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Abstract: As one of the most frequent skeletal anomalies, developmental dysplasia of the hip (DDH)
is characterized by a considerable range of pathology, from minor laxity of ligaments in the hip joint to
complete luxation. Multifactorial etiology, of which the candidate genes have been studied the most,
poses a challenge in understanding this disorder. Candidate gene association studies (CGASs) along
with genome-wide association studies (GWASs) and genome-wide linkage analyses (GWLAs) have
found numerous genes and loci with susceptible DDH association. Studies put major importance on
candidate genes associated with the formation of connective tissue (COL1A1), osteogenesis (PAPPA2,
GDF5), chondrogenesis (UQCC1, ASPN) and cell growth, proliferation and differentiation (TGFB1).
Recent studies show that epigenetic factors, such as DNA methylation affect gene expression and
therefore could play an important role in DDH pathogenesis. This paper reviews all existing risk
factors affecting DDH incidence, along with candidate genes associated with genetic or epigenetic
etiology of DDH in various studies.
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1. Introduction

DDH is a developmental disorder that leads to various aberrations in the building structures of
the hip joint, leading to abnormalities in the socket for the femoral head and laxity in the surrounding
ligaments. It includes a wide range of morphological aberrations and their resulting functional
disorders [1]. These disorders can be manifested only by a mild laxity in the capsule of the hip joint,
or they can lead to early osteoarthritis (OA), secondary femur damage and movement problems.
Complications are typical, especially in older age, but are not an exception even in youth and in worse
cases lead to total hip arthroplasty (THA) at an early age. In clinical practice, this diagnosis in children
during their individual phases of growth has a tendency to exhibit either improvement to a milder,
even physiological state or to more severe pathology. Phenotypical heterogeneity and trouble reaching
a clinical consensus for diagnostics in adults have led to the need for better and earlier diagnostic
methods, which could only be achieved by genetic examination.

Although isolated DDH can be diagnosed in healthy individuals, there are cases when extensive
genetic mutations cause teratologic or syndromic DDH [2,3], which occurs prenatally. In syndromic
types, DDH can be a part of many or only a sole manifestation of skeletal dysplasia [4–6], or it may
be present in conjunction with other malformations, e.g., pes equinovarus and acetabular labrum
abnormalities. Syndromic dysplasia exists also in association with different pathologies such as Down’s
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syndrome and neurogenic [7], renal or cardiovascular abnormalities. Nonsyndromic DDH is diagnosed
as an isolated condition and its genetic component is targeted by scientists. Studies conducted on
families with multiple individuals diagnosed with DDH have identified different chromosome loci
that are associated with the occurrence of this disorder. These are mainly variants of genes whose
products are structural factors of connective tissue, genes involved in osteo- and chondrogenesis, genes
associated with the formation of joint structures and genes for chemokine receptors. Figure 1. presents
the position of the femur and femoral head for a subluxated hip joint affected by DDH and a hip joint
in physiological position, respectively.
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Figure 1. (A) Dysplastic acetabulum with a subluxated femoral head; (B) Acetabulum in
physiological position.

2. Etiopathogenesis

Despite the long history of this disorder and the many specialists involved in this topic, there
is still little knowledge about the exact etiopathogenesis of DDH. This is mainly due to the genetic,
mechanical and environmental risk factors which define the multifactorial etiopathogenesis of DDH.
The hip joint begins to develop physiologically from mesenchymal cells as early as the fifth or sixth
gestational week. By the eleventh week, the femoral head is completely formed [8], and in the coming
weeks it undergoes a more rapid growth than the acetabular cartilage, causing about 50% of the femoral
cartilage to be present at the time of birth, but in the postnatal period, the cartilage begins to develop
much faster. If laxity of the femoral head is present after birth, Neonatal Hip Instability (NHI) can be
diagnosed. This instability is usually present for the first few weeks of life, has a mild course and up to
88% of cases of NHIs have a spontaneous resolution by the eighth week of life [9].

Persistent joint instability can be caused by a disorder of reflex contraction in soft tissues, which,
under physiological circumstances, fixates the hip joint until six months of age. After the sixth month,
spontaneous resolution is very unlikely [1] and the child needs intervention. Persistent laxity of
the capsule, subluxation and/or dislocation lead to progressive dysplastic changes which, without
therapy, can cause lasting consequences, especially in the case of a persistent dysplasia until adulthood.
Persistent dysplasia over time causes alterations in body position and gait [10]. Reports of unilateral
dysplasia are more severe than bilateral because the muscle strength in the affected limb is gradually
affected [11]. Over time, the limb deforms in the form of shortening, either from cartilage reduction or
other degenerative joint disease, and thus results in postural scoliosis, back pain and gradual disability
of the patient.
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3. Epidemiology

Ultrasound screening and monitoring of families with DDH history contributed to early DDH
diagnosis and therefore earlier treatment, which over time led to a rapid decrease in THAs [12]. In case
of late diagnosis, chances of long-term complications rise exponentially and this fact leads to a higher
possibility of needing surgery [13]. Although the diagnosis of DDH is characteristic for an early age,
diagnoses in adolescence or adulthood are not unusual [14].

According to literature, DDH incidence in newborns considerably varies with geographical
location from lowest in Africans, to highest in Native Americans and Caucasian population. The global
incidence can roughly be estimated to 0.1–6.6 cases per 1000 live births and is responsible for up to
30% of primary THAs in people up to 60 years of age [15–19]. Variations in incidence considering
geographical location can be caused by epigenetic factors, consanguinity rates or study limitations,
e.g., group size and diagnostic methods used. Compared to the general population in families with
DDH history, the incidence was increased sevenfold between siblings and tenfold in the parents of
probands. The concordance rate frequency (identical pathology in twins) was 33–41% for identical
twins (monozygotic) and 3–8% for dizygotic twins [20]. Since there is more knowledge available about
this topic, various countries have reported improvement in DDH incidence over the years [12,21].

Although we do not know the exact etiology of DDH, we know of risk factors, that contribute
to the incidence of primary or secondary hip dysplasia. Table 1. presents these risk factors (genetic,
epigenetic, mechanical and other) that include a number of areas that are not statistically significant
but may be of clinical importance nevertheless [22].

Table 1. Risk factors associated with developmental dysplasia of the hip (DDH).

Risk Factor Reported Associations

Female gender In literature female gender shows seven to nine times more
frequent DDH diagnosis at birth, than male newborns [19,23].

Left hip joint

Isolated right hip dysplasia is the least common type.
The most common is the affection of the left hip due to fetal

positions where the left hip is leaning towards the spine of the
mother [24], bilateral affection is also common [25,26].

Gravidity Post-terminal gravidity increases the chance of DDH [19].

Delivery

There is a significant risk of DDH due to the high strain on lower
extremities posed by the breech presentation [27], although breech
babies are more likely to experience spontaneous resolution [22,28].

Vaginal delivery, although having other benefits, compared to
cesarean section significantly increases the statistical risk for DDH [29].

Limited fetal mobility Factors such as oligohydramnios [30], high birth weight (HBW) or
primiparity [18], present an increased risk for DDH.

Swaddling Certain populations have reported higher incidence rates of DDH
due to tight swaddling techniques [31,32].

Family history

Family history and its genetic contribution increase twelvefold the
risk of DDH incidence in first-degree relatives [33,34].

Caucasian population: IL-6, TGFB1
Asian population: COL2A1, DKK1, HOXB9, HOXD9, WISP3

Non-specific: COL1A1, CX3CR1, GDF-5, PAPPA2

Presence of different
malformations

Down’s syndrome or foot malformations e.g. clubfoot [35,36].
Torticollis, metatarsus adductus, laxity of tendons.

Intra- or extra-articular
instability of the joint

Usually consequences of poor care and/or injuries causing
damage to the hip joint, e.g. inflammation of surrounding

tendons, some diseases (Legg–Calvé–Perthes Disease),
acetabular labrum lesions or abnormalities [37–39].

Ligamentous laxity leading to instability.
In a recent study, hypertrophy of the Transverse Acetabular

Ligament did not prove to be causative in DDH [40].

Altitude A recent study in Tibet found increased DDH
incidence with increasing altitude [41].
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4. Genetic Aspects

Although every patient with DDH needs to be assessed individually by precise radiological and
clinical examination, extensive knowledge of the genetic background would greatly contribute to the
diagnostic and therapeutic process. Factors such as specific screening programs for children with
positive family history and gene-based prediction of disease behavior and severity could significantly
influence the management of these patients.

A family in Utah had an inheritance pattern in four generations consistent with an autosomal
type of inheritance with variable expressivity [42]. This type of DDH with a suspected mutation
in the CX3CR1 gene has been designated type 2. DDH type 1 is characterized by a multifactorial
type of inheritance and a variable phenotype with a number of candidate genes, many of which are
investigated by various studies. The long arm of the 17th chromosome contains a region of HOX genes
that are significantly associated with DDH. This region is essential for mesenchymal cell positional
information in developing joints [43].

For a long time, it was believed that individual candidate genes are responsible for certain
malfunctions in the physiology of connective tissue or structural proteins of the joint capsule and
by this mechanism cause DDH. A two-gene system in DDH has been proposed by some authors,
where one gene is responsible for joint laxity and the second affects e.g. acetabular abnormalities [44].
However, to create a pathology of this complexity, the background of DDH cannot be caused by a
single or double gene aberration. It is more likely that the multifactorial etiology is affected by a larger
number of genes and thus proving this disorder to be polygenetic.

The development of new, more advanced methods in molecular biology and genetics brought a
significant change to molecular diagnostics. However, NGS (next-generation sequencing) is yet to be
widely implemented in genetic research. Study designs used to identify the majority of associated genes
in DDH research are CGASs (candidate gene association studies) along with genome-wide association
studies (GWASs or WGASs—whole-genome association studies). RFLP (Restriction fragment length
polymorphism) is an older method, that was used to identify single-nucleotide polymorphisms (SNPs)
and polymorphisms. Nowadays, RFLP is not preferred for its low output. On the other hand,
WES (whole-exome sequencing), an NGS method with a much larger output, is becoming the focus in
genetic studies. As of yet, only three genes have been identified by WES: the CXCR1 (C-X-C motif
chemokine receptor 1) gene in 2013, the BMS1 (ribosome biogenesis factor) gene in 2018 [45] and the
TENM3 (teneurin 3) gene in 2019 [46].

CGAS utilizes a single-gene approach that offers certain advantages for the most relevant genes,
which are prioritized [47,48]. We chose these genes based on a hypothesis about a specific role of a
gene, or multiple pathway-related genes, on a certain phenotype. There are two primary approaches
to choosing a candidate gene. First, a candidate gene is chosen based on the presence of a large effect
mutation in a specific gene that potentiates more severe phenotypes of the studied disease. The second
approach to identify a candidate gene is to choose a gene based on a biochemical process known to be
associated with the etiology of the studied disease. Structures of these studies are usually case-control,
in which pathological cases of the studied disease and healthy controls are first identified, and later
examined for SNPs, haplotypes and copy-number variants (CNVs).

GWAS is a systematic observational study of a genome-wide set of genetic variants in individuals,
which are based either on genotype or phenotype for the studied trait. The focus of these studies is
on SNPs, which are characterized by the substitution of a single nucleotide in a specific position and
therefore create variants or alterations of genes [49]. GWAS utilizes microsatellites and SNP tags. In the
past, even though they were able to identify new genes and regions previously not associated with
a disease, the efficacy of GWASs was in question, because using microsatellites yielded low output
and frequent false positivity, which was slowly diminishing the importance of this method. However,
NGS and advancement in genotyping systems brought SNP-based GWASs that are able to use more
than a million markers at once, which have proven very effective in identifying regions important in the
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development of autoimmune and genetic disorders. In fields of study such as psychiatry, association
studies have proven much more effective, than CGASs [50].

Systematic studies using another approach in genetic diagnostics are genome-wide linkage
analyses (GWLAs), which utilize pedigrees to identify loci and their effects characteristic for a certain
disease. Linkage analyses are also used for genetic mapping in cases where the evaluation of genetic
predisposition is essential. The multifactorial nature of inheritance in DDH is a problematic aspect,
as the presence of a potentially pathological genetic finding may not have a phenotypic manifestation.
Phenotypic variability in families has been observed [51].

Studies in Europe indicate that the main genes involved in DDH pathology are genes for IL-6
(interleukin 6) [52], TGFB1 (transforming growth factor beta 1 or TGF-β1) [52] and GDF5 (growth
differentiation factor 5 or cartilage-derived morphogenetic protein 1) [49]. Although frequently studied
in the Chinese population, PAPPA2 (pappalysin 2 or pregnancy-associated plasma protein-A2) needs
yet to be thoroughly studied in the European population [53]. Table 2. presents an up-to -date list of
genes positively associated with DDH in literature along with their specific localization, SNPs, study
designs and original publication. Figure 2. presents these associated genes and their suspected effects
in the pathogenesis of DDH.

Table 2. Genes associated with DDH.

Gene Localization Reference SNP Study Design Original Publication

ASPN 9q22.31 D repeat polymorphism CGAS Shi, D. et al., 2011 [47]

BMS1 10q11.21 rs201298233 WES Zhu, L. et al., 2019 [45]

COL1A1 17q21.33 rs113647555 CGAS Zhao, L et al., 2013 [54]

CX3CR1 3q22.2
rs3732378 GWLA Feldman, G.J. et al., 2013 [42]

rs3732379 GWLA Basit, S. et al., 2018 [55]

DKK1 10q21.1 rs1569198 CGAS Liu, S. et al., 2014 [56]

FRZB 2q32.1 rs288326 GWAS Evangelou E. et al., 2009 [57]

GDF5 20q11.22
rs143383 CGAS Dai, J. et al., 2008 [58]

rs143384 GWAS Hatzikotoulas, K. et al., 2018 [49]

HOXB9 17q21.32 rs2303486, rs8844 CGAS Hao, Z. et al., 2014 [59]

HOXD9 2q31.1 rs711819 CGAS Tian, W. et al., 2012 [60]

IL-6 7p15.3 rs1800796 RFLP Kolundžić, R. et al., 2011 [52]

PAPPA2 1q25.2 rs726252 CGAS Jia, J. et al., 2012 [53]

TBX4 17q23.2 rss3744448 CGAS Wang, K. et al., 2010 [61]

TENM3 4q34.3-q35.1 rs183721398 WES Feldman, G.J. et al., 2019 [46]

TGFB1 19q13.2 rs1800470 RFLP Kolundžić, R. et al., 2011 [52]

UQCC1 20q11.22 rs6060373 GWAS Sun, Y. et al., 2015 [62]

WISP3 6q21 rs1230345 CGAS Zhang, J. et al., 2018 [48]

CGAS—Candidate gene association studies; WES—Whole-exome sequencing; GWLA—Genome-wide linkage
analysis; GWAS—Genome-wide association analysis; RFLP—Restriction fragment length polymorphism.

IL-6 is linked to DDH with its complex role in the physiology of bone metabolism, calcium and
vitamin D levels, which plays a considerable role in the pathogenesis of osteoporosis [63]. Mutations
of a single nucleotide—SNPs—located in the promoter of IL-6 are linked to OA [64], which is often
the result of an untreated DDH. A symptomatic distal interphalangeal (DIP) osteoarthritis can also be
caused by these mutations, which affect IL-6 secretion and transcription [65]. Lower susceptibility
to OA along with lesser radiological impairment in both knee and hip joints has been observed in
individuals carrying the C allele. If compared to the GG genotype, a reduction in IL-6 serum levels was
observed in individuals with CC and CG genotypes. The presence of a G allele at the IL-6 polymorphic
promoter in patients with DIP OA was associated with severe symptomatic and symmetrical outcomes.
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TGF-β1 is a pro-inflammatory cytokine that plays a role in the etiopathogenesis of OA. TGF-β1
plays a crucial role in the regulation of perichondrial and fibroblast cells in tendons, in bone remodeling
process, and in the regulation of cartilage development [66,67]. Control of cell growth along with
differentiation, proliferation, and apoptosis are the main functions of this protein [68]. Polymorphisms
in the TGFB1 gene are significantly associated with OA of the hip joint in studies based on the Croatian
population [52].

GDF5 is a member of TGF-beta superfamily [69] and plays a key role in the formation of bones
and synovial joints, endochondral ossification, maintenance of tendons and other musculoskeletal
processes [70]. A broad spectrum of skeletal disorders and abnormal development of joints have been
associated with aberrations in the human GDF5 gene [71,72]. Association between GDF5 and OA has
been presented by several studies [73]. The risk allele T causes a reduction of expression of the GDF5
promoter sequence activity and increased risk for OA [74], which has also been observed by Rouault
et al. in the Caucasian population [75].

PAPPA2 is a bone formation stimulator. Studies indicate, that involvement in normal postnatal
growth may also be a function of this gene [76]. Osteoblasts during fetal development and differentiating
chondrocytes during the endochondral bone formation express the substrate for PAPPA2 [53]. PAPPA2
encodes a novel metalloproteinase pappalysin 2 which may play roles in fetal development [77,78].
animal model study on mice showed the possibility of pappalysin 2 involvement in DDH etiology
by the interference in the cartilaginous and fibrous metabolism via proteins associated with the IGF
signaling pathway [79].
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5. Epigenetics

Epigenetic modifications cause variations in gene expression. In this case, heritable alterations in
the expression of genes that result in a variation of the phenotype do not affect the DNA sequence,
thus changes to the genotype are not involved. Several factors including age, environment, and specific
disease state are the main influence that potentiates the epigenetic changes [80].

First of the epigenetic modifications is DNA methylation, which has a profound effect on gene
expression and thus on the development of diseases associated with them. DNA methylation has
an inhibitory effect on gene expression. The addition of methyl groups (-CH3) is controlled in cells
and carried out by DNMT (DNA-methyltransferase) enzymes. These enzymes transport the methyl
group (-CH3) to cytosine residues to form 5-methylcytosine, which exists in a CpG (cytosine-guanine)
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sequence. DNA methylation leads to chromatin remodeling and gene suppression by two mechanisms:
directly mediated inhibition of DNA binding transcription factors and the other is mediated by specific
proteins that contain a methylated DNA binding domain that binds between histones and methylated
DNA [81,82]. A recent study found that the condition of methylation of the GDF5 gene is dysregulated
in DDH patients. This fact may cause changes in GDF5 expression. Since the GDF5 plays a very
important role in the development of cartilages and bones, then a reduction in expression may be
causative to the development of DDH [83].

A recent study comparing cartilages from three different groups of patients: a healthy 14-year old
adolescent, patients with old-age arthritis and a 23-year-old young adult with OA after failed DDH
treatment. This study showed, that the loss of DNA methylation at certain CpG sites in the promoter
regions was associated with the expression of proteolytic enzymes in the chondrocytes of this patient.
This loss of DNA methylation is also observed in primary old-age OA, which suggests that age is not
the only denominator for the epigenetic “unsilencing” specific for OA [84].

The second epigenetic modification is histone modification, which usually is a post-translational
modification of histones. The third epigenetic mechanism is non-coding RNA-associated gene
silencing. A study in China analyzed the expression level of Col2A1 and found that it was significantly
downregulated in DDH. Further, the expression of lncRNA H19 in the DDH showed that within the
control and the study group, the expression of H19 was considerably decreased in the group of DDH
patients [85]. An important transcription factor for chondrogenesis during skeletal development is
SOX9, expressed by mesenchymal stem cells. If downregulated by histone modification and DNA
methylation, SOX9 decreases the expression of collagen and aggrecan in chondrocytes [86,87].

6. Conclusions

Despite the existence of guidelines for evaluation, diagnostics and referral for DDH, authors
find it troublesome to reach a consensus on diagnostics in adult patients. Evidence based medicine
still lacks knowledge and more specific information about precise genetic examination and screening.
This is also burdened by the coexistence of other syndromic or non-syndromic conditions in which hip
dysplasia is only a manifestation. In clinical practice, individual clinical and radiological phenotypical
characterization of each patient is essential. To resolve the heritability and find a better preventative
strategy, gene variations need to be studied and correlated with physical examination. One possibility
to achieve this goal is by a wide genetic screening program aimed at newborns with positive family
history, or if spontaneous hip reduction within the first three months of life is not experienced. However,
the collection samples for various diseases could prove very difficult, time-consuming and challenging.
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