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Abstract: Inflammatory bowel disease (IBD) is an illness with increasing prevalence, particularly in
emerging countries, which can have a substantial impact on the quality of life of the patient. The
illness is rather heterogeneous with different evolution among patients. A machine learning approach
is followed in this paper to identify potential genes that are related to IBD. This is done by following
a Monte Carlo simulation approach. In total, 23 different machine learning techniques were tested (in
addition to a base level obtained using artificial neural networks). The best model identified 74 genes
selected by the algorithm as being potentially involved in IBD. IBD seems to be a polygenic illness, in
which environmental factors might play an important role. Following a machine learning approach,
it was possible to obtain a classification accuracy of 84.2% differentiating between patients with IBD
and control cases in a large cohort of 2490 total cases. The sensitivity and specificity of the model
were 82.6% and 84.4%, respectively. It was also possible to distinguish between the two main types of
IBD: (1) Crohn’s disease and (2) ulcerative colitis.

Keywords: inflammatory bowel disease; Crohn’s disease; ulcerative colitis

1. Introduction

In this paper, the genetic expression signature of inflammatory bowel disease is
analyzed using machine learning techniques. Inflammatory bowel disease (IBD) is a
chronic [1] inflammatory disease, whose cause remains unclear. Patients can show an array
of different symptoms. According to the Mayo Clinic, some of the most common symptoms
associated with inflammatory bowel disease include pain, diarrhea, fatigue, cramps, blood
present in stools and weight loss. Extraintestinal symptoms appear in approximately 24%
of patients [2]. Patients can also have very different evolution and responses to treatments.

Another interesting characteristic of this illness, so far without a good explanation, is
that it tends to have a higher incidence and prevalence in urban areas [3] compared to rural
areas, perhaps suggesting a link to lifestyles. The incidence of IBD has been increasing [4].
Inflammatory bowel disease is becoming an increasingly important health problem [5].
Developing and newly industrialized countries are seeing a particularly rapid increase in
the incidence of the illness [6]. The reasons behind this increase remain unclear. It might
be related to changes in dietary habits or exposure to pollutants, but there are currently,
to the best of our knowledge, no definitive data to prove it. It is also likely that the illness
is being detected earlier in those countries as their healthcare infrastructure develops.
Nevertheless, environmental factors appear to play a role in the illness. IBD increases the
chances of developing other illnesses, such as colorectal cancer [7] and osteoporosis [8].
More than 7% of patients with IBD develop osteoporosis [8]. Additionally, IBD can have a
very significant impact on the quality of life of the patient and can make normal activities,
such as working, challenging in some severe cases.

One of the main theories of the cause of IBD is that it is an abnormal immune response
in genetically predisposed individuals, triggered by some external factor such as a virus
or bacteria [9,10]. Cytokines appear to play an important role in IBD [11]. Lifestyle
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factors, such as stress, smoking and diet [12], have also been identified in the literature
as having a role in the illness [13]. The illness results in a defective regulation of the
mucosa [14]. Tamboli et al. [15] specifically mentioned intestinal bacteria as a major factor
in the initial stages of the disease. Chang [16] concluded that the two causative agents are
(1) abnormal immune response in the gastrointestinal mucosa and (2) alterations in the
gut microbiome [17]. The two major forms of IBD are ulcerative colitis (UC) and Crohn’s
disease (CD) [18]. A visual representation of UC and CD is shown in Figure 1.

Figure 1. Visual representation of Crohn’s disease (left) and ulcerative colitis (right). It can be seen
some of the usual areas involved in UC and CD. It should be noted that there is substantial variation
among patients.

IBD appears to have a genetic component. Loddo and Romano [19] mentioned that
approximately 15% of the patients with Crohn’s disease have a family member with the
same condition. They also mentioned a 50% concordance in monozygotic twins. Bernard
and Ramnik [20] concluded that genes help regulate the complex interaction between
microbial and environmental factors. Another indications of a genetic component in
the disease is that some ethnic groups, such as Ashkenazim, have higher incidence and
prevalence [21]. Some authors, such as McGovern et al. [22], highlighted the issue that a
large amount of the existing literature focuses on individuals of European ancestry. This is
especially important in an illness such as IBD, in which ethnicity seems to play an important
role not only in terms of prevalence but also in terms of early onset, reaction to the treatment
and severity of the illness. A schematic representation of the interaction between genetic
predisposition and environmental factors is shown in Figure 2. The underlying mechanics
of this interaction between genetic predisposition and environmental factors remain not
well understood.

Figure 2. Schematic representation of the interaction between genetic predisposition and environ-
mental factors in ulcerative colitis (UC) and Crohn’s disease (CD). IBD, in both of its main forms, is
likely caused by a combination of underlying genetic conditions and environmental conditions.
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There have been many developments in the genetics of IBD, but despite the identifi-
cation of some genes, the underlying process remains not well understood. The evidence
points to a process in which multiple genes are involved (polygenic) [23,24]. Cho and Abra-
ham [25] cited the well-known Nod2 (CARD15) polymorphism association with Crohn’s
disease. This gene is located in chromosome 16 and has been mentioned by multiple
authors [26]. Katuka et al. [27] mentioned that in Japan, the NUDT15 polymorphism is
routinely tested before administering thiopurine to inflammatory bowel disease patients.
Mathew and Lewis [28] studied genes in chromosome 5q31n 6p21 and 19p. Achkar and
Duerr [29] identified IL23R and ATG16L1 as being involved in CD. These two genes are
frequently mentioned in the existing literature [30]. Stoll et al. [31] identified DLG5, while
Cleynen et al. [32] identified 163 susceptibility loci for IBD. Ahmad et al. mentioned that
CD and UC are related diseases that share some but not all the susceptibility genes [33].
Inflammatory bowel disease is a chronic disease that typically requires lifelong medica-
tion [34]. Given the heterogeneity in the illness, it is not surprising that there are multiple
treatment options with different levels of expected success.

Machine learning techniques are increasingly popular in medicine with applications in
many different types of illness [35–37]. There has been some interesting research applying
machine learning techniques in the context of inflammatory bowel disease [38–40]. This has
been in part due to the large amount of data generated experimentally [41] and the need to
come up with appropriate techniques to analyze such a large quantity of data. For instance,
Wei et al. [42] used GWAS data to carry out a risk assessment of patients with ulcerative
colitis or Crohn’s disease. Isakov et al. [43] identified 67 genes using machine learning
techniques related to IBD. Coelho et al. [44] also used machine learning techniques, but
their analysis covers pediatric patients, who have some characteristics different from the
usual adult case. The same group of authors published another interesting paper [38] using
three different machine learning techniques and endoscopic data, achieving an accuracy
of 71.0%, 76.9% and 82.7% respectively. The work of Smolander et al. [45] is another
interesting paper analyzing gene expression, using machine learning techniques in the
context of complex disorders. Some authors, such as Stankvic et al. [46], mentioned that
despite an increase in the use of machine learning techniques in IBD, the understanding of
the illness remains incomplete.

One of the main objectives of this article is trying to identify genes that are relevant in
the context of inflammatory bowel disease using machine learning techniques. The genes
are chosen by selecting those genes with a gene expression level that is empirically useful to
distinguish between control individuals and patients with IBD. The details of this process
will be explained in the next section, but it is based on using different machine learning
techniques (classification purposes) in combination with Monte Carlo simulations for the
selection of genes. Another objective of this article is to be able to identity appropriate genes
differentiating between Crohn’s disease and ulcerative colitis using a similar approach than
when distinguishing between healthy and IBD patients.

2. Materials and Methods

The dataset was retrieved from the Gene Expression Omnibus. The identification
number is GSE 193677 [47]. The data include 2490 total cases. Of these 2490 cases, 461 are
controls cases, while 2029 are individuals with adult inflammatory bowel disease (IBD).
Of those 2029, a slight majority of 1157 have Crohn’s disease while 872 have ulcerative
colitis. The average age of the patient is 44.9 years, with a range from 19 to 82 years old.
A histogram showing the age distribution is shown in Figure 3. There are 1174 female and
1316 male cases. Tissue biopsies were obtained in the right colon, left colon, transverse,
rectum, Ileum, sigmoid and cecum. The number of cases for each of this regions is summa-
rized below in Table 1. The data consist of gene expression profiling by high throughput
sequencing obtained using the Illumina HiSeq 2500 (Illumina, Inc. San Diego, CA, USA).
There are 56,632 expression profiling data per patient.
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Figure 3. Histogram describing the age of the patients. The range is from 19 to 82 years old.

Table 1. Biopsies (tissue areas).

Area Cases

Rectum 904
Left colon 180

Right colon 252
Ileum 672

Transverse 90
Sigmoid 163
Cecum 229

The data were divided into two subgroups, a training dataset and a testing dataset.
ΨTr denotes the training dataset and ΨTs the testing dataset. The training and testing
datasets contain approximately 80% and 20% of all the cases, respectively. Each column
represents a patient. The division into a training and a testing dataset was carried out in a
randomized way to try to avoid introducing biases in the analysis. The first row in each
dataset contains a numerical classifier identifying the subject as a control or patient (UD or
CD) as shown in Equation (1):

∀j ∈ [1, n], Φj = {Control = 0, UC = CD = 1} (1)

with n being the total number of cases. An example, for clarity purposes, can be seen in
Equation (2):

Φ = {Φ1, Φ2, ..., Φn} = {1, 0, ..., 1} (2)

The following two rows contain the age (a), see Equations (3) and (4), and the gender
(S), see Equations (5) and (6), of each individual, respectively:

∀j ∈ [1, n], aj = {xj} x ∈ R (3)

a = {age} = {a1, a2, ..., an} = {47, 52, ..., 61} (4)

∀j ∈ [1, n], Sj = {Female = 0, Male = 1} (5)

S = {gender} = {S1, S2, ..., Sm} = {0, 1, ..., 1} (6)

In a similar way, the following row contains the region for the biopsy. All the other
rows contain gene expression data (see Equations (7) and (8)):

∀j ∈ [1, n], ∀k ∈ [1, m], gkj = {Zkj} Z ∈ R (7)
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Gk = {gkj} = {18, 241, ..., 132} (8)

where k is the index for each row. An example, for visualization purposes, of the data can
be seen in Equation (9):

ΨTr =



0 1 2 0 · · ·

60 45 35 55 · · ·
0 0 1 1 · · ·
0 0 0 1 · · ·

80 30 55 40 · · ·
...

...
...


(9)

As a first step, the correlation C0(c, d) between the categorical data representing the
classification group (control or IBD) and each row is calculated (Equations (10)):

∀ k ∈ [1, m], C0 = C0(Φ, Gk) (10)

Therefore, C0 is a vector with m components. From this mapping, the highest
q% (0 ≤ q ≤ 100) is selected among these m values. Hence, there is a reduction in
the dimension of the vector (Equation (11)):

C0(dim = m)⇒ C∗0 (dim = m < k) (11)

This step is performed in an attempt to include the factors that are potentially able to
generate an accurate model while filtering out potential noise (not all genes are involved in
inflammatory bowel disease). In other words, it is an attempt to filter out noise from genes
than have no biological impact on the disease but that can lead the model to find spurious
relationships given the large amount of data. The above-mentioned step is carried out only
with the training dataset (containing approximately 80% of the cases). After this step, when
the genes have already been selected, then all the other genes will be excluded from both
the training and the testing dataset. In this way, it is possible to carry out a filtering of the
initial gene list. A selection of 23 machine learning techniques was selected; see Table 2.
Ten times cross validation was carried out (training dataset).

Table 2. Selected machine learning algorithms.

Algorithm Algorithm

Complex Tree Fine KNN
Medium Tree Medium KNN
Simple Tree Coarse KNN

Linear Discriminant Cosine KNN
Quadratic Discriminant Cubic KNN

Logistic Regression Weighted KNN
Linear SVM Boosted Trees

Quadratic SVM Bagged Trees
Cubic SVM Subspace Discriminant

Fine Gaussian SVM Subsspace KNN
Medium Gaussian SVM RUSBossted Trees
Coarse Gaussian SVM

The artificial neural network (ANN) is a well-known machine learning algorithm.
Given its versatility and wide use, this technique is used to determine a baseline classifi-
cation accuracy, against which the other techniques are compared. In the ANN approach,
it is necessary to carry out hyperparameter optimization. One of the key parameters to
optimize is the number of layers in the ANN. This is achieved by carrying out simulations
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from 1 to 1000 layers and the related accuracy estimated. Unless explicitly mentioned, the
accuracy (and other measures of the goodness of the fit) is that of the testing dataset (not
used during the training phase). In this way, for each configuration γ (γ = {1, ..., 1000}),
an accuracy Ann measure is estimated (Aγ

nn). Then, the best model (Ānn) is selected as

Ānn(γ) = sup(Aγ
c ) (12)

This is the baseline model. For each machine learning techniques, the model is trained
with the training dataset, and then an accuracy estimate is obtained, and the best model
Ā(λ) is selected (Equation (13)). The training and model selection (gene selection) is entirely
performed with the training dataset. After the model is selected (including the genes),
the accuracy and other metrics are expressed in terms of the testing dataset (not used for
training or model selection):

Ā(λ) = sup(Aλ) (13)

Then this is compared to the base level, selecting the final best model Āmax as follows:

Amax = max{Ānn(γ), Ā(λ)} (14)

This analysis is initially carried out for all the gene expression data available after
selecting the top q = 1%. In this case, the initial number of gene expression data per patient
entails 566 rows of information. Then a Monte Carlo approach is followed, in which the
number of rows is randomly reduced in each iteration by a random number β. This random
number β is changed in each iteration and is strictly less than the total number of rows
in the previous iteration. An example is summarized in Table 3. The rationale behind
using a Mote Carlo simulation approach is that it is not feasible to estimate all the possible
combinations of 566 genes, and hence some type of combinatorial approach needs to be
used. This is a frequent situation in polygenic illness, such as IBD, in which a potentially
large number of genes might be involved in the disease.

Table 3. Example of iterative algorithm testing different configurations of gene expressions.

Iteration Initial N. Genes β

0 566 30
1 536 125
2 411 58
3 353 9
4 344 215
...

...
...

This process is repeated p times (p = 100), and the ten most accurate models are selected.
In the second section, a similar approach is followed but the mapping shown in

Equation (1) has to be changed, as the objective is now to distinguish between ulcerative
colitis and Crohn’s disease cases (the two major types of IBD). The mapping in this case is
as follows (Equation (15)):

∀j ∈ [1, u], Φj = {UC = 0, CD = 1} (15)

An alternative approach to the one presented is using a linear approach, such as,
for instance, lasso regression [48,49]. Lasso regression offers the advantage that it makes
some of the coefficients equal to zero, in practice reducing the number of inputs to the
model. Using lasso regression, it is possible to reduce the number of genes selected for
the classification model. In fact, lasso has become a frequently used feature selection
algorithm [50,51].
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3. Results

As previously described, the first step involves estimating a base level for the accuracy
using artificial neural networks with simulations using 1 to 100 hidden layers. Each layer
consists of 30 neurons. As it can be seen in Figure 4, increasing the number of layers does not
necessarily translate into higher accuracy. The highest accuracy (testing dataset) obtained
is 80.35% with a configuration including 920 hidden layers. The only other simulation
reaching an accuracy above 80.00% is an ANN with 330 layers, reaching 80.10%. All the
other simulations achieve a mean accuracy below 80.00%. No model has an accuracy below
70%. These results are obtained for a configuration of 74 rows (gene expression) which,
as will be shown later, is the configuration that obtains the highest accuracy for the machine
learning algorithm tested. As previously mentioned, the reported accuracy is the accuracy
of the testing dataset, which is not used during the training phase.

Figure 4. Accuracy of the neural network model for a range of number of artificial neurons. No
model has an accuracy below 70% or higher than 80.35%.

Different machine learning algorithms are tested (as described in the Materials and
Methods section). As an example, in Table 4, the accuracy results for one of the simulations
are shown (140 gene expressions). In this specific case, the highest accuracy obtained is
81.5%. This accuracy is obtained by five different algorithms (Linear SVM, Fine Gaussian
SVM, Medium Gaussian SVM, Coarse Gaussian SVM and Coarse KNN).

The results from the 10 most accurate simulations can be seen in Table 5. Of the ten
most accurate results, nine use the bagged trees algorithm. The only other algorithm in the
top ten most accurate models is the Subspace KNN. The highest accuracy is obtained for a
model with 74 gene expression data, obtaining an accuracy, sensitivity and specificity of
84.2%, 82.6% and 84.4%, respectively. The list with these 74 genes can be found in Table 6.
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Table 4. As an example, in this table, sample training with all 23 algorithms is shown. In this case,
the model uses 140 gene expression data and the highest accuracy is 81.5%. This accuracy is actually
reached by several algorithms (Linear SVM, Fine Gaussian SVM, Medium Gaussian SVM, Coarse
Gaussian SVM and Coarse KNN).

Algorithm Accuracy

Complex Tree 0.701
Medium Tree 0.783
Simple Tree 0.804

Linear Discriminant 0.645
Quadratic Discriminant 0.711

Logistic Regression 0.807
Linear SVM 0.815

Quadratic SVM 0.788
Cubic SVM 0.756

Fine Gaussian SVM 0.815
Medium Gaussian SVM 0.815
Coarse Gaussian SVM 0.815

Fine KNN 0.719
Medium KNN 0.770
Coarse KNN 0.815
Cosine KNN 0.768
Cubic KNN 0.764

Weighted KNN 0.773
Boosted Trees 0.805
Bagged Trees 0.804

Subspace Discriminant 0.812
Subsspace KNN 0.748

RUSBossted Trees 0.606

Table 5. Top ten models obtained according to the accuracy metric.

N. Genes Algorithm Accuracy Sensitivity Specificity

74 Bagged Trees 0.842 0.826 0.844
38 Subspace KNN 0.842 0.755 0.859
18 Bagged Trees 0.839 0.787 0.847

139 Bagged Trees 0.836 0.755 0.850
220 Bagged Trees 0.834 0.758 0.847
266 Bagged Trees 0.833 0.740 0.850
26 Bagged Trees 0.833 0.821 0.834
16 Bagged Trees 0.833 0.879 0.828
17 Bagged Trees 0.831 0.738 0.848

104 Bagged Trees 0.830 0.750 0.843

The results, when differentiating UC and CD cases, are not as accurate as when
differentiating between control cases and IBD cases. This is in line with the expectations, as
we are differentiating between two types of the same illness. These results are shown in
Table 7. The most accurate result is obtained when using 562 gene expression data and the
bagged trees algorithm. The accuracy, sensitivity and specificity are 73.4%, 79.0% and 71.2%,
respectively. The list with these 562 genes can be found in the Supplementary Material.
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Table 6. List of 74 genes selected by the algorithm.

B2M RPS3 CHP1 SLC35A3
MALAT1 MAN2B1 ETNK1 PDIA3
EEF1A1 NDRG1 SLC1A2 DDX3X
MUC2 AHCYL2 GHITM WDR1
FABP6 RPS14 MGAT4A KLF5
KRT20 MYO1D CLDN7 TSC22D1
CA1 A2M COPZ2 RPL35A

FLNB ADH1C APOC3 SCP2
PHGR1 DDX17 SAT1 MATR3

IGKV1-5 FOS ACE CD46
CKB RPL7 CD2AP HNRNPH1

FABP1 SLC44A1 PAPSS2 PRKDC
FABP2 FN1 PDCD4 RPL37
CLDN4 RPL18 HPGD LUM
TSPAN3 TDP2 UGT2A3 HSPA9
CDHR2 RPS12 UQCRC1 KIAA1109
CLTC SPINT2 ST6GALNAC6 MIM24

COL1A2 RPL10A ARF1
ENO1 NCOA4 PRKACB

Table 7. Top ten models obtained according to the accuracy metric distinguishing UC and CD patients.

N. Genes Algorithm Accuracy Sensitivity Specificity

562 Bagged Trees 0.734 0.790 0.712
66 Bagged Trees 0.728 0.679 0.767
24 Bagged Trees 0.718 0.665 0.742
37 Bagged Trees 0.718 0.821 0.687

564 Bagged Trees 0.712 0.909 0.671
132 Bagged Trees 0.704 0.929 0.676
49 Bagged Trees 0.704 0.679 0.719
15 Bagged Trees 0.700 0.713 0.697

550 Bagged Trees 0.694 0.871 0.659
277 Bagged Trees 0.673 0.616 0.717

As previously mentioned, an alternative approach to the one proposed is using lasso
regression as a tool for the selection of inputs. The lasso approach selects 470 genes with
the goodness-of-fit metric shown in Table 8. The accuracy and specificity results obtained
in this approach are similar to those obtained in the proposed approach in the previous
section. However, the sensitivity results from the lasso approach seem to be lower.

Table 8. Top ten models obtained using the lasso approach (470 genes) according to the accuracy
metric distinguishing between control and UC and CD patients.

Algorithm Accuracy Sensitivity Specificity

Medium KNN 0.817 0.667 0.817
Bagged Trees 0.817 0.667 0.817

Weighted KNN 0.815 0.500 0.816
Cubic KNN 0.807 0.143 0.815
Simple Tree 0.804 0.231 0.816

Subspace Dis. 0.804 0.405 0.829
Linear Dis. 0.802 0.433 0.842

Cosine KNN 0.802 0.300 0.819
Medium Tree 0.797 0.200 0.817

Subspace KNN 0.786 0.313 0.826

The lasso approach is also used to distinguish between UC and CD patients. In this
case, the lasso approach selects 430 genes. The table with the goodness-of-fit results in this
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approach is shown below (Table 9). The results using the lasso approach to distinguish
between UC and DC patients are not as accurate as in the previous section. In both cases,
using lasso or the proposed approach, differentiating between UC and DC patients appears
to be more challenging than differentiating between control health individuals and patients
with UC/CD. The lasso approach does not appear to increase the goodness of fit of the
classification forecasts compared to the approached followed in the previous section.

Table 9. Top ten models obtained using the lasso approach (430 genes) according to the accuracy
metric distinguishing between UC and CD patients.

Algorithm Accuracy Sensitivity Specificity

Subspace Dis. 0.584 0.611 0.523
Logistic Reg. 0.572 0.617 0.503

Medium KNN 0.568 0.580 0.493
Cubic KNN 0.562 0.578 0.474

Weighted KNN 0.560 0.584 0.478
Simple Tree 0.558 0.569 0.412

Bagged Trees 0.558 0.583 0.474
Boosted Trees 0.556 0.580 0.467
Cosine KNN 0.550 0.574 0.448

Fine KNN 0.538 0.595 0.463

4. Discussion

Machine learning techniques are used to identify a set of 74 genes, which can be used,
with an average accuracy of 84.2%, to distinguish between control (healthy individuals)
and patients with inflammatory bowel disease. The specificity and sensitivity of this
model are also relatively high at 82.6% and 84.4%, respectively. The selection of these
74 genes is carried out following a Monte Carlo simulation approach. Given that some of
the symptoms of inflammatory bowel disease are common in other illnesses, it might be
interesting to have another objective diagnostic tool. It is also interesting to observe that
among multiple machine learning techniques used in the cohort of patients analyzed, the
bagged trees approach seems to consistently achieve a high level of accuracy, particularly
when compared to other, arguably more sophisticated machine learning techniques, such
as artificial neural networks. The analysis controls for age, gender and region of the
biopsy. The proportion of female and male cases is balanced, with 1174 female patients
and 1316 male patients. The average age in the cohort is 44.9 years, covering a wide age
range (from 19 to 82 years old). The results of the artificial neural networks include an
optimization of the hyperparameters with simulations ranging from 1 to 1000 hidden layers.
It is also observed that simply increasing the number of layers in an artificial neural network
does not necessarily translate into better accuracy. It is also possible to distinguish between
the two main types of IBD—Crohn’s disease and ulcerative colitis—but in this case with a
lower level of accuracy. The accuracy, using this approach is 73.4%. The accuracy, sensitivity
and specificity reported are those of the testing dataset. As normal practice, the data are
divided into training and testing datasets in an attempt to increase the reproducibility
of the analysis. Approximately 20% of the total cases are included in the testing dataset.
The relatively large number of genes obtained in the bets model is in line with the prevalent
view in the existing literature that the illness is polygenic.

There is a high degree of heterogeneity in inflammatory bowel disease, leading to
varied severity and evolution of the illness. The existing literature, see, for instance,
Yamamot et al. [52] or Ahmad et al. [33], points towards a polygenic illness with a
complex interaction with environmental factors. Our results are consistent with this
polygenic description. In this context, it is important to generate algorithms that are
able to differentiate among control and patients as well as between different types of
inflammatory bowel disease, namely Crohn’s disease and ulcerative colitis. A promising
area of future research is to apply this type of approach in order to target treatments in a
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more personalized way. It seems reasonable that there could be genetic differences among
patients that can have a substantial impact on the outcome of the suggested treatments.
This is particularly important in the context of inflammatory bowel disease, given the
heterogeneity of the responses to treatments by different patients.

Some of the genes identified by the proposed algorithm are cited in the existing
literature on intestinal-related illnesses. B2M was mentioned by Krzystek-Korpacka et al. [53]
in the context of bowel inflammation. There are other papers, such as that of Bednarz-
Misa et al. [54], discussing B2M in the context of bowel inflammation and cancer. Another
gene identified by the algorithm is MALAT1, which is also mentioned in the existing
literature. Li et al. [55] suggested that MALAT1 maintains intestinal mucosal homeostasis
in Crohn’s disease. The authors concluded that the downregulation of MALAT1 contributes
to the pathogenesis of CD. EEF1A1 was identified in a dog study as being involved
in inflammatory bowel disease and cancer by Sahoo et al. [56]. The role of MUC2 in
protecting the integrity of the mucosa was mentioned by Huang et al. [57]. The authors
mentioned that it is possible to induce colitis in mice by suppressing the MUC2 gene.
Heimel et al. [58] found high levels of expression of FABP2 and FABP6 when analyzing
alterations in intestinal fatty acid metabolism in IBD. CA1 was mentioned by Xie et al. [59]
as playing a role in IBD. PHGR1 was identified by Camilleri et al. [60] as potentially
increasing the risk of diverticular disease of the colon. FABP1 was identified as a biomarker
for Crohn’s disease by Dooley et al. [61]. COL1A2 was mentioned by Prados et al. [62]
in murine models of IBD. ENO1 was mentioned by Shkoda et al. [63] for its role in IBD
pathobiology. Another gene selected by the algorithm and mentioned in the literature as
being related to IBD is NDRG1 [64]. Song et al. [65] showed that ADH1C is downregulated
in UC. FN1 was suggested by Al-Numan [66] to be related to the early onset of IBD. SPINT2
plays a role in epithelial adhesion [17]. CLDN7 is associated with colitis according to
several authors [67,68]. Darsigny et al. [69] found a link between APOC3 and chronic
inflammation in mice resembling IBD. KLF5 was identified by Dong et al. [70] as one of the
genes downregulated in IBD. Gorenjak et al. [71] linked HSPA9 with IBD.

One of the challenges, and possible limitations, of this type of analysis is the fact that
it is impossible to estimate all possible combinations of genes, and hence it is necessary to
use some sort of combinatorial approach, such as the Monte Carlo model used to select the
genes. There is also no indication that gene expression and IBD are related by an underlying
linear model. Given this assumption, using machine learning techniques, which are adept
to modeling nonlinear systems, seems like a reasonable approach. Another factor to take
into account is that, while the cohort of cases is not small, including 2490 cases, it can
always be larger.

5. Conclusions

Following a machine learning approach, it was possible to identify a list of genes that
appear to be related to inflammatory bowel disease. Given the complexity of this illness,
which appears to be caused by a combination of polygenic factors as well as environmental
factors, which could, in principle, interact in a non-linear way, the illness was analyzed
using non-linear models, such as machine learning techniques. This approach was able to
distinguish, using a small number of genes, between patients with IBD and control (healthy)
patients as well as patients with the two major forms of IBD, which are Crohn’s disease
and ulcerative colitis. In other words, the machine learning algorithms are able to classify
different types of gene expression signatures associated with IBD. It might be possible in
the future, when more data become available, to be able to distinguish between different
genetic signatures of the illness that might potentially help develop more personalized
treatments. This is important for an illness as heterogeneous as IBD, for which patients
follow different evolutions and might present different clinical manifestations.
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