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Abstract: Typhoid fever causes significant morbidity and mortality in developing countries,
with inaccurate estimates in some countries affected, especially those situated in Sub-Saharan Africa.
Disease burden assessment is limited by lack of a high degree of sensitivity and specificity by many
current rapid diagnostic tests. Some of the new technologies, such as PCR and proteomics, may also be
useful but are difficult for low-resource settings to apply as point-of-care diagnostics. Weak laboratory
surveillance systems may also contribute to the spread of multidrug resistant Salmonella serovar Typhi
across endemic areas. In addition, most typhoid-endemic countries employ serological tests that
have low sensitivity and specificity making diagnosis unreliable. Here we review currently available
typhoid fever diagnostics, and advances in serodiagnosis of S. Typhi.
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1. Introduction

“Typhoid fever” (TF) was coined by the French physician, Pierre Charles Alexander Louis,
who gave a description of the clinical signs and symptoms of the disease to be typhoidal, with signs
of mental fogginess and persistent fever which mimicked the symptoms caused by typhus [1,2].
TF is a systemic infection comprising of diseases caused by Salmonella enterica serovar Typhi; while S.
enterica serovar Paratyphi (A, B and C) cause paratyphoid fever, other serovars of Salmonella are
grouped as non-typhoidal. S. Typhi belongs to the family Enterobacteriaceae, which are Gram-negative
rods and facultative anaerobes. The genus Salmonella is classified into two species, S. enterica and
S. bongori, and more than 2600 serovars (or serotypes), based on its lipopolysaccharide (LPS) cell
wall (somatic O antigen), the flagella (H antigen) and its surface Vi antigen (present only in S. Typhi,
S. paratyphi C, Citrobacter freundii, and S. dublin) [3]. S. Typhi are restricted exclusively to human
hosts and are associated with systemic infection, prolonged fever and may result in an asymptomatic
carrier state. Following resolution of infection, a small number of persons, called carriers, continue to
carry the bacteria. Around 2–5% of those who contract typhoid fever become chronic carriers, as the
bacteria persists in the biliary tract after symptoms have resolved [4]. Seroepidemiological surveys
have also revealed that some persons in the population have non-immunising antibodies present in
them irrespective of previous vaccination status, and will be seropositive, which is a limitation of
employing serodiagnostic rapid diagnostic tests (RDTs) in surveillance [5]. TF was an important cause
of illness and death in the United States and Europe in the 19th century, as a result of overcrowded
and unsanitary conditions. The provision of treated municipal water, pasteurization of dairy products
and better sanitary conditions led to a steep decline in the incidence of typhoid in these regions [3,6].
In most developing countries, however, access to safe drinking water and adequate sanitation remains
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a challenge. TF causes significant morbidity and mortality especially in Asia, Africa (although evidence
suggests that the impact might be under-appreciated), Latin America and the Middle East. Despite the
availability of vaccines, vaccination against TF remains limited in most of the affected countries. Lack of
inclusion of typhoid vaccines into routine immunization programs in addition to poor TF surveillance
and weak laboratory infrastructure in most countries affected further aggravates morbidity. TF is
essentially a disease of the poor, uneducated and usually the most vulnerable in the society who lack
access to basic social services such as health care, good hygiene and safe drinking water. Emergence
of antibiotic resistance (ABR) strains of S. Typhi to fluoroquinolones has made management of TF in
endemic countries even more challenging.

In most TF affected countries, physicians rely on laboratory results from serologic tests that
are not reliable (usually Widal) to arrive at a clinical decision. Application of sensitive and specific
diagnostic tests in health facilities, and establishment of active surveillance programs in endemic
regions is important for accurate antibiotic prescriptions against local S. Typhi strains in circulation
and detection of emerging ABR strains in the population. Here, we review laboratory diagnosis of TF,
emergence of ABR S. Typhi and propose solutions to challenges encountered in TF-endemic countries.

2. Disease Burden

TF was estimated to cause approximately 21.65 million illnesses and 216,000 deaths worldwide in
the year 2000 [7]. In 2010, the estimated number of cases after adjusting for water-related risk factors
was 11.9 million cases and 129,000 deaths [7]. Studies report that TF is more prevalent in Asia; high-risk
groups are children and infants, while those at risk of complicated TF include neonates and pregnant
women [8,9]. In some countries in Asia, Salmonella enterica serovar Paratyphi A has accounted for
a growing proportion of enteric fever; however, this is not the focus of this review [10].

3. Source and Mode of Transmission

Transmission of Typhoidal Salmonella is primarily through the fecal–oral route, i.e., through
water or food contaminated with human feces. Contaminated water sources have also resulted in
large epidemics of the disease [11,12]. TF is mainly found in developing countries, and it has been
eradicated from developed countries through good hygiene, sanitary and availability of potable
drinking water [13,14]. Poor hygiene practices by food handlers who usually lack good hygienic
practices also encourages TF transmission in developing countries.

4. Pathogenesis

The minimum infectious dose of S. Typhi could be as low as 1000 or as high as a million bacteria
based on studies carried out in human volunteers [15]. Following ingestion of the bacteria, it binds
to mucosa cells in the small intestine, eventually invading the mucosa. Post invasion of the mucosa,
the bacteria are translocated to the lymphoid follicles draining mesenteric lymph nodes, and some find
their way into the reticuloendothelial cells of the liver and spleen. The bacteria are phagocytosed and
have the ability to survive and multiply within macrophages of the lymphoid follicles, liver and spleen.
Once the bacteria multiply to a certain threshold, in addition to their virulence and the host response,
bacteria are released and sequestered into the blood stream. Following release into the bloodstream,
they invade secondary sites such as the Peyer’s patches of the terminal ileum, liver, spleen, bone
marrow or the gall bladder [3]. Bacteria that are excreted in the bile re-invade the intestinal wall
or are passed on through the feces. Cell counts of patients with acute TF gave a median bacteria
concentration of 1 bacterium per ml of blood (about 66 percent of which are inside phagocytic cells)
and about 10 bacteria per ml of bone marrow [16]. This indicates that the bone marrow has a higher
concentration of bacteria and is a better site than blood for detection of S. Typhi in patients. S. Typhi
infection has been shown to induce local and systemic immune responses in humans, but this provides
incomplete protection against relapse and reinfection [17].
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5. Laboratory Diagnosis of Typhoid Fever

Isolation of the causative bacteria in TF patients by culture remains the gold standard for diagnosis.
Culture is the most reliable way of detecting typhoid in infected patients, and usually by blood culture,
but bone marrow culture has a greater sensitivity. However, in most developing countries a serological test
known as the Widal test is most commonly applied. Below we discuss the most commonly used laboratory
approaches in typhoid detection in endemic countries and the challenges attributed to each (Table 1).

Table 1. Summary of available Typhoid Fever Diagnostic Techniques.

Diagnostic Tests Principle Sensitivity Specificity References

Non-immunodiagnostic
Methods

Blood Culture Based on the ability of viable cell to grow on
culture medium 15.38–51.8% 100% [18,19]

Stool Culture <50% 93% [20,21]
PCR (without

enrichment in blood
culture)

Relies on amplification of gene of interest 90–100% 100% [22–25]

Immunodiagnostic
Methods

TPTest
Measures S. Typhi membrane preparation
(MP)-specific IgA responses in peripheral
blood mononuclear cell culture secretions

96.0% 96.6% [19,26,27]

Tube Widal
Measures agglutinating antibodies against O

and H antigens of Salmonella Typhi and
Salmonella Paratyphi A; uses a tube or slide

65.38% 89.83% [18,22]

Cromotest® O:
semiquantitative slide

agglutination
95.2% 3.6% [21]

Cromotest® H:
semiquantitative slide

agglutination
80.3% 50.0 [21]

PanBio ELISA detecting anti-LPS IgG and IgM 78% 80% [28]

SD Bioline
ICT LFA cassette detecting IgG and IgM

antibodies against an undefined Salmonella
Typhi antigen

69% 79% [29]

Mega Salmonella
ELISA detecting IgG and IgM antibodies

against an undefined Salmonella
Typhi antigen

91% 49% [29]

LifeAssay Test-it Detects IgM antibodies against Salmonella
typhi LPS in an ICT LFA cassette 59% 98% [30]

Typhidot

Measures IgM and IgG antibodies against a
50-kDa outer membrane protein of
Salmonella Typhi in an immunodot

test format

67–98% 58–100% [29,31–34]

Typhidot M

Measures IgM antibodies, after removal of
IgG antibodies, against a 50-kDa outer

membrane protein of Salmonella Typhi in a
dot blot format

47–98% 65–93% [31,32,35]

TyphiRapid IgM and
IgG IgM (Combo)

Measures IgM antibodies, after removal of
IgG antibodies, against a 50-kDa outer

membrane protein of Salmonella Typhi in an
ICT LFAa cassette format

89–100% 85–89% [36,37]

Tubex TF
Detects antibody against Salmonella Typhi
LPS with an inhibition assay format and a

visual result readout
56–100% 58–100% [29,32–35,37,38]

Enterocheck-WB Dipstick detecting anti-LPS IgM antibodies 89% 97% [39]
Multi-Test-Dip-S-Ticks Dipstick detecting anti-LPS IgG and IgM 89% 53% [33]

PanBio ELISA detecting anti-LPS IgG and IgM 78% 80% [28]

6. Bacteria Culture

The definitive diagnosis of TF is isolation of S. Typhi from blood which should normally be sterile.
Blood samples can be cultured on an enriched media (Blood agar) and a differential media (MacConkey
agar). S. Typhi is a non-lactose fermenter producing smooth pale colonies on selective media. S. Typhi
utilize citrate as carbon source, lysine as nitrogen source and produce hydrogen sulphide which is
responsible for the characteristic black centers on Salmonella-Shigella agar or black butt with no gas
on Kliger iron agar [40]. The volume of blood collected from patients is one of the key factors in
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isolation of S. Typhi. Ideally 10–15 mL of blood should be collected from school children and adults,
while toddlers and preschool children supply 2–4 mL of blood. Toddlers and preschool children require
less blood because they have higher bacteremia than adults. The optimum ratio of blood to culture
media for isolation of pathogens is 1:10. Blood specimens are inoculated into Brain heart infusion
broth or tryptone soy broth immediately, incubated at 37 ◦C and subcultured at days 1, 2, 3 and 7 on
blood agar (horse or sheep blood) or MacConkey agar and incubated at 37 ◦C for 18–24 h. Blood
agar allows the growth of both Gram-positive and -negative pathogens, while MacConkey selects for
Gram-negative pathogens only. In patients who have yet to initiate antibiotic treatment, within the first
two weeks of infection, blood culture is positive in up to 80% of patients, while in patients already on
antibiotics, sensitivity can be as low as 40% [41]. In patients already on antibiotics the preferred sample
to be collected is the bone marrow, because there is a preponderance of bacteria at this site, where they
multiply and reside. Blood samples for culture should be collected within 7–14 days, as bacteria
counts in blood decline as disease progresses. The volume of blood collected is also a critical factor to
consider in order to obtain positive results, because 1 mL of blood contains <10 bacteria [16,42–44].
In contrast, bone marrow culture is more sensitive giving good yields even when antibiotic treatment
has been initiated. The reliability of bone marrow samples for culture is directly linked to a higher
bacteria count in the sample. Isolation of the causative bacteria in culture makes it possible to carry
out further testing such as antimicrobial susceptibility testing to determine the best antibiotic to be
prescribed by the clinician, identification of multidrug resistant strains, epidemiologic typing and
molecular characterization.

In resource-constrained settings, isolation of S. Typhi from stool/rectal swab culture which is more
routinely used in most diagnostic laboratories is suggestive of typhoid fever. Stool samples should
be collected in sterile wide-mouthed containers, and the quantity supplied by the patient directly
affects the likelihood of isolation of S. Typhi. In the absence of stool samples, rectal swabs inoculated
in Carry Blair transport medium (Thermo Scientific, Loughborough, UK) may suffice, though with
limited success. Stool samples should be inoculated within 2 h of collection or stored at 4 ◦C until
ready for inoculation. Approximately 1 g of stool sample is inoculated into 10 mL of Selenite F broth,
37 ◦C for 18–48 h. Following enrichment, subculture of Selenite F broth is made from the surface of the
broth onto either MacConkey agar, Bismuth Sulfite agar, Deoxycholate Citrate agar, Salmonella-Shigella
agar, Xylose-Lysine Deoxycholate agar or Hektoen Enteric agar, incubated at 37 ◦C for 24 h [45,46].

Some of the challenges in the application of culture-based approaches in isolating S. Typhi in
endemic countries include the time taken to obtain culture results which takes at least 5–7 days, low
sensitivity, lack of infrastructure and inadequate supply of trained manpower. In addition, another
important limitation of culture method is the requirement of the use of antisera for confirmation of
biochemical results indicating S. Typhi, which is resource-demanding for diagnostic laboratories in
this setting.

DNA Detection

Development of molecular tests for TF diagnosis requires genetic markers that are sensitive and
specific for detection of bacterial DNA in blood of febrile patients [47]. Nucleic acid amplification
tests, including conventional PCR, nested, multiplex and real-time PCR, have been developed for the
detection of S. Typhi in blood [16,23,25,48–51]. Diagnostic markers which can detect pathogens at
single-gene target resolution could lead to a simpler, cost-effective, and more functional DNA-based
detection method since less primers are needed for target detection. Application of molecular
techniques in clinical settings has technical limitations because of the few number of bacteria in
blood, approximately 0.5 CFU/mL [16,51]. Molecular tests usually include primers targeting fliC-d in
order to provide good specificity with little overlap with environmental isolates. Molecular detection of
S. Typhi DNA in human blood has also been optimized through removal of background human DNA
in order to improve the sensitivity of PCR for bacterial DNA and also reduce false positives. Enriching
the PCR protocol to select for target bacterial DNA has been demonstrated to improve sensitivity by
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at least 1000-fold, compared to conventional methods of DNA preparation [52]. In addition, some
researchers have further optimized molecular detection of S. Typhi DNA in human blood by inclusion
of an incubation step. This technique described as blood culture-PCR, which includes a brief incubation
step prior to PCR, has been developed in order to improve sensitivity and specificity of the assay.
Blood samples of 5 mL were collected from controlled human infection models and incubated in
ox-bile for 5 h, DNA extracted and amplified with primer targeted at S. Typhi fliC-d. This optimized
molecular approach enabled the detection and confirmation of typhoid infection cases that would
have been missed by blood culture [53]. Some of the limitations of molecular techniques include the
identification of non-febrile patients with DNA in blood or bacteria shedding in stools leading to false
positives. The main challenge with development of molecular assays is the applicability of these assays
in resource-poor settings.

7. Serologic Testing

7.1. Widal Test

The Widal test was developed by Georges Ferdinand Widal in 1896 and helps to detect the presence
of Salmonella antibodies in a patient’s serum. The Widal test measures agglutinating antibodies against
the O and H antigens of S. Typhi in sera of people with suspected TF. Patients infected with Salmonella
produce antibodies against the antigens of the organism. Antibodies in serum, produced in response
to exposure to Salmonella antigens, will agglutinate bacterial suspension which carries homologous
antigens. Antigens prepared from Salmonella are mixed with the patient’s serum to detect the presence
of the antibodies. Agglutination reaction suggests a positive result, while absence suggests a negative
result. In principle, to carry out the Widal test acute- and convalescent-phase serum samples should be
collected approximately 10 days apart; a positive result is determined by a 4-fold increase in antibody
titer [54]. However, antibody titers in infected patients often rise before the clinical onset of disease;
this makes it challenging to demonstrate a 4-fold increase. In addition, in cases where patients supply
paired sera, a decrease in titer is commonly observed when comparing the convalescent-phase serum to
acute-phase serum. This might be due to the fact that most patients visit clinics during the convalescent
phase, after initial pretreatments have failed.

The Widal test is simple and inexpensive to perform, and widely used in developing countries,
although it has limited diagnostic value. However, it suffers from a lack of standardization of reagents,
poor specificity and inappropriate results interpretation [55]. Also, in areas of endemicity there is often
a low background level of antibodies in the normal population, this makes it difficult to determine the
appropriate cut-off point for a positive result due to differences between areas and between times [22].
Proper interpretation of Widal test results requires that each country determines the appropriate titer
with which to diagnose typhoid.

7.2. Other Rapid Serologic Tests (Non-Widal)

Test characteristics of some commercially available RDTs are summarized in Table 1, but none
of the RDTs have high sensitivity and/or specificity needed. Lack of specificity and sensitivity
of Cromotest®—semiquantitative Slide agglutination, Tubex®, Cromotest®—single-tube Widal and
Typhidot® have been demonstrated elsewhere [21]. Other limitations of RDTs include limited
application, difficulty in interpretation and affordability [56]. In the Philippines, the cost of a single
test was as high as $51.68 for Tubex and $23.52 for Typhidot in some hospitals [29]. When compared
with the Widal test which may not cost more than $1.5 per sample, these RDTs are not cost-effective
and not affordable, especially in low-resource settings.

Tubex test, a colorimetric assay, might also pose difficulty in interpretation of hemolyzed
samples. In addition, there might be false positives in patients infected with S. enterica serotype
Enteritidis since Tubex detects immunoglobulin M directed towards S. Typhi O9 lipopolysaccharide
antigen in sera. Other serological assays for TF that have been commercially developed include the
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Countercurrent Immuno electrophoresis test, which is based on the appearance of the precipitation
band of antigen–antibody complexes that form on electrophoresis. The sensitivity is similar to that
of the Widal test and the procedure may be quicker, but bands are often difficult to see and it is
more expensive [57]. Additionally, several urine assays have been developed for TF testing although
none has proved effective in detecting TF, despite the advantages of carrying out urine testing in
resource-poor settings that are endemic for TF [58]. Generally, although RDTs have demonstrated some
improvement over the Widal test, they still lack the required sensitivity, specificity, cost-effectiveness
and consistency to allow their use as point-of-care diagnostics in endemic settings [59].

Available RDTs have variations in target antigens, for example, Typhidot detects specific IgM
and IgG antibodies against the 50 kDa outer membrane protein (OMP). There is a modification of
the Typhidot called Typhidot-M, detecting only IgM produced against the OMP, which is specific in
acute infection. Additionally, because it detects only recent infections, it narrows the possibility of
false-positive result due to previous infection. Multi-Test Dip-S-Ticks which detects five antibodies;
the SD Bioline Typhoid rapid test, which uses an immunochromatographic method to detect IgG
and IgM antibodies against an undefined Salmonella serovar typhi antigen; and a dipstick test
named Enterocheck-WB that detects anti-LPS IgM antibodies [22,29,33]. SD Bioline, therefore, offers
the advantages of detecting both chronic and acute infections, it is rapid (15–il min), and serum,
plasma or even whole blood can be analyzed [59]. However, since detecting single antibody with
single-antigen target have been demonstrated to increase specificity, multi-antibody approach may
decrease specificity.

The abundance of IgG in the sera of people in highly endemic settings could limit the use of
RDTs in these settings. For example, the use of Typhidot in highly endemic settings is limited by the
abundance of IgG which can persist for more than 2 years [60], hence detection of specific IgG cannot
differentiate between acute and convalescent cases. In order to mitigate the problem of sensitivity,
an IgG depletion step was applied which led to the development of Typhidot-M which removed
competitive binding and allowed accessibility of the antigen to the specific IgM [61].

7.3. Novel Biomarkers for Serodiagnosis

Serological markers currently available for typhoid diagnosis have a low degree of sensitivity and
specificity. This necessitates the discovery of new targets that could be employed in serological analysis
in the laboratory for accurate results. ELISAs have been developed and tested in detecting S. Typhi
in endemic countries. A recent study in Nigeria tested IgA, IgM and IgG ELISAs using S. Typhi
LPS and hemolysin E (HlyE) proteins on children with acute TF. The candidates for the ELISAs in
the Nigerian setting was based on a proteome microarray data previously carried out by the same
research group where they identified hemolysin E and LPS as putative biomarker targets. The receiver
operator characteristic area under the curve (ROC-AUC) values suggested that LPS-specific IgA and
IgA+M ELISA, in particular, was sensitive in diagnosing acute typhoid, and could discriminate well
between typhoid and healthy, and other febrile bacteremias commonly encountered in Nigeria [62,63].
In another study in Bangladesh, 12 proteins were expressed and purified to design ELISAs and tested
in a cohort of febrile patients. ELISAs were designed to detect IgM-specific antibodies to the 12 purified
protein antigens and S. Typhi Vi polysaccharide antigen. Further analysis of ROC-AUC values revealed
that the best three candidate antigens for serodiagnostics were encoded by STY4539 and STY1886 in
combination with the Vi polysaccharide [64].

In a recent study, 4445 S. Typhi antigens were used to probe sera of individuals challenged with
S. Typhi Quailes strains. Humoral immune responses were measured throughout duration of illness in
the human challenge models. The study identified putative serodiagnostic biomarkers which include
components of the bacterial cell surface (OmpA) and proteins targeted toward host cell attack (HlyE)
and invasion (SipC) [65]. Other S. Typhi proteome array studies have indicated HlyE as a useful
serodiagnostic marker based on IgA and IgG responses [62,65–67]. OmpA was also identified as
a useful biomarker from proteomic screening [67] but is limited by being cross-reactive, expressed by
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other Salmonella and might not be a useful discriminator of S. Typhi infection in resource-poor settings
where exposure to other Salmonella antigens might be frequent. S. Typhi proteome array screening has
also identified two new putative biomarkers; N-acetylmuramoyl-L-alanine amidase (t2002, STY0927),
which is involved in the catabolism of peptidoglycans and has previously been associated with invasion
and intracellular survival of Salmonella Typhimurium and an uncharacterized hypothetical protein,
t2295. Both putative protein targets gave IgM responses in controlled human infection models [64].
Inclusion of LPS into biomarker panels for S. Typhi screening seems to give better serodiagnostic
value than panels without LPS as suggested in a study among pediatric children in Nigeria and
in Nepal [62,65]. Antibody in Lymphocyte Supernatant assay (ALS) which has been used during
vaccination and in other infections such as cholera [68], tuberculosis [69] and influenza [70] has also
been applied to identify anti-S. Typhi antibodies in infected cohorts in Bangladesh [26]. More recently,
ALS is being applied to decipher new serodiagnostic markers through immunoprofiling studies to
identify immunodominant antigens that could be used in development of rapid serodiagnostics [67,71].
In all, recent S. Typhi proteome array studies suggest the need for inclusion of immunoglobulin targets
specific to some of the putative proteins that have yielded better diagnostic value for evaluation in
endemic settings. Some of the putative protein targets that should be considered for future diagnostic
development for RDTs based on data from endemic countries are an IgA to S. Typhi LPS and IgG to
HlyE for better diagnostic results in resource-limited settings [71]. These two targets have provided
promising evidence of their usefulness as novel biomarkers for serodiagnosis in resource-poor settings
endemic for S. Typhi infections.

8. Challenges in the Diagnosis of TF in Endemic Countries

TF is endemic in countries that are classified by the World Bank as Low-income or
Low–middle-income countries (LMIC), or commonly referred to as developing countries.
These countries are also plagued by other diseases such as malaria, tuberculosis and HIV,
which compete for attention from the countries’ health sectors, in addition to several neglected tropical
diseases. Poor laboratory infrastructure is a major impediment in TF-endemic countries. For example,
in TF-endemic countries in Africa, most laboratories do not have the facilities and laboratory support
to carry out blood culture, and the technical needs of bone marrow culture would make it very unlikely
to be successfully performed in most of these settings. This implies that laboratories in resource-poor
settings would usually rely on the poor diagnostic sensitivity of the Widal test for physicians to
make clinical decisions on TF. In addition, there is no active surveillance system in place to get the
actual estimates of disease burden, since most data available on TF are based on those that present
to the hospital for treatment which would be a fraction of the actual number of cases, since pregnant
women, neonates and those presenting to other departments in the hospital are not screened for
TF. Under-estimation of the true disease burden has led to poor focus on TF, and reduced resource
allocation in most affected countries [9]. Lack of rapid diagnostic tests that are affordable, very sensitive
and specific has also hampered progress in TF diagnosis and treatment. Specimen collection remains
an issue in TF diagnosis, as some of the laboratories do not have the manpower and infrastructure
for timely collection and processing of blood samples in suspected patients. Over-diagnosis of TF
in resource-limited settings owing to misuse of the Widal test has also resulted in the indiscriminate
prescription of antibiotics. Furthermore, inappropriate antibiotic use due to their availability over the
counter without isolation of the bacteria S. Typhi has contributed to the spread of Multidrug Resistant
(MDR) S. Typhi. The emergence and spread of MDR Salmonella strains and decreasing efficacy of
anti-typhoid drugs in endemic countries are huge sources of concern to public health stakeholders [72].
Chloramphenicol, Trimethoprim–sulphamethoxazole and ampicillin were the drugs of choice for many
years for the treatment of typhoid fever, but are no longer in use in many countries because of the
emergence of plasmid-mediated resistance about three decades ago [72,73]. To ensure better therapeutic
results, fluoroquinolones, such as ciprofloxacin and ofloxacin, are still drugs of choice in endemic
countries [57] instead of ceftriaxone due to their availability and affordability, even after the patent
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on these drugs expired in 2003 [73]. Unfortunately, strains of S. Typhi resistant to fluoroquinolones
have emerged, causing increased treatment failure, disease severity, and even death [74,75]. Attempts
to use vaccination in control of TF has also not been 100% effective. Vaccination targeting infants
may not be sufficient to control the disease, since the epidemiology of TF suggests that a significant
disease burden occurs in older populations beyond infancy and early childhood [76]. Three types of
Salmonella vaccines are currently licensed; the oral live attenuated S. Typhi Ty21a vaccine, injectable Vi
polysaccharide vaccine, and the recently approved Vi-tetanus toxoid (Vi-TT) conjugate vaccine [77,78].
However, these vaccines do not confer complete protection when administered, thus transmission and
outbreaks are not fully preventable.

9. Conclusions

Without improved diagnostics, accurate estimates of the burden of typhoid, and planning by
technical partners and governments concerned will remain challenging. There is a need for increased
funding for laboratory infrastructure in developing countries especially in Sub-Saharan Africa where
the true burden of typhoid is underappreciated, largely due to weak public health systems. While these
efforts are being put in place, public health authorities in endemic countries should establish a threshold
that would be used to determine positive Widal tests for proper interpretation of the most readily
available, easy-to-perform and relatively noninvasive and affordable diagnostic, Widal in resource-poor
settings. In addition, there should be a local surveillance data of enteric infections and other illnesses
that cross-react with Salmonellae antigens in order to guide clinicians in interpretation of Widal
test results. The approval by World Health Organization of the new Tybar-TCV® vaccine suitable
for children as young as 6 months, requiring a single dose with at least 55% protection, presents
an opportunity for countries affected in Asia and Africa to incorporate TF vaccination into their routine
childhood immunisation as an approach to reduce disease burden [79]. Lastly, there is an urgent need
for rapid and improved diagnostics for accurate surveillance and monitoring impact of control efforts.
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