Author/Year	Biological source	NP type, Size (nm)	Morpholog y	In vitro modelª	Dose	Expos ure time	Applied test	Major genotoxicity comments	Geno toxicity	Ref
Sarac et al. 2018	Streptomyces griseorubens AU2 (Bacterium)	Ag, 5-20 nm	Spherical	Salmonella typhimurium	50-250 μg/plate	24 h	Ames	No genotoxicity; strongest anti- mutagenic activity in <i>S.</i> <i>typhimurium</i> TA98 at 250 µg/plate.	No	[1]
Abdelsalam et al. 2018	Corallina elongate (Algae)	Ag, 7.5-25 nm	Spherical	Triticum aestivum L.	10-50 ppm	8, 16, and 24 h	Chromosomal aberration	AgNPs caused various types of chromosomal aberrations, such as incorrect orientation at metaphase, chromosomal breakage, metaphasic plate distortion, spindle dysfunction, and stickiness.	Yes	[2]
Remya et al. 2018	Turbinaria ornate (Algae)	Ag, 21-34 nm	Spherical	Y79	10-50 μg/mL	24 h	DNA fragmentation	AgNPs induced DNA fragmentation at all concentrations.	Yes	[3]
Raajshree et al. 2018	Turbinaria conoides (Algae)	ZnO, 70-120 nm	Spherical	DLA	50 µg/mL	24 h	DNA	ZnONPs induced DNA fragmentation.	Yes	[4]
Maity et al. 2018	Calotropis gigantean (Plant)	Ag, 3-15 nm	Mostly spherical	EAC	5.6 μg/mL	24 h	DNA fragmentation, cell cycle analysis and western blot analysis	AgNPs induced DNA fragmentation, cell cycle arrest at the G2/M phase, upregulation of Bax and caspase-3 and downregulation of Bcl-2.	Yes	[5]
Lv et al. 2018	Shewanella loihica PV-4 (Bacterium)	Cu, 6-20 nm	Spherical	Escherichia coli	100 μg/mL	12 h	DNA fragmentation	CuNPs induced DNA fragmentation.	Yes	[6]
Şahin et al. 2018	Punica granatum (Plant)	Pt, Average: 20.12 nm	Cubical and spherical	MCF-7	25 and 100 μg/mL	48 h	Comet	Slight DNA damage was observed at 25 μg/mL, while significant DNA damage was observed at 100 ug/mL.	Yes (dose depen dent)	[7]
Sulaiman et al. 2018	Albizia adianthifolia (Plant)	Iron oxide, 32-100 nm	Spherical	AMJ-13 and MCF-7	1.8 μg/mL for AMJ-13 and 7.7 μg/mL for MCF- 7	16 h	DNA fragmentation and comet	Genotoxicity and DNA damage were confirmed by both the DNA fragmentation assay and comet assay.	Yes	[8]

Moteriya et al. 2018	Caesalpinia pulcherrima (Plant)	Ag, Average: 8 nm	Spherical	Normal human lymphocyte s	2-200 µg	No data	Comet	No genotoxicity was observed at up to 50 μg, but fragmented DNA was found at 200 μg.	Yes (dose depen dent)	[9]
Koca et al. 2018	Mentha aquatic (Plant)	TiO2, Average: 69 nm	Spherical	pBR322 plasmid	62.5-500 μg/mL	24 h	DNA fragmentation	No genotoxicity was observed at up to 250 μg/mL, but DNA deformation was found at 500 μg/mL.	Yes (dose depen dent)	[10]
Daphedar et al. 2018	Albizia saman (Plant)	Zn, 10-85 nm	Spherical	Drimia indica	4–16 µg/mL	6-24 h	Mitotic index and chromosomal aberration	ZnNPs had a mitodispersive effect on cell division and induced chromosomal abnormalities in a dose- and duration-dependent manner.	Yes	[11]
Yekeen et al. 2017	Cocoa pod husk and cocoa bean (Plant)	Ag, 4-54.22 nm	Spherical	Allium cepa	0.01–100 μg/mL	24, 48 and 72 h	Mitotic index and chromosomal aberration	AgNPs had a mitodispersive effect on cell division and induced chromosomal abnormalities.	Yes	[12]
Syed et al. 2017	<i>Rhizophora</i> mangle (Plant)	Ag, 10-60 nm	Spherical	Staphylococc us aureus	10 mg/mL	30 min	DNA fragmentation	AgNPs created fragmented DNA.	Yes	[13]
Pandurangan et al. 2017	Perilla frutescens (Plant)	Ag, Average: ~23 nm	Spherical and hexagonal	HeLa	0.1 and 0.2 mg/mL	24 h	Fluorescent Microscopy with AO and EB staining probes	The appearance of a green nucleus in AgNPs-treated cancer cells confirmed the induction of apoptosis. Moreover, chromatin and cytoplasm were condensed in the treated cells.	Yes	[14]
Jha et al. 2017	<i>Citrus maxima</i> (Plant)	Ag, 2-50 nm	Spherical	B16-F10	10 µg/mL	48 h	DNA fragmentation	AgNPs caused clear fragmentation of genomic DNA.	Yes	[15]
Fierascu et al. 2017	Melissa officinalis L. (Plant)	Ag, Au and Ag-Au, Average: 13 nm for Au, 10 nm for Ag, and 100 nm for Ag-	Spherical, triangular, hexagonal, rhombic, etc.	Allium cepa	10-20%	48 h	Mitotic index and chromosomal aberration	AgNPs were found not active on nuclear DNA damage. The AuNPs appeared nucleoprotective, but were aggressive in generating clastogenic aberrations in <i>A. cepa</i> root meristematic cells.	No (Ag) Yes (Au)	[16]

		Au bimetallic								
Verma et al. 2017	S. aureus, B. thuringiensis (gram-positive bacteria), and E. coli, S. typhimurium (gram-negative bacteria)	Ag, 4.8-29.3 nm	Spherical	HCT116	50 and 250 μg/mL	24 and 48 h	Cell cycle analysis via propidium iodide staining of the nucleus	AgNPs biosynthesized from gram- negative strains showed higher cytotoxicity than AgNPs biosynthesized from gram-positive strains and induced greater oxidative stress, morphological changes, apoptosis, and cell cycle arrest in the G0/G1 phase.	Yes	[17]
Prasad et al. 2017	Asparagus racemosus (Plant)	CdS, 2-8 nm	Mostly spherical	Normal human lymphocyte s	0.01 μg/μL	1 h	Comet	No DNA damage was observed.	No	[18]
Syed et al. 2017	Turbinaria conoides (Algae)	TiO2, 60-100 nm	Irregular	Salmonella typhimurium viz., and normal human lymphocyte s	0.312–5 mg/mL	48 h for bacteri al sample s and 3-6 h for human sample s	Ames and chromosomal aberration	TiO2NPs caused no DNA damage against <i>S. typhimurium</i> viz. Biosynthesized NPs had a geno- protective nature and nonmutagenic effect on normal human lymphocytes.	No	[19]
Saha et al. 2017	Swertia chirata (Plant)	Ag, Average: 20 nm	Mostly spherical	Allium cepa	5–20 µg/mL	4 h	Chromosomal aberration	Various chromosomal aberrations were observed even at low concentrations of AgNPs.	Yes	[20]
Panda et al. 2017	Calotropis gigantea L. (Plant)	ZnO, Average: 48.6 nm	Spherical to hexagonal	Lathyrus sativus L.	0–100 mg/L	15 h	Comet	ZnONPs induced significant DNA damage in a dose-dependent manner.	Yes (dose depen dent)	[21]
Moteriya et al. 2017	Caesalpinia pulcherrima (Plant)	Ag, 2-22 nm Average: 12 nm	Spherical	Normal human	2–200 µg/mL	96 h	Comet and chromosomal aberration	DNA fragmentation and chromatid gaps in chromosomes were observed at 200 µg/mL, and these	Yes	[22]

				lymphocyte				effects were less prominent at	(dose	
				S				lower AgNP concentrations.	depen dent)	
Datkhile et al. 2017	Nothapodytes foetida (Plant)	Ag, No data	No data	K562	5-25 μg/mL	48 h	DNA fragmentation	AgNPs caused extensive double- strand breaks and DNA damage.	Yes	[23]
Guilger et al. 2017	Trichoderma harzianum (Fungus)	Ag, 20-30 nm	Spherical	Allium cepa for chromosom al aberration assay. 3T3, HeLa, HaCaT, V79 and A549 cells for comet assay.	[0.15–3.16] × 10 ¹² NPs/mL for the chromosomal aberration assay and [0.15-0.47] × 10 ¹² NPs/mL for the comet assay	24 h for the chrom osomal aberrat ion assay and 1 h for the comet assay	Comet and chromosomal aberration	AgNPs caused DNA damage in all of the mammalian cell lines tested as well as changes in the mitotic index and the alteration index due to chromosomal aberrations.	Yes	[24]
Barua et al. 2017	Thuja occidentalis (Plant)	Ag, 10-15 nm Average: 12.7 nm	Spherical	Super coiled DNA of pBR322 plasmid and calf thymus DNA	6.25–25 μg/mL	48 h	DNA fragmentation	No DNA strand scission was observed in the supercoiled DNA of pBR322 or calf thymus DNA.	No	[25]
Bhanumathi et al. 2017	Syzygium cumini (Plant)	Ag, 15-30 nm	Spherical	MCF-7 and MDA-MB- 231	10–100 μg/mL	24 and 48 h	Western blot	AgNPs activated p53 and Bax by downregulating Bcl-2 expression.	Yes	[26]
Das et al. 2017	Syzygium cumini (Plant)	Au, Average: 15 nm	Heterogene ously shape	Normal human lymphocyte s	No data	No data	Chromosomal aberration	No genotoxicity was found.	No	[27]
Baghbani- Arani et al. 2017	Artemisia tournefortiana Rchb (Plant)	Ag, Average: 22.89±14.82 nm	Spherical	HT29 and HEK293	61.38 μg/mL for HEK293 and 40.71 μg/mL for HT29	24 h	Quantitative real-time PCR	The Bax/Bcl-2 ratio was upregulated. In detail, an increase and decrease in the mRNA level of Bax and the Bcl-2 expression in cell lines were observed.	Yes	[28]

Banerjee et al. 2017	Mentha arvensis (Plant)	Ag, 3-9 nm	Spherical	MCF-7 and MDA-MB- 231	1.56–12.5 μg/mL	2-48 h	Western blot	Upregulation of PARP1, P53, P21, Bax and cleaved caspase-9 was observed in MCF-7 cells, whereas Bcl2 was downregulated. In MDA- MB-231 cells, the mutant P53 protein was downregulated, whereas PARP1, P53, P21, Bax, cleaved caspase-9, procaspase-3 and cleaved caspase-3 proteins were upregulated.	Yes	[29]
Khalid et al. 2017	a) Dictyosphaerium sp. strain HM1 (DHM1) b) Dictyosphaerium sp. strain HM2 (DHM2) c) Pectinodesmus sp. strain HM3 (PHM3) (Microalgae)	Ag, Average: a) 22.5 nm for DHM1- AgNPs; b) 47.5 nm for DHM2- AgNPs; c) 57.5 nm for PHM3- AgNPs	DHM1- AgNPs and DHM2- AgNPs: spherical; PHM3- AgNPs: ovoid shape	MCF-7 and HepG2	10–50 μg/mL	24 h	DNA fragmentation	AgNPs caused DNA cleavage and fragmentation.	Yes	[30]
Datkhile et al. 2017	Nothapodytes foetida (Plant)	Ag, 10-50 nm	Spherical	MCF-7, HeLa, MCF- 7, HCT15 and K562	1–20 μg/mL	48 h	DNA fragmentation	AgNPs caused DNA damage, upregulation of P53 and caspase-3 and downregulation of Bcl2 genes.	Yes	[31]
Chandrakasan et al. 2017	Xenorhabdus stockiae KT835471 (Bacterium)	Ag and Au, Average: 14±6 nm for AgNPs and 14±5 nm for AuNPs	AgNPs: spherical; AuNPs: spherical, ovoid and triangular	A549	29.4 μg/mL for AgNPs and 49.8 μg/mL for AuNPs	24 h	DNA fragmentation	AgNPs and AuNPs induced apoptosis through ROS-mediated DNA damage.	Yes	[32]
Das Nelaturi et al. 2017	Allamanda Cathartica L. (Plant)	Ag, Average: 35 nm	Spherical	РВМС	20–100 µg/mL	4 h	DNA fragmentation	AgNPs caused DNA cleavage and fragmentation.	Yes	[33]

Daphedar et al. 2017	Albizia saman (Jacq.) Merr. (Plant)	Ag, 55-83 nm	Spherical, triangular and irregular	Drimia indica (Roxb.) Jessop	25-100%	6-24 h	Chromosomal aberration	AgNPs created abnormalities in chromosomes such as a sticky metaphase, single bridge at anaphase, normal anaphase with micronuclei, anaphase with chromosome fragments, laggard anaphase, multipolarity at anaphase, disturbed metaphase, diagonal anaphase, and C- metaphase.	Yes	[34]
Şuţan et al. 2016	Asplenium scolopendrium L. (Plant)	Ag, No data	No data	Allium cepa L.	No data	6-24 h	Chromosomal aberration	The plant extract supplemented with AgNPs incurred a variable incidence of C-mitosis, anaphase bridges, and sticky chromosomes alongside vagrant chromosomes.	Yes	[35]
Mishra et al. 2016	Hibiscus sabdariffa (Plant)	Au, Average: 30 nm	Spherical	U87	1–2.5 ng/mL	24 h	DNA fragmentation	AuNPs caused DNA damage in a dose-dependent manner.	Yes (dose depen dent)	[36]
Qi et al. 2016	Magnetospirillu m gryphiswaldense MSR-1 (Bacterium)	Fe3O4, Average: 30 nm	Subspheroi dal	ARPE-19	10–200 μg/mL	24 h	Comet	Biogenic Fe3O4 caused less DNA damage than chemically synthesized Fe3O4. However, both were found to be genotoxic and caused DNA damage.	Yes	[37]
Perde- Schrepler et al. 2016	Cornus mas (Plant)	Au, 2-24 nm Average: 12.079 ± 3.588 nm	Round and oval	HaCaT	6–15 µg/mL	24-48 h	Comet	AuNPs showed low toxicity, caused minimal ROS production and did not induce additional DNA lesions or an increase in inflammatory cytokine production.	No	[38]
Suganya et al. 2016	<i>Mimosa pudica</i> (Plant)	Au, Average: 12.5 nm	Spherical	MDA-MB- 231 and MCF-7	4 μg/mL for MDA-MB-231 and 6 μg/mL for MCF-7	48 h	Comet	AuNPs caused significant damage to the DNA and lengthened the tails of condensed DNA compared to that observed in the control in both cell lines.	Yes	[39]

Suganya et al. 2016	Musa paradisiaca (Plant)	Au, <50 nm	Spherical	MCF-7 and MDA-MB-	2 μg/mL for MDA-MB-231	48 h	Comet	Increased length of the comet tail (DNA damage) induced by AuNPs	Yes	[40]
				231	and 8 µg/mL for MCF-7			in both cell lines.		
Panda et al. 2016	Mangifera indica L. (Plant)	Ag, 14-44.6 nm	Spherical	Lathyrus sativus L.	1–100 mg/L	3 h	Chromosomal aberration (CA), micronucleus formation and comet	AgNPs fabricated under four different reaction conditions caused DNA damage and were genotoxic. Moreover, using polyvinyl polypyrrolidone in the green synthesis of AgNPs resulted in an attenuation of their genotoxicity	Yes	[41]
Farah et al. 2016	Adenium obesum (Plant)	Ag, 10-30 nm	Mostly spherical	MCF-7	50–150 μg/mL	24 h	Comet	AgNPs were found to be toxic at low concentrations (IC ₅₀ =73 μg/mL), with enhanced intracellular levels of ROS resulting in DNA damage, apoptosis and autophagy.	Yes	[42]
Elshawy et al. 2016	Penicillium aurantiogriseum (Fungus)	Ag, Average: 12.7 nm	Spherical	MCF-7	0.44–14 µg/mL	24 h	DNA fragmentation	AgNPs resulted in DNA strand breakage.	Yes	[43]
Jang et al. 2016	Lonicera hypoglauca (Plant)	Ag, 4.99- 25.83 nm	Spherical	MCF-7	500 μg/mL	48 h	Western blot	AgNPs upregulated the p53 tumor suppressor gene and the subsequent increases in the expression of pro-apoptotic Bax, caspase-3 and caspase-9. In addition, AgNPs downregulated the mRNA levels of anti-apoptotic Bcl-2 and curtailed the JAK/STAT signaling in MCF-7 cancer cells.	Yes	[44]
Prabhu et al. 2016	Setaria verticillata L (Plant)	Ag, Average: 12±4 nm	Spherical	MCF-7 and A549	32.5-1000 μg/mL	24 h	DNA fragmentation	AgNPs resulted in double-strand breaks and the formation of DNA ladders in agarose gel, which are characteristic of apoptosis.	Yes	[45]

Prasannaraj et al. 2016	a) Plumbago zeylanica b) Semecarpus anacardium c)Terminalia	Ag, a) 80– 98, b) 60–95 c) 34–70 nm	Spherical and cuboid	HepG2 and PC3	1-100 μg/mL	48 h	DNA fragmentation	AgNPs resulted in DNA ladder formation and DNA damage.	Yes	[46]
	arjuna (Plant)									
Kayalvizhi et al. 2016	Curculigo orchioides (Plant)	Ag, 15-18 nm	Spherical	MDA-MB- 231	10–100 μg/mL	48 h	DNA fragmentation	AgNPs resulted in DNA strand break.	Yes	[47]
Selvi et al. 2016	Padina tetrastromatica (Algae)	Ag, 40-50 nm	Predomina ntly round	MCF-7	50-200 μg/mL	24 h	DNA fragmentation	AgNPs did not cause any DNA fragmentation at 50 μg/mL and induced very little fragmentation at 100 μg/mL, and moderate apoptotic fragmentation at 200 μg/mL.	Yes (dose depen dent)	[48]
Chandramoha n et al. 2016	Azadirachta indica (Plant)	Ag, 30-50 nm	Mostly spherical	Peripheral erythrocytes of goldfish (<i>Carassius</i> <i>auratus</i>)	0-12 ppm	72 and 96 h	Comet and micronucleus assay	AgNPs caused no significant damage at doses below 12 ppm. However, after 72 and 96 h, AgNPs at 12 ppm resulted in nuclear abnormalities and damage to the nuclear membrane.	Yes (dose depen dent)	[49]
Kajani et al. 2016	<i>Taxus baccata</i> (Plant)	Ag, 75.1 and 91.2 nm	Spherical	Caov-4	2.5 and 5 μg/mL	24 and 48 h	DNA fragmentation	AgNPs caused slight DNA fragmentation after 24 h at 2.5 μg/mL but obvious laddering patterns and double- strand breaks after 48 h at 5 μg/mL.	Yes (dose depen dent)	[50]
Kalangi et al. 2016	Anethum graveolens (Plant)	Ag, Average: 35 nm	Mostly spherical	Leishmania donovani	50 µM	48 h	DNA fragmentation	AgNPs created no DNA breaks.	No	[51]
He et al. 2016	Dimocarpus longan Lour. (Plant)	Ag, 9-32 nm	Spherical	PC-3	10 µg/mL	24 h	Western blot	AgNPs inhibited prostatic cancer PC-3 cells and induced a	Yes	[52]

Bhakya et al.	Helicteres isora	Ag, 16-95	Mostly	KB	70 µg/mL	48 h	Comet	decrease in stat 3, bcl-2, and survivin expression and an increase in caspase-3 expression. AgNPs caused DNA damage as	Yes	[53]
2016	(Plant)	nm Average: 25.55 nm	spherical and oval					fragmented DNA tails, olive tails, and tail length alterations.		
Iram et al. 2016	Fusarium oxysporum (Fungus)	Tb2O3, Average: 10 nm	Mostly spherical	MG-63 and Saos-2	0.102 µg/mL	24 h	Nuclear morphology analysis by DAPI staining	Tb2O3NPs caused nuclear fragmentation associated with DNA damage, including typical tubular staining patterns and condensed nuclei.	Yes	[54]
Mata et al. 2016	Abutilon indicum (Plant)	Au, 1-20 nm	Spherical	HT-29	210 µg/mL	24 and 48 h	TUNEL, western blot, and cell cycle analysis	AuNPs caused negligible necrosis. In addition, AuNPs caused cell cycle arrest at the G1/S transition phase. Furthermore, the expression levels of active caspases (3, 8, 9) increased with an increasing AuNP concentration.	Yes	[55]
Azmath et al. 2016	Colletotrichum sp. (Fungus)	Ag, 20-50 nm	Spherical, nearly spherical, triangular and hexagonal	Escherichia coli	25-100 μg/mL	30 min	DNA fragmentation	AgNPs caused DNA deformation and damage.	Yes	[56]
Ashe et al. 2016	Cucurbita maxima (Plant)	Ag, Average: 76.10 ± 0.8 nm	Spherical	Saos-2	0.05-0.25 mM	12 h	Comet	A combination of AgNPs with glucose-derived glycation products caused DNA damage and cell death via apoptotic pathways, while glycated products alone induced cell death by necrosis.	Yes	[57]
Balashanmuga m et al. 2016	Cassia Roxburghii (Plant)	Au, 25-35 nm	Spherical	HepG2	30 µg/mL	24 h	DNA fragmentation	AuNPs created fragmented DNA.	Yes	[58]

Balaji et al. 2016	Trichoderma viride (Fungus)	Ag, 5-40 nm	No data	MCF-7	40 and 130 μg/mL	24 h	DNA fragmentation and western blot	AgNPs created fragmented DNA. Moreover, western blot analysis showed inhibition of Bcl-2 and activation of Bax.	Yes	[59]
Qayyum et al. 2016	Caryota urens, Pongamia glabra, Hamelia patens, Thevetia peruviana, Calendula officinalis, Tectona grandis, Ficus petiolaris, Ficus busking, Juniper communis, Bauhinia purpurea (Plant)	Ag, 1-60 nm	Spherical, quasi- spherical, triangular and pentagonal	pBR322 plasmid	50 and 250 μg/mL	12 h	DNA fragmentation	AgNPs led to mild or little plasmid damage at 50 μg/mL, while severe plasmid DNA damage was found at 250 μg/mL.	Yes (dose depen dent)	[60]
Thiruvengada m et al. 2015	Bacillus marisflavi (Bacterium)	Ag, 2-11 nm Average: 8 nm	Mostly spherical	Turnip (<i>Brassica</i> <i>rapa</i> ssp. rapa)	1-10 mg/L	12 h	DNA fragmentation, comet, and TUNEL	AgNPs caused extensive DNA damage and altered the expression of genes involved in a variety of metabolic pathways as well as the inhibition of chlorophyll and anthocyanin biosynthesis and an overproduction of ROS.	Yes	[61]
Parandhaman et al. 2015	Rhizopus oryzae (Fungus)	Si-Ag nanocompo site, Average: 20±4.5 nm	Mostly spherical	Genomic and plasmid DNA of Escherichia coli and Pseudomonas aeruginosa	0.25-2 mg/mL	5 h	DNA fragmentation	Exposure to Si-Ag nanocomposites resulted in a decrease in genomic and plasmid DNA band intensity in the treated cells in comparison to the control cells, indicating DNA damage, in a dose-dependent manner.	Yes	[62]
Jeyaraj et al. 2015	Podophyllum hexandrum (Plant)	Ag and Au, Ag: 12-40 nm;	No data	MCF-7	100 and 200 μg/mL for Ag and	24 h	DNA	AgNPs and AuNPs caused the upregulation of Bax, BCl2, caspase- 6, caspase-9, PARP, and p53; the	Yes	[63]

		Au: 5-35 nm			200 and 400		fragmentation	downregulation of Bcl-2 and DNA		
					μg/mL for Au		and western blot	fragmentation.		
Mata et al. 2015	Abutilon indicum (Plant)	Ag, 5-25 nm	Spherical	COLO 205	4-12 μg/mL	24 h	TUNEL and cell cycle assay	AgNPs induced no significant necrosis up to 8 μg/mL but caused 4% necrosis at 12 μg/mL. In addition, AgNPs arrested the cell cycle at the G1/S transition stage.	Yes (dose depen dent)	[64]
Zahir et al. 2015	Euphorbia prostrate (Plant)	Ag and TiO ₂ Average: 12.82± 2.50 nm for AgNPs and 83.22± 1.50 nm for TiO ₂ NPs	AgNPs: Spherical; TiO2NPs: circular and irregularly shaped	Leishmania donovani	12.5-50 μg/mL	24 h	DNA fragmentation and TUNEL	DNA breakage was not extensive after AgNP exposure. However, high-molecular-weight DNA fragments of ~700 bp were observed, indicating that the mode of cell death may be largely due to necrosis.	Yes	[65]
Manna et al. 2015	<i>Lentinus</i> squarrosulus (Mont.) Singer (Fungus)	Ag, Average: 2.78 ± 1.47 nm	Mostly spherical	Escherichia coli	40 µg/mL	8 h	Flow cytometry	AgNPs caused an increase in side scattering intensity, supporting the internalization of AgNPs inside bacterial cells.	Yes	[66]
Subbaiya et al. 2015	Nocardia mediterranei- 5016 (Fungus)	Ag, Average: 49.98 nm	Rod- shaped	NCI-H460	2-20 μg	24 and 48 h	Comet	AgNPs caused DNA damage in a time-dependent manner.	Yes (time depen dent)	[67]
Gandhiraj et al. 2015	Momordica charantia (Plant)	Ag, Average: 96.3 nm	Spherical	MCF-7	12-100 µg/mL	24 h	DNA fragmentation	AgNPs caused DNA damage, resulting in fragmented DNA.	Yes	[68]
Dwivedi et al. 2015	Pseudomonas aeruginosa strain JS- 11(Bacterium)	Ag, 5–23 nm	Mostly spherical	MCF-7	0.5-10 μg/mL	24 h	Cell cycle analysis and real-time PCR	The genes BCl2, cyclin D1, DNAJA1, E2F transcription factor 1, GPX1 and HSPA4 were upregulated. Some genes from the DNA damage and repair pathway, including XRCC2 and DDB1, were	Yes	[69]

Baskar et al. 2015	<i>Vitex negundo</i> L. (Plant)	Ag, 10-20 nm	Mostly spherical	Brassica rapa ssp. pekinensis	100-500 μg/mL	10 days	DNA fragmentation	negatively downregulated. Moreover, cell cycle analysis revealed an increase in the subG1 peak with a concomitant reduction in the G1 phase. Concentration-dependent DNA damage was observed in AgNP- treated plants. AgNPs at 500	Yes (dose depen	[70]
								μg/mL induced ROS generation and DNA damage.	dent)	
Chung et al. 2015	Eclipta prostrate (Plant)	ZnO, Average: 29±1.3 nm	Triangular, radial, hexagonal, rod- shaped, and rectangular	HepG2	1-500 μg/mL	24 h	DNA fragmentation	ZnONPs caused DNA damage as fragmented DNA.	Yes	[71]
Baharara et al. 2015	Achillea biebersteinii (Plant)	Ag, 10-40 nm	Spherical and pentagonal	MCF-7	1–100 µg/mL	24 and 48 h	Gene expression by RT-PCR	AgNPs downregulated the anti- apoptotic genes of the Bcl-2 family and unregulated the pro-apoptotic members, such as Bax.	Yes	[72]
Ramar et al. 2015	Solanum trilobatum (Plant)	Ag, 12.50- 41.90 nm	Spherical	MCF-7	5-50 μg/mL	24 h	Western blot	AgNPs downregulated Bcl-2 but upregulated the activation of caspase-3 and caspase-9.	Yes	[73]
Gurunathan et al. 2015	Bacillus tequilensis (Bacterium)	Ag, Average: 20 nm	Spherical	MDA-MB- 231	0-25 μg/mL	24 h	TUNEL and western blot	AgNPs induced DNA damage and cellular apoptosis via activation of p53, p-Erk1/2, and caspase-3 signaling and downregulation of Bcl-2.	Yes	[74]
Gurunathan et al. 2015	Artemisia princeps (Plant)	Ag, Average: 20 nm	Spherical	Helicobacter pylori, Helicobacter felis	1 μg/mL	12 h	DNA fragmentation	AgNPs induced DNA fragmentation.	Yes	[75]

Ismail et al.	Pleurotus	Ag, 13.1-	Spherical	MCF-7 and	No data	48 h	DNA	AgNPs induced DNA	Yes	[76]
2015	ostreatus (Fungus)	24.1 nm; Average: 17.5 nm	-	HepG2			fragmentation	fragmentation and apoptosis in HepG2 and MCF-7 cells via suppression of Bcl-2 gene expression; upregulation of BAX; downregulation of Bcl2; and simulation of caspase, P53 and cytochrome c gene expression.		
Namvar et al. 2015	Sargassum muticum (Algae)	ZnO, 10-15 nm	Hexagonal	WEHI-3	20-100 μg/mL	24-72 h	Western blot	ZnONPs caused a decrease in Bcl-2 expression and an increase in the level of Bax, suggesting disruption of mitochondrial membranes.	Yes	[77]
Parveen et al. 2015	Cassia auriculata (Plant)	Ag and Au, Average: 21 nm for Au and 20 nm for Ag	Spherical	A549, LNCap- FGC, and MDA-MB	10-30 μg/mL	24 h	DNA fragmentation	Ag and AuNPs caused DNA cleavage and exhibited genotoxicity in all cell lines.	Yes	[78]
Raman et al. 2015	Rosa indica (Plant)	Ag, 23.52- 60.83 nm	Spherical	HCT-15	30 µg/mL	24 h	Western blot	AgNPs downregulated Bcl-2 and upregulated the activation of caspase-3 and caspase-9.	Yes	[79]
Krishnaraj et al. 2015	Malva crispa (Plant)	Ag, 5-50 nm	Spherical	Bacillus cereus, Staphylococ cus aureus, Listeria monocytogen es, Salmonella typhi, and Salmonella enterica	1-3 mM	30 min-24 h	DNA fragmentation	AgNPs did not show any genotoxic effects against any of the tested bacterial strains.	No	[80]
Hullikere et al. 2015	Tragia involucrate (Plant)	Ag, Within 100 nm	Rod- shaped	MOLT-4	10-100 µg/mL	24-72 h	DNA diffusion assay	DNA diffusion slightly increased, indicating genotoxicity.	Yes	[81]

Govindaraju et al. 2015	Sargassum vulgare (Algae)	Ag, Average: 10 nm	Spherical	HL60	2.84 µg/mL	48 h	DNA fragmentation	AgNPs induced DNA fragmentation.	Yes	[82]
Ortega et al. 2015	Cryptococcus laurentii (BNM 0525) (Fungus)	Ag, Average: 35±10 nm	No data	MCF7, T47D, and MCF10-A	5 μg/mL	12 h	Western blot	Caspase-9 was overexpressed, and caspase-3/7 activity was increased in MCF7 and T47D; in MCF10-A cells, caspase and Bcl-2 were maintained at constant levels.	Yes	[83]
Raman et al. 2015	Pleurotus djamor var. (Plant)	Ag, 5-50 nm	Spherical	PC3	10 and 40 μg/mL	24 h	Comet	Cells treated with 40 µg/mL AgNPs showed a higher tail DNA than cells treated with 10 µg/mL AgNPs and control cells.	Yes (dose depen dent)	[84]
Vijaya et al. 2014	Ocimum sanctum (Plant)	Ag, Average: >100 nm	Spherical	Normal human lymphocyte s	50-200 μg/mL	48 h	Chromosomal aberration	AgNPs reduced the chromosomal damages due to cyclophosphamide and showed an antigenotoxic activity.	No	[85]
Rajasekharred dy et al. 2014	Sterculia foetida L. (Plant)	Ag, 6.9±0.2 nm	Spherical	HeLa	16 µg/mL	24 h	DNA fragmentation	AgNPs created extensive double- strand breaks.	Yes	[86]
Krishnasamy et al. 2014	Indigofera aspalathoides (Plant)	Ag, No data	No data	Нер3В	194.65 μg/mL	24 and 48 h	DNA fragmentation	AgNPs induced nucleosomal DNA fragmentation.	Yes	[87]
Prasad et al. 2014	Terminalia arjuna (Plant)	Se, 10-80 nm	Spherical	Normal human lymphocyte s	0.01 μg/μL	1 h	Comet	SeNPs prevented the manifestation of genotoxic effects in lymphocytes treated with arsenite.	No	[88]
Sarkar et al. 2014	Alternaria alternate (Fungus)	ZnO, 45-150 nm Average: 75±5 nm	Spherical, triangular and hexagonal	Normal human lymphocyte s	125-1000 μg/mL	3 h	Comet	A significant increase in DNA fragmentation was induced at 1000 µg/mL.	Yes (dose depen dent)	[89]
Kumar et al. 2014	Paederia foetida (Plant)	Ag, 2-20 nm Average: 8.9±3.6 nm	Spherical	Calf thymus and Escherichia coli	0-50 µg/mL	1 h for calf thymu s and	DNA fragmentation	No genotoxicity was found.	No	[90]

						24 h				
						for E.				
						coli				
El-Kassas et al.	Corallina	Au,	Spherical	MCF-7	0.75-6 μg/mL	48 h	DNA	No DNA damage was found up to	Yes	[91]
2014	officinalis	Average:					fragmentation	1.5 μg/mL; however, significant	(dose	
	(Algae)	14.57±1 nm						DNA damage was observed at 3	depen	
								and 6 µg/mL.	dent)	
Chowdhury et	Macrophomina	Ag, 5-40	Spherical	pZPY112	0.51-5.1 μg	2 h	DNA	Genotoxicity was manifested as the	Yes	[92]
al. 2014	phaseolina (Eurogus)	nm; most		plasmid			fragmentation	degradation of plasmids, even at		
	(i uligus)	nm						low concentrations.		
Krishnaraj et	Acalypha indica	Ag and Au,	Spherical	MDA and	1-100 µg/mL	48 h	DNA	Both AgNPs and AuNPs caused	Yes	[93]
al. 2014	Linn (Plant)	20-30 nm		MB-231			fragmentation	DNA damage and fragmentation.		
Lima et al.	Fusarium	Ag,	Spherical	3T3, normal	0.5-10 μg/mL	1 h for	Comet and	AgNPs at 5 and 10 μg/mL had a	Yes	[94]
2014	oxysporum	Average:		human		3T3	chromosomal	genotoxic effect; however, at 0.5-1	(dose	
	(Fungus)	40.3±3.5 nm		lymphocyte		cells	aberration	μg/mL, no genotoxicity was	depen	
				s and Allium		and		observed.	dent)	
				сера		human				
						lymph				
						ocytes				
						and 24				
						h for				
						the				
						Allium				
						сера				
Charles (1)	A	A . 10 F0			1.50	assay		DNA (manufation in and 1	Maa	[05]
Singh et al.	Anabaena	Ag, 10-50	Spherical	COLO 205	1-50 μg/mL	24 n	DNA fra arra arra ta ti arr	DNA fragmentation increased	Yes	[95]
2014	(Pastorium)	11111					fragmentation	A aND concentration	(dose	
	(Dacterium)							Agini concentration.	dopt)	
Varup at al	Argomona	A 11	Sphorical	MCE 7	100 µg/mI	48 h		AuNPs caused extensive double	Vos	[96]
2014	maricana (Plant)	Average	Spherical	WICI-7	100 µg/IIIL	40 11	fragmentation	stranded DNA breaks	165	[90]
2014	mexiculu (1 lailt)	26+5 nm					magnientation	Stranucu DINA DICANS.		

Subbaiya et al.	Streptomyces	Ag,	Spherical	NCI-H460	9.48 and 12.52	24 and	Comet	AgNPs caused DNA breakage and	Yes	[97]
2014	sp-1392 Bacterium)	Average: 200 nm			µg/mL	48 h		damage by increasing the amount of tail DNA, tail length, and olive tail moment.		
Ashokkumar et al. 2014	<i>Cajanus cajan</i> (Plant)	Au, 9-41 nm	Spherical	HepG2	246 µg/mL	48 h	Comet	AuNPs caused DNA damage by increasing the amount of tail DNA, tail length, tail moment, and olive tail moment in HepG2 cells.	Yes	[98]
Jeyaraj et al. 2014	Podophyllum hexandrum L. (Plant)	Au, Average: 15 nm	Spherical and triangular	HeLa	20 µg/mL	24 h	Comet, western blot, and DNA fragmentation	AuNPs increased the amount of tail DNA, tail length, tail moment and olive tail moment in HeLa cells. A DNA ladder was formed in AuNP-treated cells. The level of Bcl-2 expression was reduced, and the level of Bax was increased.	Yes	[99]
Prasad et al. 2013	Lemon plant	Se, 60-80 nm	Spherical	Normal human lymphocyte s	0.01 μg/μL	1 min	Comet	SeNPs caused less cell death of lymphocytes and prevented DNA damage when cells were exposed to UVB radiation.	No	[100]
Rosarin et al. 2013	Phyllanthus emblica (Plant)	Ag, Average: 188 nm	Spherical and cubic	Hep2	20 µg/mL	24 h	DNA fragmentation	AgNPs caused DNA fragmentation.	Yes	[101]
Neveen et al. 2013	Aspergillus terreus (Fungus)	Ag, 20-140 nm	Spherical	Aspergillus fumigatus	15 μg/mL	36 h	Comet	AgNPs caused DNA damage and an increase in DNA tail length.	Yes	[102]
Mohanty et al. 2013	a) Alstonia macrophylla (Plant) b) Trichoderma sp. (Fungus)	Ag, Average: a) 50 nm; b) 100 nm	Spherical	RAW264.7 macrophage s	5 and 10 ppm	12 h for the comet assay and 6 h for the micron ucleus	Comet and micronucleus assay	No DNA damage was observed at 5 ppm; however, significant micronuclei formation and DNA damage were observed at 10 ppm for both phytosynthesized and mycosynthesized AgNPs.	Yes (dose depen dent)	[103]

Jeyaraj et al. 2013	Sesbania grandiflora L. (Plant)	Ag, Average: 22 nm	Spherical	MCF-7	0-50 μg/mL	24 and 48 h	Comet	AgNPs caused DNA breakage in the form of tail formation.	Yes	[104]
Jeyaraj et al. 2013	Podophyllum hexandrum L. (Plant)	Ag, 12-40 nm	Mostly spherical	HeLa	20 μg/mL	24 h	Comet, western blot, and DNA fragmentation	AgNPs increased the amount of tail DNA, tail length, tail moment and olive tail moment in HeLa cells. A DNA ladder was formed in AgNP- treated cells. The level of Bcl-2 expression was reduced, and the level of Bax was increased.	Yes	[105]
Prabhu et al. 2013	<i>Vitex negundo</i> L. (Plant)	Ag, 5-47 nm	Spherical	HCT15	20 and 100 μg/mL	48 h	Comet	AgNPs caused long tail formation and DNA damage.	Yes	[106]
Geetha et al. 2013	Couroupita guianensis (Plant)	Au, 7-48 nm	Spherical, triangular, tetragonal and pentagonal with irregular contours	HL-60	60-180 μg/mL for the comet assay and 0-150 μg/mL for the DNA fragmentation assay	48 h	Comet and DNA fragmentation	AuNPs caused long tail formation (DNA damage) and genotoxicity.	Yes	[107]
Govender et al. 2013	Albizia adianthifolia (Plant)	Ag, 4-35 nm	Mostly spherical	A549	43 μg/mL	6 h	Comet and western blot	Fragmentation of DNA was significantly induced by AgNPs. In addition, AgNPs increased the expression of p53, Bax and PARP-1.	Yes	[108]
Chunyan et al. 2013	a) Mint; b) Coffee; c) Ginger (Plant)	Ag, a) 5-10 nm; b) 30-40 nm; c) 5-10 nm and 30-40 nm	Mostly spherical	HeLa and HepG2	20 μg/mL	24 h	Cell cycle analysis	AgNPs caused DNA damage followed by cell cycle arrest in the G2/M stage and eventually cell death through apoptosis. This DNA damage was more significant for AgNPs synthesized by a mint- mediated method.	Yes	[109]
Gurunathan et al. 2013	Ganoderma neo- japonicum (Fungus)	Ag, 10-15 nm	Spherical	MDA-MB- 231	6 μg/mL	24 h	DNA fragmentation and TUNEL	AgNPs induced cell death through ROS generation, caspase-3 activation, and DNA fragmentation.	Yes	[110]

Gurunathan et al. 2013	Bacillus funiculus	Ag, Average: 20	Mostly spherical	MDA-MB- 231	8.7 μg/mL	24 h	DNA fragmentation	AgNPs induced DNA fragmentation.	Yes	[111]
Wu et al. 2013	(Bacterium) Polyporus rhinoceros (Fungus)	nm Se, Average: 50 nm	Spherical	A549	10 and 20 μM	24 h	TUNEL-DAPI costaining assay and cell cycle analysis	SeNPs induced G2/M phase arrest. In addition, DNA fragmentation and nuclear condensation were detected	Yes	[112]
Gurunathan et al. 2013	Escherichia fergusoni (Bacterium)	Ag, 10-80 nm	Spherical	MCF-7	17.4 μg/mL	24 h	DNA fragmentation	AgNPs induced DNA fragmentation.	Yes	[113]
Tamboli et al. 2013	Exiguobacterium sp. KNU1 (Bacterium)	Ag, 5-50 nm	Spherical	Salmonella typhimurium , Pseudomonas aeruginosa, Escherichia coli and Staphylococc us aureus	25 μg/mL	4 h	DNA fragmentation	AgNPs revealed the fragmentation of DNA in the <i>E. coli</i> cells; however, no significant DNA damage was found in other bacteria.	Yes	[114]
Das et al. 2013	Phytolacca decandra, Gelsemium sempervirens, Hydrastis canadensis and Thuja occidentalis (Plant)	Ag, Average: approximat ely 100 nm	Mostly spherical	A375	80 and 160 μg/mL	24 h	Comet, cell cycle assay and DNA fragmentation	A DNA fragmentation study showed smear DNA in agarose gel, indicating DNA damage, while the comet assay did not show any fragmented DNA. AgNPs inhibited DNA synthesis and cell proliferation through G2/M cell cycle arrest.		[115]
Bhattacharyya et al. 2012	Phytolacca decandra (Plant)	Ag, Average: 91 nm	Spherical	A549	80 and 100 μg/mL	24 h	Comet and DNA fragmentation	AgNPs caused DNA fragmentation as well as an increase in DNA tail formation, indicating genotoxicity.	Yes	[116]
Mishra et al. 2012	Azadirachta indica (Neem) (Plant)	Ag, 2–18 nm	Spherical	SiHa	4, 8, 30, and 60 μg/mL	48 h	DNA fragmentation	AgNPs caused extensive double- strand breaks, thereby yielding a ladder-like appearance on agarose gel.	Yes	[117]

Bendale et al.	Dolichos	Pt, Average:	Cubic	A375	100 µg/mL	24, 48,	DNA	PtNPs induced DNA damage in a	Yes	[118]
2012	biflorous,	137.5 nm				and 72	fragmentation	time-dependent manner.	(time	
	Ocimum					h	-	-	depen	
	sanctum,								dent)	
	Euphorbia									
	neriifolia,									
	Sesbania									
	grandiflora,									
	Piper betle,									
	Calospropris									
	procera,									
	Asteracantha									
	longifolia (Plant)									
Sarkar et al.	Alternaria	Ag, 20-45	Spherical	Normal	50-400 µg/mL	3 h	Comet	AgNPs caused significant DNA tail	Yes	[119]
2011	alternate	nm	-	human				formation at 300 µg/mL; however,	(dose	
	(Fungus)	Average:		lymphocyte				slight DNA damage was observed	depen	
	-	28±4 nm		S				at lower concentrations.	dent)	
Satyavani et al.	Citrullus	Ag,	Spherical	HEp-2	500 nM	6 h	DNA	AgNPs caused extensive double-	Yes	[120]
2011	colocynthis	Average: 31	-	-			fragmentation	strand breaks.		
	(Plant)	nm					-			
Panda et al.	Pandanus	Ag, 24-55	Mostly	Allium cepa	5-80 µg/mL	12, 24	Comet and	AgNPs induced DNA damage in a	Yes	[121]
2011	odorifer (Plant)	nm	spherical	L.		and 48	micronucleus	dose-dependent manner. DNA	(dose	
		Average:				h	assay	damage was significantly enhanced	depen	
		37±11 nm						at doses ≥20 µg/mL.	dent)	
Singh et al.	Actinobacter	TiO ₂ and	Spherical	A431	10-3-10-12	3 h	Comet	ZnONPs at concentrations up to	Yes	[122]
2010	spp.	ZnO,			М			10⁻⁵M caused DNA damage as a	(dose	
	(Bacterium)	Average:						significant increase in the	depen	
		5.5 nm for						percentage of tail DNA. TiO2 at	dent)	
		TiO ₂ and 7						concentrations up to 10 ⁻³ M did not		
		nm for ZnO						cause a significant increase in		
								percentage tail DNA.		

^aCancer and normal cell Lines: Y79 (human retinoblastoma), DLA (Dalton's lymphoma), EAC (Ehrlich's ascites carcinoma), MDA-MB-231 (human breast adenocarcinoma), MCF-7 (human breast adenocarcinoma), A549 (human lung adenocarcinoma), A375 (human malignant melanoma), AMJ-13 (human invasive ductal carcinoma), HeLa (human cervical cancer), B16-F10 (mouse melanoma), K562 (human leukemic), HT29 (human colorectal adenocarcinoma), HepG2 (human hepatocellular carcinoma), HCT-15 (human Dukes' type C, colorectal adenocarcinoma), U87 (human glioblastoma), PC-3 (human prostate carcinoma), Caov-4 (human

ovarian adenocarcinoma), KB (human carcinoma), MG-63 (human osteosarcoma), Saos-2 (human osteosarcoma), HT-29 (human colorectal adenocarcinoma), COLO 205 (human Dukes' type D, colorectal adenocarcinoma), NCI-H460 (human nonsmall cell lung carcinoma), WEHI-3 (mouse leukemia), LNCap-FGC (human prostate carcinoma), MDA-MB (human adenocarcinoma mammary gland), MOLT-4 (human acute lymphoblastic leukemia), T47D (human ductal carcinoma), MCF10-A (human breast epithelial cell), Hep3B (human hepatocellular carcinoma), Hep2 (human carcinoma), HCT116 (human colorectal carcinoma), HL-60 (acute promyelocytic leukemia), SiHa (human cervical cancer cell), A431 (human epithelial carcinoma), RAW264.7 (mouse macrophage), ARPE-19 (human retinal pigment epithelium cell), HaCaT (human keratinocyte), normal human lymphocyte, PBMC (peripheral blood mononuclear cell), HEK293 (human embryonic kidney cell), 3T3 (mouse embryo), and V79 (hamster lung fibroblast).

Author/Year	Biological source	NP type, Size (nm)	Morphology	In vivo model	Dose	Exposure time	Genotoxicity assay	Major genotoxicity comments	Genotoxicity (Yes or No)	Ref
Adiguzel et al. 2018	<i>Streptomyces</i> sp. AOA21 (Bacterium)	Ag, 35-60 nm	Spherical	Saccharomyces cerevisiae	12.5- 100 μg/mL	3 h	Comet	AgNPs at 12.5 and 25 µg/mL led to insignificant DNA damage. However, AgNPs at 50 and 100 µg/mL resulted in significant DNA damage.	Yes (dose dependent)	[123]
Pandiarajan et al. 2018	Morus alba (Plant)	Ag, No data	No data	Larva of mulberry silkworm Bombyx mori	1-100 ppm	No data	DNA fragmentation, and Bm-actin amplification	A high mortality rate at 100 ppm and a moderate mortality rate at 10 ppm were observed during larval-pupal transition and pupal-adult transition. Significant DNA fragmentation was observed at 100 ppm. In addition, Bm-actin marker gene amplification revealed the null amplification at 10 and 100 ppm, respectively.	Yes (dose dependent)	[124]

Gavade et al. 2017	Ziziphus jujuba (Plant)	CuxO/ZnO, Ag@CuxO/ZnO and Au@CuxO/ZnO (x= I and II), 15- 40 nm	Hexagonal and irregular	<i>Cyprinus carpio</i> blood	No data	No data	Comet	NPs significantly induced genotoxicity even at low concentrations.	Yes	[125]
Ishwarya et al. 2017	Cissus quadrangularis (Plant)	Ag, No data	No data	Larvae of Poecilia reticulata fishes and adults of the microcrustacean <i>Ceriodaphnia</i> cornuta	10, 20 and 40 μg/mL	24 h	DNA fragmentation	AgNPs at 40 μg/mL led to remarkable DNA damage in C. cornuta, whereas in P. reticulata, 20 μg/mL AgNPs led to DNA damage.	Yes	[126]
Krishnaraj et al. 2016	<i>Malva crispa</i> Linn. (Plant)	Ag, 5-50 nm	Spherical	Zebrafish (Danio rerio)	23.7- 331.8 μg/L	96 h	Micronuclei and nuclear abnormality test	AgNPs showed micronuclei and nuclear abnormalities such as blebbed nuclei, lobed nuclei, and notched nuclei in peripheral blood cells, indicating genotoxicity.	Yes	[127]
Beheshti et al. 2013	<i>Bacillus</i> sp. MSh-1 (Bacterium)	Se, 80-220 nm	Spherical	Leishmania major promastigotes	1-150 μg/mL	24 h	DNA fragmentation	SeNPs induced DNA fragmentation in a dose-dependent manner.	Yes (dose dependent)	[128]
Antony et al. 2013	Ficus religiosa (Plant)	Ag, 5-35 nm	Spherical	Dalton's ascites lymphoma (DAL) in a mouse model	25-100 μg/mL	11 days	DNA fragmentation	AgNPs caused DNA damage in DAL cells by initiating apoptosis.	Yes	[129]

Sukirtha et al. 2011	Areca catechu Linn. (Plant)	Ag, Average: 80 nm	Spherical	Mice bearing DAL tumor cells	600- 1000 μg	10 days	DNA fragmentation	AgNPs created fragmented DNA in DAL-induced tumor cells.	Yes	[130]
-------------------------	--------------------------------	-----------------------	-----------	---------------------------------	--------------------	---------	----------------------	---	-----	-------

References

- 1. Sarac, N.; Baygar, T.; Ugur, A. In vitro mutagenic and anti-mutagenic properties of green synthesised silver nanoparticles. *IET Nanobiotechnol.* **2018**, *12*, 230–233. doi:10.1049/iet-nbt.2017.0016.
- Abdelsalam, N.R.; Abdel-Megeed, A.; Ali, H.M.; Salem, M.Z.M.; Al-Hayali, M.F.A.; Elshikh, M.S. Genotoxicity effects of silver nanoparticles on wheat (*Triticum aestivum* L.) root tip cells. *Ecotoxicol. Environ. Saf.* 2018, 155, 76–85. doi:10.1016/j.ecoenv.2018.02.069.
- Remya, R.R.; Rajasree, S.R.R.; Suman, T.Y.; Aranganathan, L.; Gayathri, S.; Gobalakrishnan, M.; Karthih, M.G. Laminarin based AgNPs using brown seaweed *Turbinaria ornata* and its induction of apoptosis in human retinoblastoma Y79 cancer cell lines. *Mater. Res. Express* 2018, 5. doi:10.1088/2053[°]C1591/aab2d8.
- 4. Raajshree, K.R.; Durairaj, B. In vitro anticancer potential of biosynthesized zinc oxide nanoparticles from the seaweed *Turbinaria conoides*. *Asian J. Pharm. Clin. Res.* **2018**, *11*, 127–130. doi:10.22159/ajpcr.2018.v11i5.22224.
- Maity, P.; Bepari, M.; Pradhan, A.; Baral, R.; Roy, S.; Maiti Choudhury, S. Synthesis and characterization of biogenic metal nanoparticles and its cytotoxicity and anti-neoplasticity through the induction of oxidative stress, mitochondrial dysfunction and apoptosis. *Colloids Surf. B Biointerfaces* 2018, 161, 111–120. doi:10.1016/j.colsurfb.2017.10.040.
- Lv, Q.; Zhang, B.; Xing, X.; Zhao, Y.; Cai, R.; Wang, W.; Gu, Q. Biosynthesis of copper nanoparticles using *Shewanella loihica* PV-4 with antibacterial activity: Novel approach and mechanisms investigation. *J. Hazard. Mater.* 2018, 347, 141–149. doi:10.1016/j.jhazmat.2017.12.070.
- Şahin, B.; Aygün, A.; Gündüz, H.; Şahin, K.; Demir, E.; Akocak, S.; Şen, F. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. *Colloids Surf. B Biointerfaces* 2018, *163*, 119–124. doi:10.1016/j.colsurfb.2017.12.042.
- 8. Sulaiman, G.M.; Tawfeeq, A.T.; Naji, A.S. Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. *Artif. Cells Nanomed. Biotechnol.* **2018**, *46*, 1215–1229. doi:10.1080/21691401.2017.1366335.
- 9. Moteriya, P.; Chanda, S. Biosynthesis of silver nanoparticles formation from *Caesalpinia pulcherrima* stem metabolites and their broad spectrum biological activities. *J. Genet. Eng. Biotechnol.* **2018**, *16*, 105–113. doi:10.1016/j.jgeb.2017.12.003.
- 10. Koca, F.D.; Duman, F. Genotoxic and cytotoxic activity of green synthesized TiO₂ nanoparticles. *Appl. Nanosci.* **2018**. doi:10.1007/s13204-018-0712-1.
- Daphedar, A.; Taranath, T.C. Green synthesis of zinc nanoparticles using leaf extract of *Albizia saman* (Jacq.) Merr. and their effect on root meristems of *Drimia indica* (Roxb.) Jessop. *Caryologia* 2018, *71*, 93–102. doi:10.1080/00087114.2018.1437980.
- Yekeen, T.A.; Azeez, M.A.; Lateef, A.; Asafa, T.B.; Oladipo, I.C.; Badmus, J.A.; Adejumo, S.A.; Ajibola, A.A. Cytogenotoxicity potentials of cocoa pod and bean-mediated green synthesized silver nanoparticles on *Allium cepa* cells. *Caryologia* 2017, *70*, 366–377. doi:10.1080/00087114.2017.1370260.
- Syed, B.; Bisht, N.; Bhat, P.S.; Nikhil Karthik, R.; Prasad, A.; Dhananjaya, B.L.; Satish, S.; Prasad, H.; Nagendra Prasad, N.N. Phytogenic synthesis of nanoparticles from *Rhizophora mangle* and their bactericidal potential with DNA damage activity. *Nano Struct. Nano Objects* 2017, 10, 112–115. doi:10.1016/j.nanoso.2017.03.011.
- Pandurangan, M.; Nagajyothi, P.C.; Kim, D.H.; Jung, M.J.; Shim, J.; Eom, I.Y. Green synthesis and characterization of biologically active silver nanoparticles using *Perilla frutescens* leaf extract. *J. Clust. Sci.* 2017, 28, 81–90. doi:10.1007/s10876-016-1046-3.
- Jha, D.; Thiruveedula, P.K.; Pathak, R.; Kumar, B.; Gautam, H.K.; Agnihotri, S.; Sharma, A.K.; Kumar, P. Multifunctional biosynthesized silver nanoparticles exhibiting excellent antimicrobial potential against multi-drug resistant microbes along with remarkable anticancerous properties. *Mater. Sci. Eng. C* 2017, *80*, 659–669. doi:10.1016/j.msec.2017.07.011.
- Fierascu, I.; Georgiev, M.I.; Ortan, A.; Fierascu, R.C.; Avramescu, S.M.; Ionescu, D.; Sutan, A.; Brinzan, A.; Ditu, L.M. Phyto-mediated metallic nano-architectures via *Melissa officinalis* L.: Synthesis, characterization and biological properties. *Sci. Rep.* 2017, *7*, 12428.

- Verma, S.K.; Jha, E.; Sahoo, B.; Panda, P.K.; Thirumurugan, A.; Parashar, S.K.S.; Suar, M. Mechanistic insight into the rapid one-step facile biofabrication of antibacterial silver nanoparticles from bacterial release and their biogenicity and concentration-dependent in vitro cytotoxicity to colon cells. *RSC Adv.* 2017, 7, 40034–40045. doi:10.1039/c7ra05943d.
- Prasad, K.S.; Amin, T.; Katuva, S.; Kumari, M.; Selvaraj, K. Synthesis of water soluble CdS nanoparticles and study of their DNA damage activity. *Arab. J. Chem.* 2017, 10, S3929–S3935. doi:10.1016/j.arabjc.2014.05.033.
- 19. Syed Ali, M.; Anuradha, V.; Sripriya, V.; Yogananth, N.; Sheeba, H. Evaluation of anti-genotoxicity of THE Tio2 nanoparticle biosynthesized from *Turbinaria conoides*. *Int. J. Curr. Res.* **2017**, *9*, 59085–59091.
- 20. Saha, N.; Dutta Gupta, S. Low-dose toxicity of biogenic silver nanoparticles fabricated by Swertia chirata on root tips and flower buds of Allium cepa. *J. Hazard. Mater.* **2017**, *330*, 18–28. doi:10.1016/j.jhazmat.2017.01.021.
- Panda, K.K.; Golari, D.; Venugopal, A.; Achary, V.M.M.; Phaomei, G.; Parinandi, N.L.; Sahu, H.K.; Panda, B.B. Green Synthesized Zinc Oxide (ZnO) Nanoparticles Induce Oxidative Stress and DNA Damage in *Lathyrus sativus* L. Root Bioassay System. *Antioxidants* 2017, *6*, 35. doi:10.3390/antiox6020035.
- 22. Moteriya, P.; Chanda, S. Synthesis and characterization of silver nanoparticles using *Caesalpinia pulcherrima* flower extract and assessment of their in vitro antimicrobial, antioxidant, cytotoxic, and genotoxic activities. *Artif. Cells Nanomed. Biotechnol.* **2017**, *45*, 1556–1567. doi:10.1080/21691401.2016.1261871.
- 23. Datkhile, K.D.; Durgawale, P.P.; Patil, M.N. Biogenic silver nanoparticles are equally cytotoxic as chemically synthesized silver nanoparticles. *Biomed. Pharmacol. J.* 2017, *10*, 337–344. doi:10.13005/bpj/1114.
- 24. Guilger, M.; Pasquoto-Stigliani, T.; Bilesky-Jose, N.; Grillo, R.; Abhilash, P.C.; Fraceto, L.F.; Lima, R. Biogenic silver nanoparticles based on *Trichoderma harzianum*: Synthesis, characterization, toxicity evaluation and biological activity. *Sci. Rep.* **2017**, *7*, 44421. doi:10.1038/srep44421.
- 25. Barua, S.; Banerjee, P.P.; Sadhu, A.; Sengupta, A.; Chatterjee, S.; Sarkar, S.; Barman, S.; Chattopadhyay, A.; Battacharya, S.; Mondal, N.C.; et al. Silver nanoparticles as antibacterial and anticancer materials against human breast, cervical and oral cancer cells. *J. Nanosci. Nanotechnol*. **2017**, *17*, 968–976.
- 26. Bhanumathi, R.; Vimala, K.; Shanthi, K.; Thangaraj, R.; Kannan, S. Bioformulation of silver nanoparticles as berberine carrier cum anticancer agent against breast cancer. *New J. Chem.* **2017**, *41*, 14466–14477. doi:10.1039/C7NJ02531A.
- 27. Das, P.; Chetia, B.; Prasanth, R.; Madhavan, J.; Singaravelu, G.; Benelli, G.; Murugan, K. Green nanosynthesis and functionalization of gold nanoparticles as PTP 1B inhibitors. *J. Clust. Sci.* **2017**, *28*, 2269–2277. doi:10.1007/s10876-017-1224-y.
- 28. Baghbani-Arani, F.; Movagharnia, R.; Sharifian, A.; Salehi, S.; Shandiz, S.A.S. Photo-catalytic, anti-bacterial, and anti-cancer properties of phyto-mediated synthesis of silver nanoparticles from *Artemisia tournefortiana* Rchb extract. *J. Photochem. Photobiol. B Biol.* **2017**, *173*, 640–649. doi:10.1016/j.jphotobiol.2017.07.003.
- 29. Banerjee, P.P.; Bandyopadhyay, A.; Harsha, S.N.; Policegoudra, R.S.; Bhattacharya, S.; Karak, N.; Chattopadhyay, A. *Mentha arvensis* (Linn.)-mediated green silver nanoparticles trigger caspase 9-dependent cell death in MCF7 and MDA-MB-231 cells. *Breast Cancer Targets Ther.* **2017**, *9*, 265–278. doi:10.2147/BCTT.S130952.
- Khalid, M.; Khalid, N.; Ahmed, I.; Hanif, R.; Ismail, M.; Janjua, H.A. Comparative studies of three novel freshwater microalgae strains for synthesis of silver nanoparticles: Insights of characterization, antibacterial, cytotoxicity and antiviral activities. *J. Appl. Phycol.* 2017, 29, 1851–1863. doi:10.1007/s10811-017-1071-0.
- 31. Datkhile, K.D.; Durgavale, P.P.; Patil, M.N. Biogenic silver nanoparticles from *Nothapodytes foetida* kills human cancer cells In vitro through inhibition of cell proliferation and induction of apoptosis. *J. Bionanoscience* **2017**, *11*, 416–427. doi:10.1166/jbns.2017.1465.
- Chandrakasan, G.; Seetharaman, P.; Gnanasekar, S.; Kadarkarai, M.; Sivaperumal, S. Xenorhabdus stockiae KT835471-mediated feasible biosynthesis of metal nanoparticles for their antibacterial and cytotoxic activities. *Artif. Cells Nanomed. Biotechnol.* 2017, 45, 1675–1684. doi:10.1080/21691401.2017.1282495.
- 33. Das Nelaturi, P.; Sriramaia, N.H.; Nagaraj, S.; Kotakadi, V.S.; Moideen Kutty, A.V.V.; Pamidimukkala, K. An in-vitro cytotoxic and genotoxic properties of *Allamanda cathartica* L. latex green NPs on human peripheral blood mononuclear cells. *Nano Biomed. Eng.* 2017, 9, 314–323.

- 34. Daphedar, A.; Taranath, T.C. Biosynthesis of silver nanoparticles by leaf extract of *Albizia saman* (Jacq.) Merr. and their cytotoxic effect on mitotic chromosomes of *Drimia indica* (Roxb.) Jessop. *Environ. Sci. Pollut. Res. Int.* **2017**, *24*, 25861–25869. doi:10.1007/s11356-017-9899-z.
- 35. Şuţan, N.A.; Fierăscu, I.; Fierăscu, R.C.; Manolescu, D.T.; Soare, L.C. Comparative analytical characterization and in vitro cytogenotoxic activity evaluation of *Asplenium scolopendrium* L. leaves and rhizome extracts prior to and after Ag nanoparticles phytosynthesis. *Ind. Crop. Prod.* **2016**, *83*, 379–386. doi:10.1016/j.indcrop.2016.01.011.
- 36. Mishra, P.; Ray, S.; Sinha, S.; Das, B.; Khan, M.I.; Behera, S.K.; Yun, S.I.; Tripathy, S.K.; Mishra, A. Facile bio-synthesis of gold nanoparticles by using extract of *Hibiscus sabdariffa* and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. *Biochem. Eng. J.* 2016, 105, 264–272. doi:10.1016/j.bej.2015.09.021.
- 37. Qi, L.; Lv, X.; Zhang, T.; Jia, P.; Yan, R.; Li, S.; Zou, R.; Xue, Y.; Dai, L. Cytotoxicity and genotoxicity of bacterial magnetosomes against human retinal pigment epithelium cells. *Sci. Rep.* **2016**, *6*, 26961. doi:10.1038/srep26961.
- 38. Perde-Schrepler, M.; David, L.; Olenic, L.; Potara, M.; Fischer-Fodor, E.; Virag, P.; Imre-Lucaci, F.; Brie, I.; Florea, A. Gold nanoparticles synthesized with a polyphenols-rich extract from cornelian cherry (*Cornus mas*) fruits: Effects on human skin cells. *J. Nanomater.* **2016**, *2016*, 6986370. doi:10.1155/2016/6986370.
- KS, U.S.; Govindaraju, K.; Kumar, G.; Prabhu, D.; Arulvasu, C.; Karthick, V.; Changmai, N. Antiproliferative effect of biogenic gold nanoparticles against breast cancer cell lines (MDA-MB-231 & amp; MCF-7). *Appl. Surf. Sci.* 2016, 371, 415–424. doi:10.1016/j.apsusc.2016.03.004.
- 40. Suganya, K.S.U.; Govindaraju, K.; Kumar, V.G.; Karthick, V.; Parthasarathy, K. Pectin mediated gold nanoparticles induces apoptosis in mammary adenocarcinoma cell lines. *Int. J. Biol. Macromol.* **2016**, *93*, 1030–1040. doi:10.1016/j.ijbiomac.2016.08.086.
- Panda, K.K.; Achary, V.M.; Phaomie, G.; Sahu, H.K.; Parinandi, N.L.; Panda, B.B. Polyvinyl polypyrrolidone attenuates genotoxicity of silver nanoparticles synthesized via green route, tested in *Lathyrus sativus* L. root bioassay. *Mutat. Res. Genet. Toxicol. Environ. Mutagenesis* 2016, 806, 11–23. doi:10.1016/j.mrgentox.2016.05.006.
- 42. Farah, M.A.; Ali, M.A.; Chen, S.M.; Li, Y.; Al-Hemaid, F.M.; Abou-Tarboush, F.M.; Al-Anazi, K.M.; Lee, J. Silver nanoparticles synthesized from *Adenium obesum* leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. *Colloids Surf. B Biointerfaces* 2016, 141, 158–169. doi:10.1016/j.colsurfb.2016.01.027.
- 43. Elshawy, O.E.; Helmy, E.A.; Rashed, L.A. Preparation, characterization and in vitro evaluation of the antitumor activity of the biologically synthesized silver nanoparticles. *Adv. Nanoparticles* **2016**, *5*, 149. doi:10.4236/anp.2016.52017.
- 44. Jang, S.J.; Yang, I.J.; Tettey, C.O.; Kim, K.M.; Shin, H.M. In-vitro anticancer activity of green synthesized silver nanoparticles on MCF-7 human breast cancer cells. *Mater. Sci. Eng. C* 2016, *68*, 430–435. doi:10.1016/j.msec.2016.03.101.
- 45. Prabhu, A.; Shankar, K.; Muthukrishnan, P.; Kathiresan, A.; Prakash, P. An investigation on the cytotoxicity and apoptotic effect of biologically synthesized silver nanoparticles on MCF-7 and A549 cell lines using weed *Setaria verticillata* L. *Indo Am. J. Pharm. Sci.* **2016**, *3*, 37–43.
- 46. Prasannaraj, G.; Sahi, S.V.; Ravikumar, S.; Venkatachalam, P. Enhanced cytotoxicity of biomolecules loaded metallic silver nanoparticles against human liver (HepG2) and prostate (PC3) cancer cell lines. *J. Nanosci. Nanotechnol.* **2016**, *16*, 4948–4959. doi:10.1166/jnn.2016.12336.
- Kayalvizhi, T.; Ravikumar, S.; Venkatachalam, P. Green synthesis of metallic silver nanoparticles using *Curculigo orchioides* rhizome extracts and evaluation of its antibacterial, larvicidal, and anticancer activity. *J. Environ. Eng.* 2016, 142, C4016002. doi:10.1061/(asce)ee.1943[°]C7870.0001098.
- 48. Selvi, B.C.G.; Madhavan, J.; Amutha, S. Cytotoxic effect of silver nanoparticles synthesized from *Padina tetrastromatica* on breast cancer cell line. *Adv. Nat. Sci. Nanosci. Nanotechnol.* **2016**, *7*, 035015.
- Chandramohan, B.; Murugan, K.; Panneerselvam, C.; Madhiyazhagan, P.; Chandirasekar, R.; Dinesh, D.; Kumar, P.M.; Kovendan, K.; Suresh, U.; Subramaniam, J.; et al. Characterization and mosquitocidal potential of neem cake-synthesized silver nanoparticles: Genotoxicity and impact on predation efficiency of mosquito natural enemies. *Parasitol. Res.* 2016, *115*, 1015–1025. doi:10.1007/s00436-015-4829-9.

- 50. Kajani, A.A.; Zarkesh-Esfahani, S.H.; Bordbar, A.K.; Khosropour, A.R.; Razmjou, A.; Kardi, M. Anticancer effects of silver nanoparticles encapsulated by *Taxus baccata* extracts. *J. Mol. Liq.* **2016**, *223*, 549–556. doi:10.1016/j.molliq.2016.08.064.
- Kalangi, S.K.; Dayakar, A.; Gangappa, D.; Sathyavathi, R.; Maurya, R.S.; Narayana Rao, D. Biocompatible silver nanoparticles reduced from *Anethum graveolens* leaf extract augments the antileishmanial efficacy of miltefosine. *Exp. Parasitol.* 2016, *170*, 184–192. doi:10.1016/j.exppara.2016.09.002.
- 52. He, Y.; Du, Z.; Ma, S.; Cheng, S.; Jiang, S.; Liu, Y.; Li, D.; Huang, H.; Zhang, K.; Zheng, X. Biosynthesis, antibacterial activity and anticancer effects against prostate cancer (PC-3) cells of silver nanoparticles using *Dimocarpus longan* lour. peel extract. *Nanoscale Res. Lett.* **2016**, *11*, 300. doi:10.1186/s11671-016-1511-9.
- 53. Bhakya, S.; Muthukrishnan, S.; Sukumaran, M.; Grijalva, M.; Cumbal, L.; Franklin Benjamin, J.H.; Senthil Kumar, T.; Rao, M.V. Antimicrobial, antioxidant and anticancer activity of biogenic silver nanoparticles An experimental report. *RSC Adv.* **2016**, *6*, 81436–81446. doi:10.1039/C6RA17569D.
- 54. Iram, S.; Khan, S.; Ansary, A.A.; Arshad, M.; Siddiqui, S.; Ahmad, E.; Khan, R.H.; Khan, M.S. Biogenic terbium oxide nanoparticles as the vanguard against osteosarcoma. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.* **2016**, *168*, 123–131. doi:10.1016/j.saa.2016.05.053.
- 55. Mata, R.; Nakkala, J.R.; Sadras, S.R. Polyphenol stabilized colloidal gold nanoparticles from *Abutilon indicum* leaf extract induce apoptosis in HT-29 colon cancer cells. *Colloids Surf. B Biointerfaces* **2016**, *143*, 499–510. doi:10.1016/j.colsurfb.2016.03.069.
- 56. Azmath, P.; Baker, S.; Rakshith, D.; Satish, S. Mycosynthesis of silver nanoparticles bearing antibacterial activity. *Saudi Pharm. J.* **2016**, *24*, 140–146. doi:10.1016/j.jsps.2015.01.008.
- 57. Ashe, S.; Nayak, D.; Kumari, M.; Nayak, B. Ameliorating effects of green synthesized silver nanoparticles on glycated end product induced reactive oxygen species production and cellular toxicity in osteogenic Saos-2 cells. *ACS Appl. Mater. Interfaces* **2016**, *8*, 30005–30016. doi:10.1021/acsami.6b10639.
- 58. Balashanmugam, P.; Durai, P.; Balakumaran, M.D.; Kalaichelvan, P.T. Phytosynthesized gold nanoparticles from *C. roxburghii* DC. leaf and their toxic effects on normal and cancer cell lines. *J. Photochem. Photobiol. Biol.* **2016**, *165*, 163–173. doi:10.1016/j.jphotobiol.2016.10.013.
- 59. Balaji, K.; Gothandam, K.M. Cytotoxic effect on cancerous cell lines by biologically synthesized silver nanoparticles. *Braz. Arch. Biol. Technol.* **2016**, *59*. doi:10.1590/1678-4324-2016150529.
- 60. Qayyum, S.; Khan, A.U. Biofabrication of broad range antibacterial and antibiofilm silver nanoparticles. *IET Nanobiotechnol.* **2016**, *10*, 349–357. doi:10.1049/iet-nbt.2015.0091.
- 61. Thiruvengadam, M.; Gurunathan, S.; Chung, I.M. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (*Brassica rapa* ssp. *rapa* L.). *Protoplasma* **2015**, 252, 1031–1046. doi:10.1007/s00709-014-0738-5.
- 62. Parandhaman, T.; Das, A.; Ramalingam, B.; Samanta, D.; Sastry, T.P.; Mandal, A.B.; Das, S.K. Antimicrobial behavior of biosynthesized silica-silver nanocomposite for water disinfection: A mechanistic perspective. *J. Hazard. Mater.* **2015**, *290*, 117–126. doi:10.1016/j.jhazmat.2015.02.061.
- 63. Jeyaraj, M.; Renganathan, A.; Sathishkumar, G.; Ganapathi, A.; Premkumar, K. Biogenic metal nanoformulations induce Bax/Bcl2 and caspase mediated mitochondrial dysfunction in human breast cancer cells (MCF 7). *RSC Adv.* **2015**, *5*, 2159–2166. doi:10.1039/c4ra11686k.
- 64. Mata, R.; Nakkala, J.R.; Sadras, S.R. Biogenic silver nanoparticles from *Abutilon indicum*: Their antioxidant, antibacterial and cytotoxic effects in vitro. *Colloids Surf. B Biointerfaces* **2015**, *128*, 276–286. doi:10.1016/j.colsurfb.2015.01.052.
- 65. Zahir, A.A.; Chauhan, I.S.; Bagavan, A.; Kamaraj, C.; Elango, G.; Shankar, J.; Arjaria, N.; Roopan, S.M.; Rahuman, A.A.; Singh, N. Green synthesis of silver and titanium dioxide nanoparticles using *Euphorbia prostrata* extract shows shift from apoptosis to G0/G1 arrest followed by necrotic cell death in *Leishmania donovani*. *Antimicrob*. *Agents Chemother*. **2015**, *59*, 4782–4799. doi:10.1128/AAC.00098-15.
- Manna, D.K.; Mandal, A.K.; Sen, I.K.; Maji, P.K.; Chakraborti, S.; Chakraborty, R.; Islam, S.S. Antibacterial and DNA degradation potential of silver nanoparticles synthesized via green route. *Int. J. Biol. Macromol.* 2015, *80*, 455–459. doi:10.1016/j.ijbiomac.2015.07.028.
- 67. Subbaiya, R.; Masilamani Selvam, M.; Sundar, K. Biological synthesis of silver nanorods from *Nocardia mediterranei*-5016 and its antitumor activity against non-small cell lung carcinoma cell line. *Int. J. PharmTech Res.* **2015**, *8*, 298–307.

- 68. Gandhiraj, V.; Sathish Kumar, K.; Madhusudhanan, J.; Sandhya, J. Antitumor activity of biosynthesized silver nano particles from leaves of *Momordica charantia* against MCF-7 cell line. *Int. J. ChemTech Res.* **2015**, *8*, 351–362.
- 69. Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A.; Ahmad, J.; Siddiqui, M.A.; Musarrat, J. Rhamnolipids functionalized AgNPs-induced oxidative stress and modulation of toxicity pathway genes in cultured MCF-7 cells. *Colloids Surf. B Biointerfaces* **2015**, *132*, 290–298. doi:10.1016/j.colsurfb.2015.05.034.
- 70. Baskar, V.; Venkatesh, J.; Park, S.W. Impact of biologically synthesized silver nanoparticles on the growth and physiological responses in *Brassica rapa* ssp. pekinensis. *Environ. Sci. Pollut. Res.* **2015**, *22*, 17672–17682. doi:10.1007/s11356-015-4864-1.
- 71. Chung, I.M.; Rahuman, A.A.; Marimuthu, S.; Kirthi, A.V.; Anbarasan, K.; Rajakumar, G. An investigation of the cytotoxicity and caspase-mediated apoptotic effect of green synthesized zinc oxide nanoparticles using *Eclipta prostrata* on human liver carcinoma cells. *Nanomaterials* 2015, *5*, 1317–1330. doi:10.3390/nano5031317.
- 72. Baharara, J.; Namvar, F.; Ramezani, T.; Mousavi, M.; Mohamad, R. Silver nanoparticles biosynthesized using *Achillea biebersteinii* flower extract: Apoptosis induction in mcf-7 cells via caspase activation and regulation of Bax and Bcl-2 gene expression. *Molecules* **2015**, *20*, 2693–2706.
- 73. Ramar, M.; Manikandan, B.; Marimuthu, P.N.; Raman, T.; Mahalingam, A.; Subramanian, P.; Karthick, S.; Munusamy, A. Synthesis of silver nanoparticles using *Solanum trilobatum* fruits extract and its antibacterial, cytotoxic activity against human breast cancer cell line MCF 7. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.* 2015, 140, 223–228. doi:10.1016/j.saa.2014.12.060.
- 74. Gurunathan, S.; Park, J.H.; Han, J.W.; Kim, J.H. Comparative assessment of the apoptotic potential of silver nanoparticles synthesized by *Bacillus tequilensis* and *Calocybe indica* in MDA-MB-231 human breast cancer cells: Targeting p53 for anticancer therapy. *Int. J. Nanomed.* 2015, *10*, 4203–4223. doi:10.2147/IJN.S83953.
- 75. Gurunathan, S.; Jeong, J.K.; Han, J.W.; Zhang, X.F.; Park, J.H.; Kim, J.H. Multidimensional effects of biologically synthesized silver nanoparticles in *Helicobacter pylori*, *Helicobacter felis*, and human lung (L132) and lung carcinoma A549 cells. *Nanoscale Res. Lett.* **2015**, *10*, 1–17. doi:10.1186/s11671-015-0747-0.
- 76. Ismail, A.F.M.; Ahmed, M.M.; Salem, A.A.M. Biosynthesis of silver nanoparticles using mushroom extracts: Induction of apoptosis in HepG2 and MCF-7 Cells via caspases stimulation and regulation of BAX and Bcl-2 gene expressions. *J. Pharm. Biomed. Sci.* **2015**, *5*, 1–9.
- 77. Namvar, F.; Rahman, H.S.; Mohamad, R.; Azizi, S.; Tahir, P.M.; Chartrand, M.S.; Yeap, S.K. Cytotoxic effects of biosynthesized zinc oxide nanoparticles on murine cell lines. *Evid. Based Complementary Altern. Med.* 2015, 2015, 593014.
- 78. Parveen, A.; Rao, S. Cytotoxicity and genotoxicity of biosynthesized gold and silver nanoparticles on human cancer cell lines. *J. Clust. Sci.* 2015, *26*, 775–788. doi:10.1007/s10876-014-0744-y.
- 79. Ramar, M.; Manikandan, B.; Raman, T.; Arunagirinathan, K.; Prabhu, N.M.; Basu, M.J.; Perumal, M.; Palanisamy, S.; Munusamy, A. Biosynthesis of silver nanoparticles using ethanolic petals extract of *Rosa indica* and characterization of its antibacterial, anticancer and anti-inflammatory activities. *Spectrochim. Acta Part A Mol. Biomol. Spectrosc.* 2015, *138*, 120–129. doi:10.1016/j.saa.2014.10.043.
- Krishnaraj, C.; Harper, S.L.; Choe, H.S.; Kim, K.P.; Yun, S.I. Mechanistic aspects of biologically synthesized silver nanoparticles against food- and water-borne microbes. *Bioprocess Biosyst. Eng.* 2015, *38*, 1943–1958. doi:10.1007/s00449-015-1436-1.
- Hullikere, M.M.; Joshi, C.G.; Vijay, R.; Ananda, D.; Nivya, M. Antiangiogenic, cytotoxic and antimicrobial activity of plant mediated silver nano particle from *Tragia involucrate*. *Res. J. Nanosci. Nanotechnol.* 2015, *5*, 16–26.
- Govindaraju, K.; Krishnamoorthy, K.; Alsagaby, S.A.; Singaravelu, G.; Premanathan, M. Green synthesis of silver nanoparticles for selective toxicity towards cancer cells. *LET Nanobiotechnol.* 2015, *9*, 325–330. doi:10.1049/iet-nbt.2015.0001.
- Ortega, F.G.; Fernández-Baldo, M.A.; Fernández, J.G.; Serrano, M.J.; Sanz, M.I.; Diaz-Mochón, J.J.; Lorente, J.A.; Raba, J. Study of antitumor activity in breast cell lines using silver nanoparticles produced by yeast. *Int. J. Nanomed.* 2015, 10, 2021–2031. doi:10.2147/IJN.S75835.
- 84. Raman, J.; Reddy, G.R.; Lakshmanan, H.; Selvaraj, V.; Gajendran, B.; Nanjian, R.; Chinnasamy, A.; Sabaratnam, V. Mycosynthesis and characterization of silver nanoparticles from *Pleurotus djamor* var.

roseus and their in vitro cytotoxicity effect on PC3 cells. *Process Biochem.* **2015**, *50*, 140–147. doi:10.1016/j.procbio.2014.11.003.

- Vijaya, P.P.; Rekha, B.; Mathew, A.T.; Ali, M.S.; Yogananth, N.; Anuradha, V.; Parveen, P.K. Antigenotoxic effect of green-synthesised silver nanoparticles from *Ocimum sanctum* leaf extract against cyclophosphamide induced genotoxicity in human lymphocytes-in vitro. *Appl. Nanosci.* 2014, *4*, 415–420. doi:10.1007/s13204-013-0212-2.
- 86. Rajasekharreddy, P.; Rani, P.U. Biofabrication of Ag nanoparticles using *Sterculia foetida* L. seed extract and their toxic potential against mosquito vectors and HeLa cancer cells. *Mater. Sci. Eng.* C **2014**, *39*, 203–212. doi:10.1016/j.msec.2014.03.003.
- 87. Krishnasamy, L. Cytotoxic, apoptotic efficacy of silver nanoparticles synthesized from *Indigofera* aspalathoids. Int. J. Pharm. Pharm. Sci. 2014, 6, 245–248.
- 88. Prasad, K.S.; Selvaraj, K. Biogenic synthesis of selenium nanoparticles and their effect on as(III)-induced toxicity on human lymphocytes. *Biol. Trace Elem. Res.* **2014**, *157*, 275–283. doi:10.1007/s12011-014-9891-0.
- 89. Sarkar, J.; Ghosh, M.; Mukherjee, A.; Chattopadhyay, D.; Acharya, K. Biosynthesis and safety evaluation of ZnO nanoparticles. *Bioprocess Biosyst. Eng.* **2014**, *37*, 165–171. doi:10.1007/s00449-013-0982-7.
- 90. Kumar, S.; Singh, M.; Halder, D.; Mitra, A. Mechanistic study of antibacterial activity of biologically synthesized silver nanocolloids. *Colloids Surf. A Physicochem. Eng. Asp.* **2014**, 449, 82–86. doi:10.1016/j.colsurfa.2014.02.027.
- El-Kassas, H.Y.; El-Sheekh, M.M. Cytotoxic activity of biosynthesized gold nanoparticles with an extract of the red seaweed *Corallina officinalis* on the MCF-7 human breast cancer cell line. *Asian Pac. J. Cancer Prev.* 2014, 15, 4311–4317.
- 92. Chowdhury, S.; Basu, A.; Kundu, S. Green synthesis of protein capped silver nanoparticles from phytopathogenic fungus *Macrophomina phaseolina* (Tassi) Goid with antimicrobial properties against multidrug-resistant bacteria. *Nanoscale Res. Lett.* **2014**, *9*, 365. doi:10.1186/1556-276x-9-365.
- 93. Krishnaraj, C.; Muthukumaran, P.; Ramachandran, R.; Balakumaran, M.D.; Kalaichelvan, P.T. *Acalypha indica* Linn: Biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. *Biotechnol. Rep.* 2014, *4*, 42–49. doi:10.1016/j.btre.2014.08.002.
- 94. Lima, R.; Feitosa, L.O.; Ballottin, D.; Marcato, P.D.; Tasic, L.; Duran, N. Cytotoxicity and genotoxicity of biogenic silver nanoparticles. *J. Phys.: Conf. Ser.* **2013**, 429, 012020.
- 95. Singh, G.; Babele, P.K.; Shahi, S.K.; Sinha, R.P.; Tyagi, M.B.; Kumar, A. Green synthesis of silver nanoparticles using cell extracts of *Anabaena doliolum* and screening of its antibacterial and antitumor activity. *J. Microbiol. Biotechnol.* **2014**, *24*, 1354–1367.
- 96. Varun, S.; Sellappa, S. Enhanced apoptosis in MCF-7 human breast cancer cells by biogenic gold nanoparticles synthesized from Argemone mexicana leaf extract. *Int. J. Pharm. Pharm. Sci.* **2014**, *6*, 528–531.
- 97. Subbaiya, R.; Selvam, M. Synthesis and characterization of silver nanoparticles from *Streptomyces olivaceus* sp-1392 and its anticancerous activity against non-small cell lung carcinoma cell line (NCI-H460). *Curr. Nanosci.* **2014**, *10*, 243–249. doi:10.2174/15734137113099990073.
- 98. Ashokkumar, T.; Prabhu, D.; Geetha, R.; Govindaraju, K.; Manikandan, R.; Arulvasu, C.; Singaravelu, G. Apoptosis in liver cancer (HepG2) cells induced by functionalized gold nanoparticles. *Colloids Surf. B Biointerfaces* 2014, 123, 549–556. doi:10.1016/j.colsurfb.2014.09.051.
- 99. Jeyaraj, M.; Arun, R.; Sathishkumar, G.; Mubarakali, D.; Rajesh, M.; Sivanandhan, G.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Ganapathi, A. An evidence on G2/M arrest, DNA damage and caspase mediated apoptotic effect of biosynthesized gold nanoparticles on human cervical carcinoma cells (HeLa). *Mater. Res. Bull.* 2014, *52*, 15–24. doi:10.1016/j.materresbull.2013.12.060.
- 100. Prasad, K.S.; Patel, H.; Patel, T.; Patel, K.; Selvaraj, K. Biosynthesis of Se nanoparticles and its effect on UVinduced DNA damage. *Colloids Surf. Bbiointerfaces* **2013**, *103*, 261–266. doi:10.1016/j.colsurfb.2012.10.029.
- 101. Rosarin, F.S.; Arulmozhi, V.; Nagarajan, S.; Mirunalini, S. Antiproliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. *Asian Pac. J. Trop. Med.* 2013, *6*, 1–10. doi:10.1016/S1995-7645(12)60193-X.
- 102. Neveen, M.K. Biogenic silver nanoparticles by *Aspergillus terreus* as a powerful nanoweapon against *Aspergillus fumigatus. Afr. J. Microbiol. Res.* **2013**, *7*, 5645–5651. doi:10.5897/AJMR2013.6429.

- 103. Mohanty, S.; Jena, P.; Mehta, R.; Pati, R.; Banerjee, B.; Patil, S.; Sonawane, A. Cationic antimicrobial peptides and biogenic silver nanoparticles kill mycobacteria without eliciting DNA damage and cytotoxicity in mouse macrophages. *Antimicrob. Agents Chemother.* 2013, *57*, 3688–3698. doi:10.1128/aac.02475-12.
- 104. Jeyaraj, M.; Sathishkumar, G.; Sivanandhan, G.; MubarakAli, D.; Rajesh, M.; Arun, R.; Kapildev, G.; Manickavasagam, M.; Thajuddin, N.; Premkumar, K.; et al. Biogenic silver nanoparticles for cancer treatment: An experimental report. *Colloids Surf. B Biointerfaces* 2013, 106, 86–92. doi:10.1016/j.colsurfb.2013.01.027.
- 105. Jeyaraj, M.; Rajesh, M.; Arun, R.; MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; et al. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using *Podophyllum hexandrum* on human cervical carcinoma cells. *Colloids Surf. B Biointerfaces* **2013**, *102*, 708–717. doi:10.1016/j.colsurfb.2012.09.042.
- 106. Prabhu, D.; Arulvasu, C.; Babu, G.; Manikandan, R.; Srinivasan, P. Biologically synthesized green silver nanoparticles from leaf extract of *Vitex negundo* L. induce growth-inhibitory effect on human colon cancer cell line HCT15. *Process Biochem.* **2013**, *48*, 317–324. doi:10.1016/j.procbio.2012.12.013.
- 107. Geetha, R.; Ashokkumar, T.; Tamilselvan, S.; Govindaraju, K.; Sadiq, M.; Singaravelu, G. Green synthesis of gold nanoparticles and their anticancer activity. *Cancer Nanotechnol.* **2013**, *4*, 91–98. doi:10.1007/s12645-013-0040-9.
- 108. Govender, R.; Phulukdaree, A.; Gengan, R.M.; Anand, K.; Chuturgoon, A.A. Silver nanoparticles of *Albizia adianthifolia*: The induction of apoptosis in human lung carcinoma cell line. *J. Nanobiotechnol.* **2013**, *11*, 5. doi:10.1186/1477-3155-11-5.
- 109. Chunyan, W.; Valiyaveettil, S. Correlation of biocapping agents with cytotoxic effects of silver nanoparticles on human tumor cells. *RSC Adv.* **2013**, *3*, 14329–14338. doi:10.1039/c3ra41346b.
- Gurunathan, S.; Raman, J.; Malek, N.A.; John, P.A.; Vikineswary, S. Green synthesis of silver nanoparticles using *Ganoderma neo-japonicum* Imazeki: A potential cytotoxic agent against breast cancer cells. *Int. J. Nanomed.* 2013, *8*, 4399–4413. doi:10.2147/ijn.s51881.
- 111. Gurunathan, S.; Han, J.W.; Eppakayala, V.; Jeyaraj, M.; Kim, J.H. Cytotoxicity of biologically synthesized silver nanoparticles in MDA-MB-231 human breast cancer cells. *Biomed. Res. Int.* **2013**, 2013. doi:10.1155/2013/535796.
- 112. Wu, H.; Zhu, H.; Li, X.; Liu, Z.; Zheng, W.; Chen, T.; Yu, B.; Wong, K.H. Induction of apoptosis and cell cycle arrest in A549 human lung adenocarcinoma cells by surface-capping selenium nanoparticles: An effect enhanced by polysaccharide-protein complexes from *Polyporus rhinocerus*. J. Agric. Food Chem. 2013, 61, 9859–9866. doi:10.1021/jf403564s.
- 113. Gurunathan, S.; Han, J.W.; Dayem, A.A.; Eppakayala, V.; Park, J.H.; Cho, S.G.; Lee, K.J.; Kim, J.H. Green synthesis of anisotropic silver nanoparticles and its potential cytotoxicity in human breast cancer cells (MCF-7). *J. Ind. Eng. Chem.* **2013**, *19*, 1600–1605. doi:10.1016/j.jiec.2013.01.029.
- 114. Tamboli, D.P.; Lee, D.S. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. *J. Hazard. Mater.* **2013**, *260*, 878–884. doi:10.1016/j.jhazmat.2013.06.003.
- 115. Das, S.; Das, J.; Samadder, A.; Bhattacharyya, S.S.; Das, D.; Khuda-Bukhsh, A.R. Biosynthesized silver nanoparticles by ethanolic extracts of *Phytolacca decandra*, *Gelsemium sempervirens*, *Hydrastis canadensis* and *Thuja occidentalis* induce differential cytotoxicity through G2/M arrest in A375 cells. *Colloids Surf. B Biointerfaces* 2013, 101, 325–336. doi:10.1016/j.colsurfb.2012.07.008.
- 116. Bhattacharyya, S.S.; Das, J.; Das, S.; Samadder, A.; Das, D.; De, A.; Paul, S.; Khuda-Bukhsh, A.R. Rapid green synthesis of silver nanoparticles from silver nitrate by a homeopathic mother tincture *Phytolacca decandra*. *J. Chin. Integr. Med.* **2012**, *10*, 546–554. doi:10.3736/jcim20120510.
- 117. Mishra, A.; Mehdi, S.J.; Irshad, M.; Ali, A.; Sardar, M.; Rizvi, M.M.A. Effect of biologically synthesized silver nanoparticles on human cancer cells. *Sci. Adv. Mater.* **2012**, *4*, 1200–1206. doi:10.1166/sam.2012.1414.
- 118. Bendale, Y.; Bendale, V.; Paul, S.; Bhattacharyya, S.S. Green synthesis, characterization and anticancer potential of platinum nanoparticles bioplatin. *J. Chin. Integr. Med.* **2012**, *10*, 681–689. doi:10.3736/jcim20120613.

- 119. Sarkar, J.; Chattopadhyay, D.; Patra, S.; Deo, S.S.; Sinha, S.; Ghosh, M.; Mukherjee, A.; Acharya, K. *Alternaria alternata* mediated synthesis of protein capped silver nanoparticles and their genotoxic activity. *Dig. J. Nanomater. Biostructures* **2011**, *6*, 563–573.
- 120. Satyavani, K.; Gurudeeban, S.; Ramanathan, T.; Balasubramanian, T. Biomedical potential of silver nanoparticles synthesized from calli cells of *Citrullus colocynthis* (L.) Schrad. *J. Nanobiotechnol.* **2011**, 9. doi:10.1186/1477[•]C3155[•]C9[•]C43.
- 121. Panda, K.K.; Achary, V.M.; Krishnaveni, R.; Padhi, B.K.; Sarangi, S.N.; Sahu, S.N.; Panda, B.B. In vitro biosynthesis and genotoxicity bioassay of silver nanoparticles using plants. *Toxicology* in vitro. *Int. J. Publ. Assoc. Bibra* 2011, 25, 1097–1105. doi:10.1016/j.tiv.2011.03.008.
- 122. Singh, S.; D'Britto, V.; Bharde, A.; Sastry, M.; Dhawan, A.; Prasad, B.L.V. Bacterial synthesis of photocatalytically active and biocompatible TiO₂ and ZnO nanoparticles. *Int. J. Green Nanotechnol. Phys. Chem.* **2010**, *2*, P80–P99. doi:10.1080/19430876.2010.532459.
- 123. Adiguzel, A.O.; Adiguzel, S.K.; Mazmanci, B.; Tuncer, M.; Mazmanci, M.A. Silver nanoparticle biosynthesis from newly isolated streptomyces genus from soil. *Mater. Res. Express.* **2018**, *5*, 045402. doi:10.1088/2053[°]C1591/aab861.
- 124. Pandiarajan, J.; Balaji, S. Genotoxic effect of silver nanoparticles in silk worm *Bombyx mori. Austin J. Biotechnol. Bioeng.* 2018, *5*, 1096.
- 125. Gavade, N.L.; Babar, S.B.; Kadam, A.N.; Gophane, A.D.; Garadkar, K.M. Fabrication of M@CuO/ZnO (M = Ag, Au) Heterostructured nanocomposite with enhanced photocatalytic performance under sunlight. *Ind. Eng. Chem. Res.* 2017, *56*, 14489–14501. doi:10.1021/acs.iecr.7b03168.
- 126. Ishwarya, R.; Vaseeharan, B.; Shanthi, S.; Ramesh, S.; Manogari, P.; Dhanalakshmi, K.; Vijayakumar, S.; Benelli, G. Green synthesized silver nanoparticles: Toxicity against *Poecilia reticulata* fishes and *Ceriodaphnia cornuta* crustaceans. *J. Clust. Sci.* **2017**, *28*, 519–527. doi:10.1007/s10876-016-1126-4.
- 127. Krishnaraj, C.; Harper, S.L.; Yun, S.I. In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult Zebrafish (*Danio rerio*). *J. Hazard. Mater.* **2016**, 301, 480–491. doi:10.1016/j.jhazmat.2015.09.022.
- 128. Beheshti, N.; Soflaei, S.; Shakibaie, M.; Yazdi, M.H.; Ghaffarifar, F.; Dalimi, A.; Shahverdi, A.R. Efficacy of biogenic selenium nanoparticles against *Leishmania major*: In vitro and in vivo studies. *J. Trace Elem. Med. Biol.* 2013, 27, 203–207. doi:10.1016/j.jtemb.2012.11.002.
- 129. Antony, J.J.; Sithika, M.A.A.; Joseph, T.A.; Suriyakalaa, U.; Sankarganesh, A.; Siva, D.; Kalaiselvi, S.; Achiraman, S. In vivo antitumor activity of biosynthesized silver nanoparticles using *Ficus religiosa* as a nanofactory in DAL induced mice model. *Colloids Surf. B Biointerfaces* **2013**, *108*, 185–190. doi:10.1016/j.colsurfb.2013.02.041.
- 130. Sukirtha, R.; Krishnan, M.; Ramachandran, R.; Kamalakkannan, S.; Kokilavani, P.; SankarGanesh, D.; Kannan, S.; Achiraman, S. Areca catechu Linn.-derived silver nanoparticles: A novel antitumor agent against Dalton's ascites lymphoma. *Int. J. Green Nanotechnol. Biomed.* 2011, 3, 1–12. doi:10.1080/19430892.2011.571626.