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Abstract: Background and objectives: Although laparoscopic sleeve gastrectomy (LSG) is effective for obesity
management, postoperative vitamin B12 (B12) deficiency is of major concern. In this cross-sectional
study, we assessed the levels of B12 and its related functional biomarkers, namely, total homocysteine
(tHcy), methylmalonic acid (MMA), folate, methylcitric acid (MCA), and hemoglobin (Hb), in one-year
postoperative LSG patients and matched controls. Materials and Methods: Plasma B12, tHcy, MMA,
folate, and MCA were measured in matched controls (n = 66) and patients (n = 71) using validated
liquid chromatography-tandem mass spectrometry techniques and protocols in the United Arab
Emirates (UAE). Results: The median B12 concentration in patients (177 pmol/L) was significantly
lower (p < 0.001) than in the controls (334.7 pmol/L). The tHcy and MMA levels were significantly
increased (p < 0.001 and p = 0.011, respectively) and folate levels were significantly decreased
(p = 0.001) in the LSG patients compared to the controls. Interestingly, no significant difference in
MCA levels were observed between the two groups. The levels of tHcy and MMA were concomitantly
increased with the decreased folate levels in postoperative LSG patients when compared with the
controls. The Hb levels were significantly lower in males and females in the patient group compared
with those in the control group, respectively (p = 0.005 and p = 0.043). Conclusions: This is the first
report of serum levels of B12 and its functional biomarkers in postoperative LSG patients among a
local population from the UAE. Our findings revealed significant alterations of the B12 biomarkers,
total B12, MMA, and tHcy in one-year postoperative LSG patients.
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1. Introduction

The United Arab Emirates (UAE) has one of the highest obesity rates [1]. Despite various strategies,
including lifestyle interventions and drug therapies, managing obesity remains a therapeutic enigma.
In recent years, surgical interventions have garnered increasing attention, and bariatric surgery is
emerging as one of the most effective treatments for severely obese people [2,3].
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Among the available surgical options, laparoscopic sleeve gastrectomy (LSG) is a safe and
effective procedure to manage morbid obesity [4,5]. LSG is used as a stand-alone procedure with good
outcomes and is recommended as an alternative technique to the laparoscopic Roux-en-Y gastric bypass
(LRYGB) [6,7]. Despite its clinical success and wide acceptance, a large proportion of LSG patients
experience postoperative gastrointestinal (GI) side effects, including macronutrient and micronutrient
deficiencies or an aggravation of previous nutritional deficits [8–11]. Furthermore, the structural and
functional GI alterations of LSG are associated with the risk of developing vitamin B12 (B12) deficiency,
mainly cobalamin and cyanocobalamin [12,13].

B12 is an indispensable water-soluble micronutrient that occurs in several forms, including
cyano-, hydro-, methyl-, and 5′-deoxyadenosylcobalamin. Traces of cyanocobalamin occur in food items,
but it is predominantly used in vitamin pills and fin fortified food. All forms of B12 are converted to
methylcobalamin and 5′-deoxyadenosylcobalamin in the body, the forms that serve as coenzymes for B12.
The other forms of cobalamin are interconvertible by the enzymes methylmalonyl-coenzyme A (CoA)
mutase and methionine synthase (MS) [14]. Methylmalonyl-CoA mutase converts methylmalonyl-CoA
to succinyl-CoA, with 5-deoxy adenosylcobalamin required as a cofactor. MS catalyzes the
methylcobalamin-dependent (re)methylation of total homocysteine (tHcy) to the essential amino
acid methionine within the methionine cycle. This reaction is folate-dependent, with the methyl
group of methyltetrahydrofolate being transferred to tHcy to form methionine and tetrahydrofolate.
MS disturbances lead to disruptions in the intracellular folate pathway. B12 deficiency leads to an
impairment in these enzymes, resulting in the accumulation of their substrates, namely, methylmalonic
acid (MMA) and tHcy [15–17].

In patients undergoing bariatric surgery the binding of B12 to intrinsic factor (IF), which is
required for B12 absorption, is largely reduced. Although low serum levels of this vitamin in support
with clinical evidence may indicate a deficiency, this approach is unreliable because most patients
with a subclinical disease have normal B12 levels [18–21]. To date, there is no single test that can
accurately detect B12 deficiency [18–21]. Previous studies have confirmed that serum B12 is of limited
diagnostic value as a stand-alone biomarker of this condition [18–21]. The estimation of MMA and
tHcy, the substrates that require B12 for correct metabolism, is arguably a better predictor, as these
markers are sensitive to changes in B12 concentrations and may accumulate even before the serum
level of this vitamin falls below the normal range [22].

Methylcitric acid (MCA) is a specific metabolite that accumulates in patients with B12 defects
because of the condensation of oxaloacetate in the Krebs cycle with the accumulating propionyl-CoA.
Although, elevated MCA levels associated with B12 metabolic defects have been reported. However,
a determination of MCA in biological samples is still generally uncommon, mainly due to its challenging
analytical properties, such as high polarity, lack of chromophore or fluorophore, and its presence in an
enantiomer form [23–28]. Therefore, the present study was carried out to investigate whether MCA
could be used as biomarker for B12 deficiency in LSG patients. In the present study, we determined
the levels of B12 along with its functional biomarkers in postoperative LSG patients and compared the
results with matched control subjects selected based on their likelihood to undergo LSG in the future.

2. Materials and Methods

2.1. Subjects

We enrolled study participants from the Obesity Center at Tawam Hospital, UAE, from March 2016
to May 2017. Tawam Hospital located in Al Ain City in the UAE is a 700-bed inpatient facility that
includes over 92 specialty clinics and houses a comprehensive Obesity Center consisting of 4 bariatric
surgeons, 3 family physicians, 1 endocrinologist, 1 pediatrician, 3 dieticians, 1 psychologist, and 2 care
coordinators. This center deals with more than 150 patients a day and performs over 1000 bariatric
surgeries annually. We included patients in our study if they had undergone LSG surgery with an at
least 12-month postoperative period (n = 71) at the Tawam Hospital Obesity Center. Body weight,



Medicina 2020, 56, 142 3 of 10

height, and body mass index (BMI) were recorded for anthropometric evaluation. All control group
participants were identified as prospective candidates for bariatric surgery (n = 66) at the Obesity
Center at Tawam Hospital and were matched for age, gender, and BMI. Prospective controls with a
past or current history of substance abuse, psychiatric illness, endocrine or other disorders that can
cause obesity, preoperative gut malabsorption syndrome, the presence of any gastric, kidney, and liver
disease, or the preoperative use of medication affecting bone metabolism were excluded (Table 1).
This cross-sectional study was approved by the Al Ain District Human Research Ethics Committee
(#16/008 2016-472 with date of approval 26 February 2016) and was conducted in accordance with the
Declaration of Helsinki. Written informed consent was obtained from all participants who expressed
their interest in participating and were well informed of the study objectives.

2.2. Biomarker Measurements

The plasma levels of tHcy, MMA, and MCA were measured using a liquid chromatography
(LC)-tandem mass spectrometry (MS/MS) system. B12, folate, and hemoglobin (Hb) levels were
measured using a cobas e 411 modular analyzer (Roche Diagnostics, Indianapolis, IN, USA) with
standard kits for B12, folate, and Hb estimation (Roche Diagnostics).

MMA, tHcy, MCA, and deuterium-labeled Hcy (d4-Hcy) were purchased from Sigma Aldrich
(Taufkirchen, Germany). Deuterium-labeled MCA (d3-MCA) and deuterium-labeled MMA (d3-MMA)
were used as internal standards and were purchased from Cambridge Isotopes Laboratories (Tewksbury,
MA, USA). 4-[2-(N, N-dimethylamino) ethylsulfamoyl]-7-(2-amino ethyl amino) benzofurazan
(DAABD-AE), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), 4-(dimethyl-amino) pyridine
(DMAP), perfluorooctanoic acid (PFOA), and formic acid were obtained from Sigma Aldrich. 3N HCl
in n-butanol was purchased from Regis Technologies Inc. (Morton Grove, IL, USA). LC-MS/MS-grade
acetonitrile, double distilled H2O, and methanol were purchased from Merck (Darmstadt, Germany).

Chromatographic analysis was performed using a Shimadzu Nexera X2 ultra high-performance
liquid chromatograph system composed of 2 solvent delivery pumps and a thermostat-controlled
autosampler, column oven, degasser, and system controller (Shimadzu Corporation, Kyoto, Japan).
An LC-MS-8060 triple quadrupole mass spectrometer equipped with an electrospray ionization (ESI)
source was used as the detector (Shimadzu Corporation, Kyoto, Japan).

2.3. Sample Preparation for LC-MS/MS

2.3.1. tHcy Estimation

Briefly, 10 µL of plasma was added to 100 µL of 2.4 µmol/L d4-Hcy and 20 µL of 500 mmol/L
4-dithiothreitol. The mixture was vortexed for 30 s and centrifuged at 10,000 rpm for 3 min. The supernatant
was transferred to a glass tube and dried using a stream of nitrogen at 45 ◦C for 5 min. Then, 50 µL of
butanolic HCl was added and incubated for 30 min at 65 ◦C, followed by evaporation to dryness using
nitrogen at 45 ◦C. Following sample reconstitution in 400 µL of 50% acetonitrile containing 10% formic
acid, 2 µL was injected into the LC-MS/MS system. A calibration curve was prepared using plasma
spiked with tHcy over a range of 0.5–100 µmol/L. Two tHcy quality control (QC) samples (7.35 µmol/L
and 14.7 µmol/L) were used. LC separation using an Acquity BEH C18 column (2.1 × 50 mm, 1.7 µm;
Waters, Milford, MA, USA) was achieved isocratically using 50% acetonitrile containing 0.05% PFOA
at a flow rate of 0.4 mL/min and a total run time of 1.0 min (Figure S1). The ESI-MS/MS analysis was in
positive ion mode with an interface voltage of 4.0 kV, desolvation temperature of 250 ◦C, ion source
temperature of 300 ◦C, and collision energy of −15 eV using argon as the collision gas. Transitions of
m/z 192.0 to m/z 90.1 and m/z 196.0 to m/z 94.0 were used to monitor tHcy and d4-tHcy, respectively.

2.3.2. MMA Estimation

Briefly, 10 µL of plasma was added to 100 µL of 1.0 µmol/L of d3-MMA, vortexed for 1 min,
and centrifuged at 10,000 rpm for 3 min. The supernatant (100 µL) was transferred to a glass tube and
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evaporated using a stream of nitrogen for 3 min. Then, 50 µL of 3N HCl in n-butanol was added to
the residue and incubated for 15 min at 65 ◦C. After evaporating the excess butanolic HCl using a
stream of nitrogen, the residue was reconstituted in 300 µL of 50% acetonitrile, and 20 µL was injected
into the LC-MS/MS system. A calibration curve was prepared using plasma spiked with MMA over
a range of 0.78–25.0 µmol/L. Two MMA QC samples (9.7 µmol/L and 20.0 µmol/L) were used. LC
separation using an Acquity BEH C18 column (2.1 × 50 mm, 1.7 µm; Waters) was achieved isocratically
using 50% acetonitrile containing 0.1% formic acid at a flow rate of 0.6 mL/min and a total run time of
3.3 min (Figure S2). The MS/MS analysis was in positive ion mode with an interface voltage of 4.0 kV,
desolvation temperature of 250 ◦C, ion source temperature of 300 ◦C, and collision energy of 12 eV
using argon as the collision gas. Transitions of m/z 231.2 to m/z 119.2 and m/z 234.2 to m/z 122.2 were
used to monitor MMA and MMA-d3, respectively.

2.3.3. MCA Estimation

Briefly, 20 µL of plasma was added to 40 µL of 2.4 µmol/L d3-MCA and 10 µL of acetonitrile.
The mixture was vortexed for 1 min and centrifuged for 4 min at 3000 rpm. Then, 50 µL of the
supernatant was transferred to a 1.5 mL microcentrifuge tube, followed by the addition of 100 µL of a
1:1:2 (v/v/v) mixture of EDC (25 mmol/L in H2O), DMAP (25 mmol/L in acetonitrile), and DAABD-AE
(2 mmol/L in 90% acetonitrile). The sample mixture was vortexed and incubated for 45 min at 65 ◦C.
The reaction was stopped with the addition of 900 µL of 10% methanol containing 0.05% PFOA,
and 2 µL of the resultant mixture was injected into the LC-MS/MS system. The total run time was
8.10 min, and the MCA peak appeared at 3.67 min (Figure S3). A calibration curve was prepared using
plasma spiked with MCA over a range of 0.25–10 µmol/L. Two MCA QC samples (3.75 µmol/L and
10 µmol/L) were used. The mass spectrometric analysis was in positive ion mode with an interface
voltage of 4.0 kV, desolvation temperature of 250 ◦C, ion source temperature of 300 ◦C, and collision
energy of 25 eV using argon as the collision gas. Transitions of m/z 499.0 to m/z 151.1 and m/z 502.0 to
m/z 151.1 were used to monitor MCA and d3-MCA, respectively [29,30]

2.4. Statistical Analysis

The data were analyzed using the SPSS Statistics v25 software (IBM Corp., Armonk, NY, USA).
We ran the Q–Q and P–P plot to assess the normality distribution of B12, MMA, and tHcy. Because
of highly skewed distributions of all, non-parametric Mann–Whitney were used in medians for the
comparison of these parameters to describe patient demographics and differences in the levels of
biomarkers between groups. The data are presented as median (range) and all test results were
considered statistically significant when the two-tailed p-values were <0.05.

3. Results

3.1. Demographics and Medication Profile in Patients One Year after LSG

The demographic characteristics of the patients and controls are presented in Table 1. The details
of diseases present in the patients were as follows: thyroid disease, one; stroke, one; depression,
two; acanthosis nigricans, two; fatty liver, seven; and arthropathy, eleven. The number of smokers
were ten. The details of patients who were taking medication were as follows: B12, eight; neurobion,
two; vitamin D, twenty-one; multivitamins, five; a combination of calcium and vitamin D, five;
proton pump inhibitors, seven; iron, nine; and zinc, one. None of the patients were taking aspirin or
thiamine supplements.
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Table 1. Demographic details for 1-year postoperative laparoscopic sleeve gastrectomy (LSG) patients
and matched controls.

Variable Patients (n = 71) Controls (n = 66) p-Value

Age (years) 36 ± 9 35 ± 10 NS
Female, n (%) 45 (63) 40 (61) NS
Male, n (%) 26 (37) 26 (39) NS
Weight (kg) 86 ± 22 82 ± 14 NS
Height (cm) 162 ± 13 159 ± 7 0.009 *
BMI (kg/m2) 31 ± 6 32 ± 5 NS

Systolic BP (mmHg) 114 ± 13 119 ± 13 0.011 *
Diastolic BP (mmHg) 70 ± 11 74 ± 8 0.008 *

HbA1c 5.4 ± 0.7 5.6 ± 0.5 NS
Cholesterol 4.9 ± 0.9 4.6 ± 0.6 NS

LDL 3.0 ± 0.8 2.7 ± 0.6 0.054 *
HDL 1.5 ± 0.3 1.0 ± 0.3 <0.000 *

Triglycerides 0.8 ± 0.4 1.0 ± 0.5 0.001 *
Marital status, married 47 43 NS
Marital status, single 24 20 NS

Level of education, educated 70 58 NS
Level of education, illiterate 1 5 NS

Diabetes 0 8 0.003 *
Family history of diabetes 54 42 NS

Hypertension 0 4 0.036 *
Heart Failure 0 0 NS
Dyslipidemia 0 5 0.019 *
Breathlessness 0 7 0.005 *

Sleep apnea 15 9 NS
Gallbladder disease 5 2 NS

Psychological 2 13 0.002 *
Musculoskeletal 0 32 <0.001 *

Clotting abnormality 0 0 NS
Pregnancy complication 0 7 0.005 *

Infertility PCOS 6 9 NS
Fetal defects 0 0 NS

Cancer 0 0 NS

Abbreviations: BMI = body mass index, BP = blood pressure, HbA1c = glycated hemoglobin, HDH = high-density
lipoprotein, LDL = low-density lipoprotein, PCOS = polycystic ovary syndrome. * Indicates significant p < 0.05.

3.2. B12, tHcy, and MMA in Patients and Controls

The median concentrations of B12, tHcy, MMA, and other biomarkers in patients and controls are
shown in Table 2.

Table 2. Median values for measured metabolic biomarkers in 1-year postoperative LSG patients
(n = 71) and matched controls (n = 66).

Reference
Value

Patients
Median (Min–Max)

Controls
Median (Min–Max) p-Value

B12 (pmol/L) 200–1000 177 (54–907) 334.7 (125.4–1232.5) <0.001 **
tHcy (µmol/L) <13.2 13.7 (7.6–29.6) 10.9 (2.9–19.5) <0.001 **

MMA (µmol/L) <0.376 0.28 (0.12–2.04) 0.20 (0.08–0.73) 0.011 **
Folate (nmol/L) >9 11.15 (0.00–36.23) 22.4 (11.3–67.8) <0.001 **
MCA (µmol/L) 0.021–0.097 0.033 (0.014–0.169) 0.0386 (0.0152–0.0928) 0.266
Hb male (g/L) 130–170 140.5 (116–166) 134 (102–153) 0.005 **

Hb female (g/L) 120–150 115 (70–141) 118 (83–149) 0.043 *

Values are median (range: min–max). Abbreviations: B12 = vitamin B12, Hb = hemoglobin, MCA = methylcitric acid,
MMA = methylmalonic acid, tHcy = total homocysteine. (*) p-value is less than 0.05; (**) p-value is less than 0.01.



Medicina 2020, 56, 142 6 of 10

There was a significant difference (p < 0.001) in median B12 levels between the control and patient
groups (334.7 pmol/L and 177.0 pmol/L, respectively) (Table 2). The majority of patients (61%) had
suboptimal B12 levels, with only 28% showing <148pmol/L B12 levels (p < 0.001). In the control group,
there were only 5% cases with low B12 levels (Table 3). A statistically significant increase in the levels
of tHcy (p < 0.001) and MMA (p = 0.011) was detected in patients compared with the controls. tHcy
levels were elevated in 55% of patients compared with 18% of controls (p = 0.001). Elevated MMA
levels were found in 28% of patients compared with 18% of controls.

Table 3. Determination of number of cases with abnormal levels of biomarkers using different
approaches among patients (n = 71) and matched controls (n = 66).

Patients, No. of
Cases (%)

Control, No. of
Cases (%) p-Value

Using Cutoff by American Society for Metabolic and Bariatric Surgery [9]

Deficient B12 (<148 pmol/L) 20 (28%) 3 (5%) <0.001 **
Elevated tHcy (>13.2 µmol/L) 39 (55%) 12 (18%) <0.001 **

Elevated MMA (>0.376 µmol/L) 20 (28%) 12 (18%) 0.167
Deficient Folate (<9 nmol/L) 21 (30%) 0 (0%) -

Elevated MCA (>0.097 µmol/L) 2 (3%) 0 (0%) -
Deficient Hb male (<130 g/L) 3 (3%) 10 (15%) 0.011 *

Deficient Hb female (<120 g/L) 30 (42%) 21 (32%) 0.176
Deficient B12 + Elevated tHcy 10 (14%) 3 (5%) 0.057 *

Deficient B12 + Elevated MMA 9 (13%) 1 (1.5%) 0.012 **
Deficient B12 + Elevated (tHcy + MMA) 4 (5.6%) 1 (1.5%) 0.199

CB12 Calculated using B12 and MMA as Biomarkers [31]

Elevated CB12 (>1.5) 0 (0%) 0 (0%) -
CB12 adequacy (−0.5 to1.5) 39 (55%) 57 (86%) <0.001 **

Low CB12 (−1.5 to −0.5) 27 (38%) 7 (11%) <0.001 **
Possible CB12(−2.5 to 1.5) 5 (7%) 0 (0%) -

Probable CB12 deficiency (<−2.5) 0 (0%) 0 (0%) -

CB12 Calculated using tHcy and MMA as Biomarkers [31]

Elevated CB12 (>1.5) 0 (0%) 1 (2.1%) -
CB12 adequacy (−0.5 to 1.5) 27 (38%) 38 (57%) 0.013

Low CB12 (−1.5 to −0.5) 36 (51%) 9 (14%) <0.001 **
Possible CB12 (−2.5 to −1.5) 7 (9.9%) 0 (0%) -

Probable CB12 deficiency (<−2.5) 1 (1.4%) 0 (0%) -

Abbreviations: CB12 = combined vitamin B12, B12 = vitamin B12, Hb = hemoglobin, MCA = methylcitric acid,
MMA = methylmalonic acid, tHcy = total homocysteine. (*) p-value is less than 0.05; (**) p-value is less than 0.01

3.3. Folate Levels in Patients and Controls

Although median plasma folate levels fell within the optimal range (>9 nmol/L), we still found a
significant difference in folate levels in patients (11.15 nmol/L) than in controls (22.4 µmol/L) (p < 0.001)
(Table 2). While all participants in the control group had folate levels >9 nmol/L, 30% of patients had
low levels of folate (p < 0.001).

3.4. MCA Levels in Patients and Controls

There was no statistically significant difference in median MCA levels between the control and
patient groups (p = 0.266) (Table 2). There were only two patients who showed elevated MCA levels
(Table 3). Typical chromatograms from the patient and control groups obtained using LC-MS/MS for
MCA analysis are shown Figure S3.
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3.5. Hb Levels in Patients and Controls

Hb levels were not found significantly different among the patients and controls. However, when
analyzed on basis of gender, there was a significant difference in Hb levels in both males and females
in the patient and control groups (p = 0.005 and p = 0.043) (Table 2).

3.6. Comparison of Metabolite Levels with B12 Levels in Patients and Controls using Different Approaches

There was a statistically significant difference in patients and controls who had both deficient
B12 and elevated tHcy levels (p = 0.057). Moreover, a statistical difference exists among patients and
controls who had low B12 levels and elevated MMA levels (p = 0.012). As we combined both functional
biomarkers along with deficient B12 levels, we found that there were four patient and one control
cases (Table 3). Combined B12 was also calculated using the algorithms by Fedosov et al. [31], using
different biomarkers. We observed a significant difference in the number of patients and controls with
low B12 levels using both algorithms (Table 3).

4. Discussion

B12 deficiency is multifactorial and can be caused by a decrease in the intrinsic factor, decrease in
the digestion of protein-bound B12 from food, or factors like high stress, infections, or antacids, and other
medications known to deplete IF [31–34]. Despite numerous reports on nutritional deficiencies after
bariatric surgeries, studies describing B12’s levels and its functional biomarkers among the UAE
population are lacking, which prompted us to conduct this present study.

In this study, we report for the first time the levels of B12 along with its functional biomarkers in
postoperative LSG Emiratis and compared our findings with a matched control population.

This cross-sectional study shows a higher prevalence of B12 deficiency in patients post LSG
compared with matched controls. Specifically, B12 deficiency, defined as a serum level <148 pmol/L,
was observed in 28% of patients compared with 5% of controls of similar age, gender, and BMI.
The following established functional biomarkers of B12 deficiency were observed: tHcy was found
significantly elevated in 55% and 18% of patients and controls, whereas MMA was observed elevated
in 28% and 18% of patients and controls, respectively. In concordance with previous studies, our study
also infers that B12 deficiency should not be defined solely on its low serum levels, and the abnormal
accumulation of functional biomarkers MMA and tHcy should be considered [10,17,22,28,31].

MCA is a potential biomarker that may play a critical role in discerning between metabolic
and nutritional B12 deficiencies. Elevated MCA levels have been reported to be associated with B12
metabolic defects [27]. In this study, we did not find any significant differences in the MCA levels
between the patient and control groups. Due to tHcy and MMA levels being higher in patients
compared with the controls, our results reasonably suggest that MCA may not be an informative
biomarker of B12 deficiency in bariatric surgery patients.

In our study, we observed folate deficiency in 28% of patients (<9 nmol/L), which was significantly
different in comparison with the control group. B12 deficiency may lead to functional folate deficiency,
which is intracellular despite a normal level of folate in the plasma. Folate deficiency may appear after
bariatric surgery due to the depletion of tissue stores as a result of inadequate dietary intake and/or
impaired absorption following hypochlorhydria and altered intestinal pH. A post-surgery deficiency
of folate cycle cofactors, B6, B12, and folate, is associated with increased plasma levels of homocysteine.
Folate deficiency after LRYGB surgery has been reported in about 38% of patients and has been
attributed to malabsorption and a short bowel [11,35]. The findings of this study are in agreement
with previous reports in LRYGB. Therefore, postoperative folate supplementation is recommended
either to prevent or correct the folate deficiency occurring due to a compensatory intestinal absorptive
capacity [36–38]

The optimal therapeutic regimen for B12 supplementation after bariatric surgery needs to be
standardized, however, until now, no specific guidelines or recommendations exist [39]. In addition,
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studies have reported postoperative B12 deficiency that consequently may result in hematologic and
neurological damage [16,22]. Though, in the current study, we did not observe hematological or
neurologic events, but it cannot be ruled out that some patients eventually may develop megaloblastic
anemia or neurologic symptoms if B12 levels remain uncorrected. Indeed, we reasonably consider
that a supplementation of B12 to postoperative patients is a prudent strategy to counteract the clinical
consequences of subnormal levels of this micronutrient.

The potential limitation of this study is the relatively small sample size and its cross-sectional
design. Additionally, it would be interesting to investigate other micronutrients and vitamins to
understand the overall nutritional status of the studied population.

5. Conclusions

The present study reveals a significant reduction in B12 levels in postoperative LSG patients
compared with a matched control population. tHcy and MMA accumulations were detected in the
patient group and were statistically significant compared with the control group. This study supports
previous observations indicating that tHcy and MMA could be better biomarkers of early changes in
the B12 status than serum B12 concentration. Our results suggest that MCA may not be a sensitive
marker to detect a nutritional deficiency of B12. To conclude, patients who undergo bariatric surgery
should be closely monitored, as they are at a higher risk of B12 deficiency than the normal population.

Supplementary Materials: The following are available online at http://www.mdpi.com/1010-660X/56/3/142/s1,
Figure S1: Extracted mass chromatograms of tHcy and d4-Hcy obtained with plasma samples from a control (A)
and patient (B). The solid line represents tHcy and dashed line represents the d4-Hcy, Figure S2: Extracted mass
chromatograms of MMA and d3-MMA obtained with plasma samples from a control (A) and patient (B). The solid
line represents MMA and dashed line represents the d3-MMA, Figure S3: Extracted mass chromatograms of MCA
and d3-MCA obtained with plasma samples from a control (A) and patient (B). The solid line represents MCA and
dashed line represents the d3-MCA.
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