
retroviruses. Retrotransposons that lack LTRs (or non-LTR
retrotransposons) include, among others, the long
interspersed elements (LINEs) and short interspersed
elements (SINEs) of vertebrate genomes and the I family
of Drosophila. Class II elements, or transposons, move
predominantly via a DNA-mediated mechanism of excision
and insertion (e.g., Kaufman and Rio 1992), although a
few rolling-circle transposons are also known (Mendiola et
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al., 1994; Kapitonov and Jurka, 2001). Many Class II
elements encode a transposase and possess relatively
short inverted terminal repeats, both of which are necessary
for their mobility. Although many Class II elements share
some sequence and structural homology, it seems unlikely
that all Class II elements share a common origin. Among
the major groups of Class II elements are the mariner-Tc1
superfamily, which is widely distributed among animals,
the P element family of drosophilids and other flies, the
piggyBac elements from butterflies, the hAT superfamily,
which includes hobo, Ac, and Tam3 and occurs in plants
and animals, and some bacterial insertion sequences.

The evolutionary history of TEs is considerably more
complex than suggested by the classification scheme
described above, and is currently the subject of much
research. Non-LTR elements seem to be an ancient,
monophyletic lineage that predates the diversification of
eukaryotes (Malik et al., 1999) and may have originated
from group II introns (Zimmerly et al., 1995; Dai and
Zimmerly, 2002). The LTR retrotransposons seem to be
much younger, and may have originated from the fusion of
a non-LTR retrotransposon with a Class II TE, the former
providing the machinery for reverse transcription and the
latter the integrase activity (Capy et al., 1996; Malik and
Eickbush, 2001). Vertebrate retroviruses, in turn, form a
clade within the LTR retrotransposons, and are closely
related to the retrotransposon superfamily Ty3-gypsy
(Xiong and Eickbush, 1990; Pélisson et al., 1997; Malik
and Eickbush, 2001). The common ancestry of the
integrase of LTR retrotransposons and the transposase of
some Class II elements establishes an evolutionary link
between the two Classes (Capy et al., 1996). The emerging
picture is one of a modular evolution of TEs whereby new
TE families are formed when an existing TE acquires
structural features perfected by another (Ivics et al., 1996;
Lerat et al., 1999; Malik and Eickbush, 2001). In spite of
being a characteristic feature of these TEs, the
transposases of different Class II families apparently have
independent origins (Capy et al., 1996).

Detecting Horizontal Transfer

When TEs are transmitted vertically, their phylogenetic
history is expected to retrace, at least in broad terms, that
of their hosts. Such seems to be the case, for example, for
the non-LTR elements R1 and R2 among species of the
melanogaster species subgroup of the genus Drosophila
(Eickbush and Eickbush, 1995): individual copies isolated
from each of the species form monophyletic clades and
the relationships among these clades reflect those that
connect their host species. It is departures from this
expectation, the phylogeny of the TE given that of the host,
that allow us to infer that horizontal transfer has taken place.

Three types of distortion of the expected TE phylogeny
are commonly used to detect horizontal transfer of TEs.
The first, which seems to offer the strongest evidence, relies
on the detection of elements with a high degree of
sequence similarity in divergent taxa. In this case the
branch lengths of the TE phylogeny are much shorter than
expected, since the divergence between TE sequences is
much smaller than the divergence between non-mobile

nuclear genes of their respective host species. This method
has been used to identify multiple cases of horizontal
transfer for mariner (Maruyama and Hartl, 1991; Robertson
and Lampe, 1995) and for the P element (Daniels et al.,
1990b; Loreto et al., 2001). Inference of horizontal transfer
that rely on this type of distortion may be complicated by
analyses that fail to consider variable rates of sequence
change that have been shown for some TE lineages (Malik
et al., 1999).

A second method, also providing strong evidence, is
the detection of topological differences between the
phylogenies of TE and host species. Major disparities
between the tree topology of TE and host have been
detected in some instances, such as for P elements (Clark
et al., 1994; Clark and Kidwell, 1997; Haring et al., 2000),
for mariner elements (Robertson and MacLeod, 1993) and
for gypsy (Terzian et al., 2000). There are, nevertheless,
potential problems with relying exclusively on this measure
to infer horizontal transfer. The topology of the TE
phylogeny may be obscured by the presence of multiple
TE lineages within the genome of some species. For
example, there may be as many as nine distinct mariner
lineages within the genomes of some species, each in
essence representing paralogous sequences with distinct
evolutionary histories (Lampe et al., 2001). Because most
phylogenetic studies of TEs are based on characterization
of PCR-amplified products, it is often not possible to
determine if phylogenetic incongruence is a result of
comparison of paralogous sequences or truly reflects
horizontal transfer.

A third method of inferring horizontal transfer is the
so-called “patchy” distribution of a TE family among closely
related taxa. This term refers to the presence of a TE in
one lineage and its absence in a sister lineage, resulting
in the absence of one or more branches in the TE
phylogeny. This inference relies on the assumption that
the lineage possessing the TE has acquired it through a
horizontal transfer event that did not involve its sister
lineage. By itself, this kind of evidence provides only weak
support for horizontal transfer since it is possible for a TE
to be lost from the genome through population dynamics
or ecological forces that are difficult to reconstruct (Kaplan
et al., 1985; Lohe et al., 1995). This situation is analogous
to the assortment of an ancestral polymorphism that may
lead to the loss of a particular allele from a gene pool.

For those transposable elements for which the case
is the strongest, horizontal transfer is confirmed by all three
methods; this is the case, for example, of numerous
instances of horizontal transfer involving the Class II TEs
P and mariner. The situation for horizontal transfer of some
other transposable elements is not as strong as for those
two families, often resting on one or two methods of
detecting the transfer. While horizontal transfer remains a
viable hypothesis, careful analysis may reveal alternative
explanations for inconsistencies in the phylogeny of a
transposable element relative to that of the hosts. For
example, re-analysis of the data for several non-LTR
retrotransposable elements led to the conclusion that the
evidence for horizontal transfer, which had been inferred
strictly on the basis of phylogenetic incongruence, was in
fact not as strong as originally reported (Malik et al., 1999).
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For reviews of horizontal transfer and alternative
explanations, see Cummings (1994) and Capy et al. (1994).

Horizontal Transfer Is Widespread

Within the past decade, there have been numerous reports
of horizontal transfer involving transposable elements
(Kidwell, 1993; Clark et al., 2002; Robertson et al., 2002).
These and more recent examples of horizontal transfer
are summarized in Table 1. Although not intended to be
exhaustive, the listing is informative in three respects. First,
it shows that horizontal transfer has been documented for
all types of TEs. Second, it illustrates that such events have
been reported with increasing frequency. And finally, it
reflects the skew that is observed in the literature for a
preponderance of cases of horizontal transfer that involve
Class II TEs.

Lateral movers par excellence: the P and the mariner
families
To date, the strongest cases of horizontal transfer involve
the Class II TEs mariner and the P element. In addition, it
seems that horizontal transfer within these two families
occurs with relatively high frequency in an evolutionary
timescale, and this mode of transmission appears to be
an integral component of the life cycle of both mariner and
P elements (Kidwell, 1994; Lohe et al., 1995; Pinsker et
al., 2001).

The P element family was discovered in D.
melanogaster where it is responsible for the phenomenon
of hybrid dysgenesis (Kidwell et al., 1977). The P elements
from this species, termed canonical, have a complete
structure and are capable of transposition. Subsequent
studies have revealed canonical P elements in other
species of Drosophila as well (Clark et al., 1995). Together,
these canonical P elements comprise a subfamily in which
individual elements differ by less than 10% in nucleotide
sequence. The P family contains several other subfamilies,
a few of which, namely the O-, M- and T-type, have been
well characterized (Pinsker et al., 2001). The canonical P
element of D. melanogaster and the consensus sequence
of canonical P elements from D. willistoni differ by less
than 0.1% at the nucleotide level, in spite of the fact that
these two species diverged from one another approximately
40 million years ago (Daniels et al., 1990b). Furthermore,
the phylogeny of canonical P elements is clearly
incongruent with that of the species in which they are found
(Clark et al., 1994), and canonical P elements are
completely absent from the genomes of those flies most
closely related to D. melanogaster (Clark et al., 1998). All
these pieces of evidence contribute to make this one of
the strongest cases of horizontal transfer (Figure 1). A
second example in which horizontal transfer of the
canonical P element has been supported by all three
detection methods was reported recently involving a
member of the willistoni species group (possibly D.
nebulosa) and a distantly related species, D.
mediopunctata (Loreto et al., 2001; Figure 1). In addition,
careful analysis of the molecular sequence evolution of
the canonical P element isolated from several species of
the willistoni and saltans species groups has revealed

numerous additional instances of horizontal transfer that
occurred so recently as to escape detection by phylogenetic
methods (Silva and Kidwell, 2000; Figure 1).

Strong evidence, corroborated by all three inference
methods, is also available for horizontal transfer of non-
canonical P elements (Figure 1). For example, elements
of both the O- and M-type subfamilies have been
transferred independently between the genus Drosophila,
the genus Scaptomyza and the genus Lordiphosa, as
shown by the high similarity among elements in those taxa,
by the discordance between TE and host phylogeny and
the patchy distribution of similar P elements among related
taxa (Simonelig and Anxolabéhère, 1991; Hagemann et
al., 1994; Hagemann et al., 1996; Haring et al., 2000).

Like the P element family, the mariner family also
consists of multiple subfamilies (Robertson and MacLeod,
1993; Robertson et al., 2002). However, unlike P elements,
which are prevalent mainly among drosophilid flies, the
mariner elements are present in multiple animal phyla,
among which are cnidarians, platyhelminthes, arthropods
(including several insect orders) and vertebrates

Table 1. Putative cases of horizontal transfer.

                TE family Reference

Class I: non-LTR retrotransposons

LINE / jockey Mizrokhi and Mazo, 1990
LINE / Bov-B Kordis and Gubensek, 1995
SINE / SmaI-cor Hamada et al., 1997
LINE / Rex1 Volff et al., 2000
LINE / Bov-B Zupunski et al., 2001

Class I: LTR retrotransposons

Ty1-copia / Ta1-Ta10 Konieczny et al., 1991
Ty1-copia / copia Jordan et al., 1999
Ty3-gypsy / SURL Gonzalez and Lessios, 1999
Ty3-gypsy / gypsy Terzian et al., 2000
Ty3-gypsy / gypsy Vazquez-Manrique et al., 2000

Class II

hTA / hobo Daniels et al., 1990a, Simmons, 1992
hTA / hobo-Ac-Tam3 Calvi et al., 1991
hTA / Tol2 Koga et al., 2000

mariner-Tc1 / mariner Maruyama and Hartl, 1991
mariner-Tc1 / mariner Lidholm et al., 1991
mariner-Tc1 / mariner Lohe et al., 1995
mariner-Tc1 / mariner Robertson and Lampe, 1995
mariner-Tc1 / mariner Smit and Riggs, 1996
mariner-Tc1 / Tc1 Lam et al., 1996
mariner-Tc1 / Tc1 Ivics et al., 1997
mariner-Tc1 / mariner Brunet et al., 1999
mariner-Tc1 / Tc1 Arca and Savakis, 2000
mariner-Tc1 / mariner Yoshiyama et al., 2001
mariner-Tc1 / mariner Gomulski et al., 2001
mariner-Tc1 / mariner Robertson et al., 2002
mariner-Tc1 / ItmD37E H. Shao and Z. Tu (unpublished results)

P, canonical Daniels et al., 1990b
P, M-type Hagemann et al., 1992
P, canonical Clark et al., 1994
P, O-type Hagemann et al., 1996
P, canonical Clark and Kidwell, 1997
P, M- and O-types Haring et al., 2000
P, canonical Silva and Kidwell, 2000
P, canonical Loreto et al., 2001
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(Robertson and MacLeod, 1993; Auge-Gouillou et al., 1995;
Garcia-Fernandez et al., 1995; Oosumi et al., 1995;
Robertson, 1997), and have also been detected in plants
(Jarvik and Lark, 1998) and fungi (Langin et al., 1995).
This widespread distribution has been attained, to a certain
extent, by horizontal transmission, as suggested by the
very high sequence similarity between elements sampled
from distantly related hosts, the incongruence between TE
and host phylogeny and the patchy distribution of each
mariner subfamily among closely related taxa (Maruyama
and Hartl, 1991; Robertson and MacLeod, 1993; Brunet et
al., 1994; Lohe et al., 1995; Robertson and Lampe, 1995;
Smit and Riggs, 1996; Robertson, 1997; Robertson et al.,
2002).

Other Cases of Horizontal Transfer
Extensive data, such as that which exists for mariner and
for the P element, are currently unavailable for other Class
II transposable elements. However, recent studies suggest
that horizontal transfer may be quite common among most
members of this Class. For example, a recently-discovered
family, known as ITmD37E, has been found in mosquitoes
of the genera Aedes, Anopheles, Armigeres  and
Toxorhynchites (Shao and Tu, 2001). In spite of its recent
discovery, cases of horizontal transfer involving elements
of this family have already been detected (H. Shao and Z.
Tu, unpublished results).

The strongest case of horizontal transfer among Class
I elements involves the LTR retroelement copia of
Drosophila (Jordan et al., 1999). In this study, copia
elements from D. melanogaster and D. willistoni were found
to be more than 99% identical in sequence, a much higher
level of sequence conservation than observed for non-
mobile nuclear genes. It is interesting that these same two
species were also involved in the first reported case of
horizontal transfer of the canonical P element, which was
described above. In the P element case, the transfer was
undoubtedly from D. willistoni to D. melanogaster, whereas
the copia transfer appears to have been in the reverse
direction. It is tempting to speculate that these two species
share an ecological connection that facilitates the process
of horizontal transfer. Recent studies also provide evidence
for the horizontal transfer of gypsy, another LTR
retrotransposable element originally isolated from
Drosophila (Terzian et al., 2000; Vazquez-Manrique et al.,
2000) and for the SURL elements of echinoderms
(Gonzalez and Lessios, 1999).

The evolution of non-LTR retroelements appears to
be governed largely by vertical transmission (Malik et al.,
1999). However, recent reports suggest that occasional
horizontal transfer of some elements may occur. These
include the SmaI-cor elements of whitefish (Hamada et
al., 1997) and the Bov-B elements, which are found in
ruminants and some squamates (Zupunski et al., 2001).

Figure 1. Distribution and horizontal transfer of P elements within the dipteran family Drosophilidae. Each lineage shown represents a species group that has
been surveyed by either Southern blot hybridization or PCR for the presence of P elements (Daniels et al. 1990b; Harring et al. 2000). Dark squares denote
a strong P element signal, gray squares denote weaker signals, and open squares denote no signal. Detectable P elements are absent from all species
surveyed from the tripunctata group with the exception of D. mediopunctata (dotted square). Horizontal transfer events are identified with arrows using the
following key: filled arrows, canonical P elements; open arrows, M-type P elements; dashed arrows, O-type P elements. Host phylogeny is based on Remsen
and O’Grady (2002).
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Currently, it is not known how widespread the
phenomenon of horizontal transfer is among the Class I
TEs. While horizontal transfer remains a viable hypothesis,
careful analysis may reveal alternative explanations for
inconsistencies in the distribution or phylogeny of a
transposable element. Two recent investigations of
retrotransposable element evolution in plants discuss the
difficulties associated with attempting to distinguish
between horizontal transfer and alternative explanations,
especially when the transfer events are postulated to have
occurred in the distant past (Frissen et al., 2001; Stuart-
Rogers and Flavell, 2001).

Initiating Horizontal Transfer: Vectors And
Opportunities

In order for a TE to be exchanged between two cells, a
vector of some sort is needed to mediate the physical
transfer of DNA from a donor to the recipient’s germline. A
vector of this nature belongs necessarily to a limited set.
Potential vectors need to have access to the intracellular
environment, or to be otherwise capable of accessing the
cells without destroying them. In addition, horizontal
transfer requires not only that the distributions of donor
and recipient overlap in a geographic sense, but it is
probably facilitated by ecological and temporal overlap as
well.

Vectors
Although numerous studies provide support for the
hypothesis of horizontal transfer, with a few exceptions,
such as that of the canonical P element (Houck et al., 1991),
they do not present a satisfying proposal for how transfer
may have occurred. Suitable vectors for horizontal transfer
in natural populations include viruses (Miller and Miller,
1982; Fraser et al., 1985; Jehle et al., 1995), parasitoid
wasps (Yoshiyama et al., 2001) and parasitic mites (Houck
et al. 1991). Recently, intracellular parasites have also been
placed in the list of plausible vectors. Heath and
collaborators (1999) had shown that an intracellular
parasite of the genus Wolbachia could be transferred
between host species. Now, transfer of nuclear material
between Wolbachia and an insect host has also been
documented, although the mechanism for such transfer
remains elusive (Kondo et al., 2002). These promising
hypotheses notwithstanding, it is worth noting that to date
none of these vectors has been observed to mediate
horizontal transfer of a TE between two hosts, either in
natural or in laboratory populations.

An interesting situation exists with the Class I element
gypsy. This TE can act as an endogenous retrovirus, since
it encodes an envelope protein and possesses infectious
properties (Kim et al., 1994). Gypsy can produce virus-like
particles (Lécher et al., 1997) and it has been shown in
experimental conditions that gypsy can be horizontally
transmitted between Drosophila species (Mejlumian et al.,
2002). Thus, in principle, horizontal transfer of gypsy would
not require a vector.

Overlap Between Donor and Recipient Hosts
A fascinating example of horizontal transfer of an element
of the mariner family between a parasitoid wasp and its
lepidopteran host provides a good example of the
ecological overlap between donor and recipient that must
accompany horizontal transfer (Yoshiyama et al., 2001).
In this case, the parasitoid possesses a mariner element
with 97% sequence identity to that of its moth host, whereas
related wasps species do not possess mariner at all.
However, in spite of this close physical association between
parasitoid and host, a vector, such as a virus, may still be
necessary to mediate the actual transfer of TE DNA
between cells.

The transfer of canonical P elements between D.
willistoni and D. melanogaster illustrates the geographical
overlap that is a prerequisite for horizontal transfer between
donor and recipient. D. melanogaster is an Old World
species whose distribution has only recently expanded to
the New World, probably as a result of human activity
(Kidwell, 1983; Engels, 1992). Thus, the horizontal transfer
of the canonical P element was only possible once the
distributions of D. melanogaster and D. willistoni partially
overlapped, an event that occurred relatively recently
(Daniels et al., 1990b).

Biémont and colleagues (1999) extend the importance
of the overlap between donor and recipient when they
suggest that the expansion of a species’ range may be
concomitant with the genomic invasion by TEs. This
invasion can be explained both by the horizontal transfer
of alien TEs from new species with which the invading
species comes into contact, or by the activation of long-
time resident TEs, leading to an increase in genomic copy
number. Thus, to a certain extent, a newly acquired overlap
of donor and recipient may lead to horizontal transfer by
providing the opportunity for such an exchange. This
hypothesis has been invoked to explain the recent invasion
of D. melanogaster by P, I and hobo elements, and of D.
simulans by the retrotransposon 412 (Vieira et al., 1999).

A similar coincidence of expansion of host range and
invasion of TEs by horizontal transfer is apparently
occurring with the drosophilid species Zaprionus indianus.
Flies of the genus Zaprionus are of afrotropical origin, and
are closely related to the genus Drosophila (Remsen and
O’Grady, 2002; Figure 1). Z. indianus is in the process of
expanding its range, having recently invaded South
America, and is rapidly spreading throughout Brazil and
neighboring countries (Vilela, 1999). In addition, the
ecological niche of Z. indianus is very similar to that of D.
simulans and these species are now often found together
in Brazil (E. L., unpublished results). Concomitant with this
range expansion, horizontal transfer of gypsy between D.
simulans and Z. indianus has been described by Herédia
(2002), based on incongruence between TE and host
phylogenies. Comparison of sequence divergence of a non-
mobile nuclear gene (superoxide dismutase, Sod) and the
gypsy sequences (Table 2) in these species provides
additional corroboration of the hypothesis of horizontal
transfer. The divergence of the TE sequences is
considerably less than that of a host gene supposedly
evolving under purifying selection. In order to further explore
this possibility, PCR was used to screen 35 Neotropical
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species (14 from the subgenus Sophophora, 19 from the
subgenus Drosophila, and one each from the subgenus
Dorsilopha and Zaprionus indianus) for the presence of
elements from the 297/tom group of retrotransposons. A
fragment with the expected size was amplified only from
species of the melanogaster group and from Z. indianus
(E. L., unpublished results). Once again the divergence
between the TE sequences is lower than that of the host
gene, suggesting a possible horizontal transfer (Table 2).
A careful examination of alternative possibilities is currently
underway. Finally, Brunet and collaborators (1999) have
detected the presence of mariner elements in Zaprionus
indianus. These elements are very closely related to that
of D. simulans (Table 2). Whether the introduction of all
these TE families into the Z. indianus genome is indeed
recent, and results from the expansion of the species range
remains to be shown, but the possibility is fascinating and
certainly warrants further investigation.

Factors Affecting the Frequency of Horizontal Transfer

A horizontal transfer event, defined as the successful
invasion of a new species by a TE, can be divided into two
phases: the transfer of DNA between donor and recipient
and a subsequent increase in TE frequency (Kidwell, 1992).
The first phase requires the physical transfer of the TE
from one organism to another, the stable integration into
the recipient’s germline and the expression of the TE’s
coding sequences. Once a stable transfer is achieved, the
element must increase in copy number within the cell and
then spread throughout the population in order for
horizontal transfer to succeed.

Any one of these events seems unlikely, and yet
horizontal transfer requires that they occur together, in a
coordinated manner. Because the presence and mobility
of a transposable element may be deleterious to the host
(for a review see Nuzhdin, 1999), this spread will be
counteracted by selection and by host- and TE-encoded
mechanisms that repress transposition. Therefore, not only
will an inherent predisposition of a TE to perform any of
the required steps increase its probability of a successful
transfer but, ultimately, the structure and transposition
mechanism of a TEs are actively molded by the co-
evolution between host and TE.

Stable Integration into a New Genome
The physical transfer of nuclear DNA from one species to
another must occur in such a manner that the recipient
cell is able to take up the donor DNA. Once this occurs,
the DNA must enter the nucleus of a germline cell, integrate
into a chromosome and be expressed. This process is best
understood for the P element, which for twenty years has
been used routinely to transform Drosophila (Rubin and
Spradling, 1982). In this case, a P element construct,
carrying the terminal inverted repeats, is microinjected into
the syncytial blastoderm of early embryos, where the P
elements subsequently transpose into the recipient’s
genome. This requires a supply of transposase, which is
produced from transcription of a transposase gene that is
co-injected with the P element construct. Only some of
these insertions will occur in nuclei of those cells that will

ultimately form germline tissue, potentially producing a
stable fly lineage that is genetically transformed. In the
laboratory, a strong promoter is used to provide the
necessary level of transposase that is needed for mobility.
However, in nature the integration and proper expression
of a TE would seem to be a daunting impediment to
successful horizontal transfer.

Some of the complex features required for horizontal
transfer are integral characteristics of the life cycle of some
TE families, and reflect selection on TEs for effective
transposition. For example, the transposase of class II
elements belonging to the mariner-Tc1 superfamily have
been found to contain a nuclear localization signal, which
explains the migration of these enzymes to the nucleus
(either upon translation or after co-transfer with its TE),
where they facilitate TE transposition (Ivics et al., 1996).
Since Class II TEs transpose predominantly via DNA-
mediated processes (Kaufman and Rio, 1992; see Hartl et
al., 1997 for a review of transposition in mariner-Tc1
elements), extra-chromosomal DNA copies of the element
are a necessary feature of their transposition mechanism.
Class I elements, on the other hand, depend on extra-
chromosomal copies of the element in the form of RNA
intermediates, which are necessarily not as stable as DNA.
As is the case for the transposase of Class II elements,
the enzymes encoded by Class I elements need to be
produced at levels high enough to ensure transposition.

Differences in the transposition mechanism of LTR and
non-LTR Class I elements provide useful insights into
varying rates of horizontal transfer among TE families.
During the transposition of LTR retroelements, a DNA
intermediate is produced, which can insert into the genome
in a manner analogous to Class II elements (Luan et al.,
1993, and references therein). However, for non-LTR
transposable elements, an RNA intermediate is reverse-
transcribed directly into a chromosomal target site (Luan
et al., 1993). Malik and collaborators (1999) suggested that
this difference might be sufficient to explain the rarity of
non-LTR elements’ horizontal transfer. The transposition
mechanism used by non-LTR TEs does not preclude the

Table 2.  Divergence (substitutions per nucleotide) of a host marker (Sod)
and of TEs between Z. indianus and two Drosophila species1.

D. melanogaster D. simulans

D. simulans
Sod2 0.03

gypsy2 0.12

Z. indianus
Sod2 0.32 0.33

gypsy2 0.11 0.07
17.6/tom3 0.17
mariner4 0.06

1 Divergence estimated according to Kimura’s 2-parameter model (Kimura,
1980).
2 Herédia (2002).
3 E. Loreto, unpublished results.
4 Genbank accession numbers for D. simulans (AF037052) and Z. indianus
(AF034700) mariner elements.
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possibility of horizontal transfer using a virus as vector,
but reverse transcription probably has to occur directly into
the viral DNA, an event that might be exceedingly rare.

Thus, there appears to be a gradient of horizontal
transfer that reflects the presence of DNA intermediates
during the transposition events. Horizontal transfer seems
much more common for Class II elements for which DNA
intermediates are a persistent feature of the transposition
process. Horizontal transfer seems to be less common for
Class I LTR retroelements, which produce a DNA
intermediate only after reverse transcription of an RNA
copy, and horizontal transfer is least common for the Class
I non-LTR elements, for which no DNA intermediate is
produced.

Spread Within the New Host
After stable integration and expression, there must be an
increase in copy number in order for the TE to spread
reliably throughout the population. The increase in copy
number within the cell results in a decrease in the probability
of a gamete being formed that carries no copies of the
element. If fact, if all copies segregate independently, that
probability decreases exponentially as (1/2)n, where n is
the total number of copies per genome. This scenario is
simplistic, as TE spread may be influenced by other factors,
including biases in TE insertion sites. For example, several
TEs have been shown to transpose preferentially to sites
close to the parental copy (Engels, 1989), meaning that
these copies would not segregate independently. However,
this model clearly exemplifies the powerful effect of copy
number increase on TE transmission; if an individual carries
in its genome ten TE copies that segregate independently
of each other, the probability of it generating a gamete with
no TEs is less than one in a thousand.

Several studies have addressed the subject of TE
spread, both by quantifying the number of TE copies per
genome and by estimating the rate of spread of TEs in
populations. P elements have been shown to spread rapidly
when first introduced into naive populations (those that
lacks the TE in question) in the laboratory (Kidwell et al.,
1988; Good et al., 1989). These results mimic the spread
of P elements throughout natural populations of D.
melanogaster within the past 50 to 100 years
(Anxolabéhère et al., 1988), with most flies examined
recently carrying up to 60 P element copies (Ronsseray et
al., 1989). Canonical P elements have also colonized very
recently the New World species D. willistoni, as suggested
by an average pairwise difference between copies of less
than 1% (Silva, 2000) and by the low frequency of each
insertion (A. Holyoke and M. Kidwell, unpublished results).
In addition, these elements were shown to spread faster
than neutral nuclear markers in natural populations,
overcoming barriers such as moderate levels of population
subdivision (Silva, 2000), and are now present in 5-14
copies per genome (A. Holyoke and M. Kidwell,
unpublished results).

A more dramatic example of the potential for increase
in copy number accompanying horizontal transfer was
found for the mariner element in some host species. For
example, the genome of the planarian, Dugesia tigrina,
contains approximately 8000 copies of mariner and, of

those sequenced, all are quite similar to each other (Garcia-
Fernandez et al., 1995). Furthermore, the planarian
mariners are characterized by full-length, uninterrupted
reading frames and are dispersed throughout the genome.
Together, these observations suggest recent transposition
and spread following horizontal transfer.

Factors Limiting the Spread of Transposable Elements
The invasion of a new species after the initial integration
into the host genome is not always quick, or even possible.
Several factors might play a crucial role in TE spread, such
as the effective population size of the host species
(Charlesworth and Charlesworth, 1983; Brookfield and
Badge, 1997; Quesneville and Anxolabéhère, 1997),
selection (Nuzhdin, 1999, and references therein),
repression of transposition, and the presence or absence
of host factors required for transposition. The last two
factors vary considerably between TE families and are
discussed more extensively below.

Host factors
The effect of host factors on TE spread is well demonstrated
by the difference in the taxonomic range of host species
for the P element and mariner families. Although both these
families are Class II TEs, P elements are phylogenetically
restricted to Diptera (mostly drosophilids), whereas mariner
has been found in many animal phyla (Robertson et al.,
2002). Despite their very similar structure and life cycle,
these two families differ in a major aspect: the transposition
of P elements requires a host enzyme, IRBP (inverted
repeat binding protein), which binds the element’s inverted
terminal repeats and is responsible for the element’s initial
excision from its chromosomal locus (Beall et al., 1994;
Beall and Rio, 1997). In contrast, purified transposase alone
is sufficient to support the mobility of mariner in vitro (Lampe
et al., 1996). This striking distinction between these two
Class II elements may alone explain the wide distribution
of mariner in contrast to that of P. Indeed, if P elements are
transferred into the germ cells of a new host, their
transposition and concomitant spread depend on the
existence of a host protein with properties similar to those
of IRBP. The failure of the canonical P element to be
mobilized in non-drosophilids following microinjection in
the laboratory is possibly due to the lack of such factor
(O’Brochta and Handler, 1988). Interestingly, Tc1 elements,
which belong to Class II mariner-Tc1 superfamily and are
widely distributed among animals and fungi (Plasterk,
1996), much like their mariner cousins require only
transposase activity for their mobility (Vos et al., 1996).
This apparent minimal requirement for mobility may explain
why horizontal transfer between distantly related taxa is
relatively common for Tc1 and mariner.

The influence of host factors on TE mobility was
illustrated by comparing the dynamics of the spread of a
TE family that was introduced into the genomes of two
closely related species. When P elements were introduced
into laboratory populations of D. melanogaster and its
sibling species D. simulans, there was a dramatic and
repeatable difference in the population dynamics of P
element (Kimura and Kidwell, 1994; Higuet et al., 1996). P
elements are significantly more active in D. melanogaster,
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reaching a higher copy number per cell than in D. simulans.
These results suggest that, in addition to the transposase,
host-specific factors are necessary to support P element
mobility at a sufficient level to ensure its spread and
subsequent persistence in a species, once it has been
introduced by horizontal transfer. These host factors may
be in the form of a facilitator of transposition, such as IRBP
(Badge and Brookfield, 1997) or may be related to host
systems not directly related to transposition, such as those
related to DNA repair. Quesneville and Anxolabéhère
(1997) have suggested that a species’ ability to deal with
the damage induced by P element excision can determine
the success or failure of horizontal transfer.

Regulation of copy number: repression of transposition vs.
selection
Experimental data suggest that the initial stage of the
invasion of a naive genome by P elements is characterized
by a very high transposition rate, on the order of 10-2 per
element per generation (Engels, 1989, and references
therein). That this may be the case for other TE families
(even if not to the extreme seen in P elements) is supported
by the very high copy number attained by some TE families
soon after invasion, as mentioned above for mariner in
Dugesia. Eventually, however, copy number ceases to
increase. This stabilization in copy number can be due
either to selection at the host level or to a TE self-regulation
mechanism (Charlesworth and Charlesworth, 1983). In the
case of selection host fitness is a decreasing function of
TE number. In the case of self-regulation, transposition
rate is a decreasing function of TE number.

Regulation of transposition of Class I elements is still
poorly understood. However, there is a growing body of
evidence that suggests that self-regulation is not a
significant force in the stabilization of copy number in these
families, since there seems to be no negative correlation
between transposition rate and copy number (Biémont et
al., 1997; Vieira and Biémont, 1997; Pasyukova et al.,
1998). Rather, selection has been suggested as the major
force controlling Class I element copy number, especially
because of the fitness costs associated with ectopic
recombination (Charlesworth and Lapid, 1989; Maside et
al., 2001). Repression of transposition of Class I elements
can also be achieved by means of host-encoded peptides.
This is the case for gypsy, the transposition of which is
regulated by an X-linked gene called flamenco in D.
melanogaster (Prud’homme et al., 1995). Varying rates of
transposition of these elements among natural populations
may be due to the presence of permissive and restrictive
alleles, which are kept in balance by mutation and selection
(Nuzhdin, 1999). This is probably a tight balance, delicately
modulated by host –TE interactions and hence specific for
each such pair, as suggested by the recent finding that
flamenco cannot repress transposition of gypsy elements
from other Drosophila species when these are introduced
in D. melanogaster (Mejlumian et al., 2002). Finally,
methylation of TE sequences can also play a role in
repression of transposition in some organisms (Labrador
and Corces, 1997; Matzke et al., 1999).

Self-regulation depends on repression of transposition,
which encompasses many processes that reduce

transposition rate to varying degrees. Self-regulation is
known for Class II families. P elements in particular have
been intensively studied and several types of repressors
have been defined. Type I repressors correspond to a
truncated version of the P-encoded transposase, and are
produced by alternative splicing of the element’s mRNA;
this yields a 66-kD repressor protein that prevents P
element transcription (Misra and Rio, 1990; Gloor et al.,
1993; Siebel et al., 1994; Roche et al., 1995). Transposition
can also be repressed by a series of internally deleted P
elements, called type II repressors. These are usually
byproducts of the repair of the double-stranded DNA break
that occurs during P element transposition. Supposedly,
type II repressors act by binding the transposase itself
(Rasmusson et al., 1993; Andrews and Gloor, 1995), by
binding the element sequence and out-competing the
transposase enzyme (Lee et al., 1996), and by antisense
RNA interference (Simmons et al., 1996). The KP element
is the most abundant type II repressor in natural populations
of D. melanogaster (Engels, 1989). Finally, the titration of
transposase by its binding to defective or
extrachromosomal P element copies might also help
reduce transposition rates (Simmons and Bucholz, 1985).

Repression of transposition in other Class II elements,
even though not as well studied, seems to rely on self-
regulation mechanisms as well (for reviews see Hartl et
al., 1997; Labrador and Corces, 1997). These include
alternative splicing of the elements’s mRNA that can give
rise to either repressor peptides or transposase (Mason et
al., 1991), negative feedback dependent on the
concentration of transposase (Lohe and Hartl, 1996;
Labrador and Corces, 1997), transposase titration by
methods such as dominant-negative complementation
(Lohe et al., 1997), and/or RNA interference (Jensen et
al., 1999). These studies support the contention that the
mobility of Class II elements is, to a large extent, self-
regulated.

Correlates of Horizontal Transfer

As described above, horizontal transfer is apparently more
frequent among Class II than Class I TEs, and this pattern
seems to be due in part to the different transposition
mechanisms used by the two classes. Another reason for
this difference may be that while Class II elements appear
to be mostly self-regulating, Class I TEs are not. Could
this difference in regulatory mechanism be related to the
incidence of horizontal transfer? Possibly, if the degree to
which self-regulation represses transposition is effective
enough.

In order for a TE lineage to persist through time, the
rate at which new functional elements arise must balance
the rate at which they are lost (Charlesworth and
Charlesworth, 1983). A functional element (those capable
of transposition and which encode functional enzymes) is
lost due to a variety of processes, which include random
loss (e.g., failure of the host to reproduce), substitutions
and insertions/deletions that render the transposase
inactive, excision (e.g., a Class II element that, during
transposition, fails to re-insert) and selection against
individual hosts with specific deleterious insertions or with
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too many TE copies. When the rate of transposition is not
high enough to counteract the effect of these processes,
the TE lineage will eventually go extinct. Among Class I
elements, the rate of transposition is apparently at least
one order of magnitude larger that the rate of excision,
and selection keeps TE copy number in check
(Charlesworth and Langley, 1991).

A relevant question is whether the self-regulating Class
II TEs can maintain a rate of transposition that is high
enough to prevent lineage extinction, once repression is
established. Not much is known about transposition rates
of Class II TEs in natural population. However, laboratory
studies show that a few generations after the introduction
of P elements into naive populations the P cytotype
becomes established, a condition characterized by the
suppression of P element transposition (Engels, 1979;
Kidwell, 1985; Engels, 1989, and references therein).
Although not thoroughly understood, the P cytotype
condition is maternally inherited and depends on both the
presence and the location of P element insertions, and is
related to the transmission of repressor peptides or their
mRNA to the zygote, through the oocyte’s cytoplasm (see
Labrador and Corces, 1997 for a review; Ronsseray et al.,
1998; Ronsseray et al., 2001, Simmons et al., 2002).
Truncated peptides with putative repressor capabilities
have also been found in Drosophila species other than D.
melanogaster, which shows that repressors can arise
repeatedly (Nouaud and Anxolabéhère, 1997). Moreover,
the presence of the KP repressor at a high frequency in
populations of D. melanogaster worldwide provide support
for the idea that new repressors can quickly spread and

be maintained by selection (Black et al., 1987; Jackson et
al., 1988). These studies strongly suggest that repression
of P element transposition can be quite effective. Whether
or not repression of transposition is as strong in other self-
regulated Class II elements remains to be determined.

Finally it should be noted that complete repression of
transposition may not be required for extinction of a TE
lineage. Kaplan and collaborators (1985) have shown that
self-regulating TE lineages are expected to go extinct when
non-functional elements can be transposed by a
transposase produced in trans, i.e., a transposase encoded
by another element. This is the case for P elements and,
probably, for other Class II TE families as well.

Assuming, for the sake of argument, that self-regulation
is indeed conducive to extinction, then continual horizontal
transfer becomes necessary for the survival of Class II TE
families. While Class I elements persist through an
equilibrium between transposition and loss, Class II are
always “on the run” (Figure 2). As long as repression
persists, at least one TE copy must find its way into a naive
genome, where repression is still absent, giving rise to a
new pool of functional copies to re-initiate the cycle of
transposition and spread. This scenario leads to a few quite
interesting predictions. First, because it depends on how
quickly repression of transposition arises, copy number per
genome is likely to vary among populations and among
species. There is already evidence that this is the case for
P elements, the copy number of which is known to differ
among species of the willistoni species group (Daniels and
Strausbaugh, 1986). Second, in populations where the TE
copy number is stable, an increase in the number of copies

Figure 2. Stages of the life cycle of a hypothetical Class II, self-regulated, transposable element lineage. (i) An element is transferred into a germline cell of
host A. (ii) Once the element has successfully integrated into the host DNA and is expressed, transposition will start, with a concomitant rapid increase in copy
number. (iii) Repression of transposition arises and spreads throughout the host population. As a result, the growth rate in copy number slows. (iv) At this time
the rate of loss of functional elements is higher than the rate at which they are created by transposition, and the number of functional elements in the genome
slowly decreases. This process that can take many millions of years (abbreviated period represented by a dashed line). (v) Finally, no functional elements are
left in the genome of host A, and this TE lineage becomes extinct. Sometime between (ii) and (v), a functional element may be transferred horizontally (HT)
to a new host and the process begins anew. So, the death of the lineage in host A does not necessarily imply the death of the TE family. Eventually, another
functional element may escape to yet another host. If, at this time, repression of transposition has subsided in host A, it can be invaded again. The presence
of multiple, quite divergent TE subfamilies of mariner and P elements in the same host is probably the signature of independent waves of horizontal transfer
(Clark et al., 1995; Lampe et al., 2001).
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should be possible through the elimination of the source
of repression. Finally, unless they are a recently formed
family, self-regulated TEs should all show evidence of
horizontal transfer. The maximum length of time before a
horizontal transfer is required (time to extinction of the
family) will depend on several characteristics, such as the
number of copies per genome and the rate of loss of
functional elements. In this context, the study of class II
families in which transmission seems to be exclusively
vertical, if any is found, would be extremely fruitful.

Conclusions

Successful TE horizontal transfer events depend on a
stable transfer between donor and recipient and on the
subsequent spread throughout the new host populations.
Although detected for all types of TEs, horizontal transfer
seems considerably more frequent among Class II than
Class I families. Evidence summarized here indicates that
this pattern is due to fundamental differences between the
two TE Classes. The major transposition mechanism used
by Class II elements is better suited for horizontal transfer
than those used by Class I TE families. In addition, the
type of copy number regulation used by Class II TEs, which
seem to be mostly self-regulated, may make it impossible
for these elements to sustain a rate of transposition that is
compatible with their long-term survival within a single
genome. Thus, horizontal transfer may be the chance event
that dictates which Class II families survive and which do
not.

Extensive genomic data, often in the form of complete
genomes, is currently being gathered at an astonishing
rate. Mining this type of data for TEs is sure to bring
advances on many fronts. For example, it will make it
possible to objectively assess the distribution of known TEs,
to estimate more reliably the incidence of horizontal transfer
among them, and to identify new TE families. Studies of
horizontal transfer have practical implications as well. Some
TEs, such as piggyBac and those of the mariner-Tc1
superfamily, are already being used as transformation
vectors in a wide variety of taxa (Sherman et al., 1998;
Rubin et al., 1999; Mamoun et al., 2000; Zhang et al., 2000;
Handler, 2002). The usefulness of TEs in this context is
phenomenal since, through insertional mutagenesis, they
provide a tool to rapidly identify and recover of genes that
contribute of specific phenotypes (Spradling et al., 1999;
Fischer et al., 2001; Horn et al., 2003). In addition, the
inherent ability of TEs to spread can be explored as a
means to transform, and thus, ultimately, control, species
that are involved in the transmission of diseases or that
are, themselves, considered to be pests (Gueiros-Filho and
Beverley, 1997; Atkinson et al., 2001).

The success of these elements as transformation
vectors rests mainly on two bases: on studies of their
transposition mechanisms that show transposase to be the
only factor required for transposition. This suggests that
the success of such experiments does not hinge on host-
encoded factors, which might be absent in distantly related
taxa. They also rely on studies of the occurrence of TEs
that reveal the presence of specific elements across a wide
variety of taxa, since this provides circumstantial evidence

for the success of such elements as tools in transformation
studies. Additional studies of horizontal transfer, by
providing further insights into the features of interspecific
transfer, may prove invaluable for the fields of functional
and medical genomics.
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