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Abstract: Background and Objectives: Peripheral arterial stiffness (PAS), assessed by brachial-ankle
pulse wave velocity (baPWV), is an independent biomarker of cardiovascular diseases (CVD) in
patients on maintenance hemodialysis (HD). Malondialdehyde-modified low-density lipoprotein
(MDA-LDL), an oxidative stress marker, has been linked to atherosclerosis and CVD. However, the
association between serum MDA-LDL and PAS among HD patients has not been fully elucidated.
This study aimed to examine the association of serum MDA-LDL with PAS in HD patients and
to identify the optimal cutoff value of serum MDA-LDL for predicting PAS. Materials and Methods:
A cross-sectional study was conducted in 100 HD patients. Serum MDA-LDL was quantified us-
ing an enzyme-linked immunosorbent assay (ELISA), and baPWV was measured using a volume
plethysmographic device. Patients were divided into the PAS group (baPWV > 18.0 m/s) and the
non-PAS group (baPWV ≤ 18.0 m/s). The associations of baPWV and other clinical and biochemical
parameters with serum MDA-LDL were assessed by multivariable logistic regression analyses. A
receiver operating characteristic (ROC) curve analysis was performed to determine the optimal cutoff
value of serum MDA-LDL for predicting PAS. Results: In multivariable logistic regression analysis,
higher serum MDA-LDL, older age, and higher serum C-reactive protein [odds ratios (ORs) and 95%
confidence intervals: 1.014 (1.004–1.025), 1.044 (1.004–1.085) and 3.697 (1.149–11.893)] were signifi-
cantly associated with PAS. In the ROC curve analysis, the optimal cutoff value of MDA-LDL for
predicting PAS was 80.91 mg/dL, with a sensitivity of 79.25% and a specificity of 59.57%. Conclusions:
Greater serum MDA-LDL levels, particularly ≥80.91 mg/dL, were independently associated with
PAS in HD patients. The findings suggest that oxidative stress plays a crucial role in the pathogenesis
of PAS, and targeting MDA-LDL may be a potential therapeutic strategy for reducing cardiovascular
risk in HD patients.

Keywords: cardiovascular disease; end-stage renal disease; hemodialysis; malondialdehyde-modified
low-density lipoprotein; peripheral arterial stiffness; pulse wave velocity

1. Introduction

Cardiovascular disease (CVD) is the primary cause of morbidity and mortality among
patients with end-stage renal disease (ESRD) receiving maintenance hemodialysis (HD) [1–3].
The increased cardiovascular risk in this population is attributed to a complex interplay of
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traditional risk factors, e.g., hypertension, diabetes mellitus, and dyslipidemia, and non-
traditional risk factors, including oxidative stress, inflammation, and mineral bone disor-
ders [4–6]. Identifying novel biomarkers and therapeutic targets for CVD in HD patients is
crucial for improving their clinical outcomes and quality of life.

Peripheral arterial stiffness (PAS), characterized by reduced arterial elasticity with
increased pulse wave velocity (PWV), has emerged as an independent predictor of cardio-
vascular events and all-cause mortality in HD patients [7,8]. Brachial-ankle PWV (baPWV),
a non-invasive measure of arterial stiffness, has been widely used to assess PAS in HD
patients [9]. Several factors such as old age, hypertension, diabetes mellitus, and chronic
inflammation, have been associated with higher baPWV among HD patients [10–12]. How-
ever, the role of oxidative stress in the pathogenesis of PAS in this population remains
poorly understood.

In the general population, triglycerides (TG), among the blood lipid parameters, have
been revealed to have the strongest associations with PAS, while low-density lipoprotein
cholesterol (LDL-C) levels have been more strongly associated with atherosclerosis than
with PAS [13]. Notably, a few modified LDLs, such as oxidized LDL (oxLDL), were found
to be associated with both atherosclerosis and PAS [14]. Malondialdehyde (MDA)-modified
LDL, a biomarker of oxidative stress, is another kind of modified LDL that is formed by
the reaction of MDA with the amino groups of apolipoprotein B in LDL particles [15,16].
In prior population-based studies, MDA-LDL has been implicated in the development
of atherosclerosis and clinical CVD in the general population [16–18]. In experimental
studies, MDA-LDL was observed to promote endothelial dysfunction, vascular inflamma-
tion, and foam cell formation, subsequently leading to the progression of atherosclerotic
lesions [16,19,20]. Additionally, elevated serum MDA-LDL has been associated with a
higher risk of PAS in patients with hypertension or diabetes mellitus [13,21,22]. However,
in HD patients, there were rare studies to examine the effects of various lipids on aortic
stiffness and PAS. To the best of our knowledge, MDA-LDL was the most commonly
studied lipid target in HD patients, which has been found to be associated with aortic wall
stiffness [21], whereas its relationship with PAS among HD patients has not been fully
elucidated. Since both aortic wall stiffness and PAS have been recognized as crucial risk
factors of clinical CVD in HD patients, the present study aimed to examine the association
between serum MDA-LDL levels and PAS, as assessed by baPWV, in a sample of HD
patients. We hypothesized that elevated serum MDA-LDL levels would be independently
associated with increased baPWV, and that serum MDA-LDL levels could serve as a useful
biomarker for predicting PAS in this high-risk population.

To investigate our hypotheses, we performed a cross-sectional study involving
100 HD patients. We assessed the associations between serum MDA-LDL levels, baPWV,
and other pertinent clinical and biochemical parameters. Additionally, we aimed to
determine the optimal cutoff value of serum MDA-LDL levels for predicting PAS in this
population. Our results may offer novel insights into the role of oxidative stress in PAS
pathogenesis and emphasize the potential utility of serum MDA-LDL as an innovative
marker and therapeutic target for CVD in HD patients.

2. Materials and Methods
2.1. Participants and Study Protocol

This observational study was conducted at a single dialysis center in eastern Taiwan
from June to August 2022. According to the patient enrollment flowchart (Figure 1), there
were 232 adult hemodialysis patients who had received maintenance hemodialysis for
more than 3 months at the time of screening. Patients who had a limb amputated (n = 12),
acute infection (n = 6), malignancy (n = 16), liver cirrhosis (n = 4), chronic obstructive lung
disease (COPD) (n = 8), stroke (n = 10), acute heart failure (n = 1) or were bedridden (n = 12)
were excluded. Patients who used other than a high-flux dialyzer (n = 33) or refused to
provide informed consent (n = 30) were also excluded.
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Figure 1. Flowchart of the selection of HD patients receiving measurements of both brachial-ankle
pulse wave velocity and Malondialdehyde (MDA)-modified LDL.

The study enrolled 100 patients who met the following criteria: age ≥ 20 years, receiv-
ing regular HD sessions (4 h per session, 3 times per week) for more than 3 months, and
using high-flux dialyzers (FX-class, Fresenius Medical Care, Germany). Patients’ demo-
graphic and clinical information, including the presence of comorbidities, e.g., diabetes
mellitus and hypertension, was collected from their medical records. The study protocol
was reviewed and approved by the Tzu Chi Hospital Institutional Review Board (IRB108–
219-A) and adhered to the principles of the Declaration of Helsinki. Informed written
consent was obtained from all study participants.

2.2. Assessment of Anthropometric Parameters

Anthropometric measurements were carried out by a trained staff member, with
patients dressed in lightweight clothing and barefoot. Body weight and height were
measured and rounded up to the nearest 0.5 kg and 0.5 cm, respectively. Body mass index
(BMI) was calculated by dividing the participant’s weight in kilograms by the square of
the participant’s height in meters.

2.3. Laboratory Investigations

Following an overnight fast of 8–12 h, blood samples (approximately 5 mL) were
drawn from each participant and centrifuged at 3000× g for 10 min. An automated
analyzer (Siemens Advia 1800; Siemens Healthcare GmbH, Henkestr, Germany) was
employed to measure serum concentrations of blood urea nitrogen (BUN), creatinine, total
cholesterol, triglycerides (TG), glucose, total calcium, phosphorus, and C-reactive protein
(CRP). Enzyme-linked immunosorbent assay kits were used to determine serum levels
of intact parathyroid hormone (iPTH) (Abcam, Cambridge, MA, USA) and MDA-LDL
(Sekisui Diagnostics GmbH, Kaplaneigasse, Pfungstadt, Germany) [21].

2.4. Evaluation of Blood Pressure and Brachial-Ankle Pulse Wave Velocity

Following blood sample collection, patients rested in a supine position for 10 min.
The trained staff member took the participants’ morning blood pressure (BP) of the upper
arm using an automatic oscillometric device. Three measurements of systolic BP (SBP)
and diastolic BP (DBP) were taken at 5-min intervals, and the mean values were used
for analysis. Hypertension was defined as SBP ≥ 140 mmHg, DBP ≥ 90 mmHg, or the
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use of antihypertensive medications for at least two weeks, based on the Eighth Joint
National Committee (JNC 8) guidelines. Assessment of baPWV was performed by a
volume plethysmographic device (VP-2000, Omron, Japan) with four pneumatic cuffs
coupled with oscillometric and plethysmographic sensors wrapped around the upper arms
and ankles [23]. Patients with left or right baPWV values > 18.0 m/s were classified as
the PAS group, according to the cutoff value established by the Physiological Diagnosis
Criteria for Vascular Failure Committee of Japan [24,25].

2.5. Data Analysis

The normality of data distribution was assessed using the Kolmogorov-Smirnov
test. Normally distributed continuous variables were expressed as mean ± standard
deviation and compared using the two-tailed Student’s independent t-test. Non-normally
distributed variables, including TG, glucose, iPTH, and CRP levels, were presented as
median and interquartile range and compared using the Mann-Whitney U test. These
non-normally distributed variables were log-transformed to achieve normality for further
analysis. The chi-square test was used to analyze categorical variables. The associations
between serum MDA-LDL and other variables were assessed using Spearman’s rank-order
correlation coefficient. Variables significantly correlated with PAS were then included in a
multivariable logistic regression analysis. A receiver operating characteristic (ROC) curve
was constructed to identify the optimal cutoff value of serum MDA-LDL for predicting
PAS, and the area under the curve (AUC) was calculated to assess its predictive ability.
Statistical analyses were performed using IBM SPSS Version 19.0 (SPSS, Inc., Chicago, IL,
USA), with statistical significance set at p < 0.05.

3. Results

Demographic, clinical, and biochemical characteristics of the study population are shown
in Table 1. The study comprised 100 HD patients with a mean age of 63.84 ± 13.51 years. The
median HD duration was 55.92 months (interquartile range [IQR]: 21.96–123.60 months). Of
the patients, 47 (47.0%) were women, 46 (46.0%) had diabetes mellitus, and 46 (46.0%) had
hypertension. The mean left and right baPWV were 18.04 ± 3.25 m/s and 18.14 ± 3.29 m/s,
respectively. The median serum MDA-LDL level was 88.67 mg/dL (IQR: 69.96–148.52 mg/dL).

Table 1. Clinical variables of chronic hemodialysis patients with baPWV ≤ 18.0 m/s or baPWV >
18.0 m/s.

Items All Participants
(n = 100)

baPWV ≤ 18 m/s
Group (n = 48)

baPWV > 18 m/s
Group (n = 52) p Value

Age (years) 63.84 ± 13.51 57.94 ± 13.35 67.37 ± 12.11 <0.001 *
HD duration (months) 55.92 (21.96–123.60) 55.44 (19.44–132.00) 56.16 (24.42–112.62) 0.992

Height (cm) 160.70 ± 7.43 162.09 ± 9.19 159.47 ± 5.21 0.079
Pre-HD body weight (kg) 63.52 ± 15.13 66.37 ± 16.16 60.89 ± 13.74 0.070
Post-HD body weight (kg) 61.36 ± 14.68 64.05 ± 15.76 58.88 ± 13.29 0.079
Body mass index (kg/m2) 24.49 ± 5.20 25.16 ± 5.73 23.90 ± 4.66 0.226
Waist circumference (cm) 90.68 ± 12.48 90.40 ± 13.32 90.94 ± 11.76 0.828

Systolic blood pressure (mmHg) 140.49 ± 25.73 138.31 ± 24.81 142.50 ± 26.64 0.419
Diastolic blood pressure (mmHg) 76.60 ± 15.16 78.50 ± 15.33 74.85 ± 14.93 0.230

Left baPWV (m/s) 18.04 ± 3.25 15.47 ± 1.91 20.41 ± 2.28 <0.001 *
Right baPWV (m/s) 18.14 ± 3.29 15.38 ± 1.55 20.68 ± 2.26 <0.001 *
Hemoglobin (g/dL) 10.41 ± 1.18 10.36 ± 1.26 10.46 ± 1.11 0.652

Albumin (g/dL) 4.15 ± 0.43 4.25 ± 0.41 4.06 ± 0.43 0.022 *
Total cholesterol (mg/dL) 149.14 ± 35.87 145.88 ± 33.97 152.15 ± 37.61 0.384

Triglyceride (mg/dL) 153.91 ± 80.23 152.54 ± 75.19 155.17 ± 85.33 0.871
MDA-LDL (mg/dL) 88.67 (69.96–148.52) 78.38 (59.41–98.35) 119.67 (81.65–176.54) <0.001 *
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Table 1. Cont.

Items All Participants
(n = 100)

baPWV ≤ 18 m/s
Group (n = 48)

baPWV > 18 m/s
Group (n = 52) p Value

Glucose (mg/dL) 132.50 (110.00–171.25) 131.00 (104.00–172.00) 133.00 (113.00–173.00) 0.377
Blood urea nitrogen (mg/dL) 59.18 ± 14.21 61.71 ± 14.68 56.85 ± 13.49 0.087

Creatinine (mg/dL) 9.41 ± 1.87 9.85 ± 1.98 8.99 ± 1.67 0.021 *
Total calcium (mg/dL) 8.90 ± 0.75 8.86 ± 0.67 8.95 ± 0.83 0.549
Phosphorus (mg/dL) 4.55 ± 1.25 4.68 ± 1.28 4.43 ± 1.22 0.326

Intact parathyroid hormone (pg/mL) 204.05 (56.83–355.30) 205.20 (69.40–461.30) 192.90 (54.90–340.65) 0.297
C-reactive protein (mg/dL) 0.28 (0.06–0.66) 0.16 (0.05–0.40) 0.35 (0.10–1.01) 0.007 *

Urea reduction rate 0.74 ± 0.05 0.73 ± 0.05 0.74 ± 0.04 0.181
Kt/V (Gotch) 1.36 ± 0.19 1.33 ± 0.21 1.38 ± 0.18 0.195
Female, n (%) 47 (47.0) 18 (38.3) 29 (54.7) 0.101

Diabetes mellitus, n (%) 46 (46.0) 19 (40.4) 27 (50.9) 0.292
Hypertension, n (%) 46 (46.0) 22 (46.8) 24 (45.3) 0.879

Angiotensin receptor blocker, n (%) 28 (28.0) 15 (31.9) 13 (24.5) 0.412
β-blocker, n (%) 35 (35.0) 15 (31.9) 20 (37.7) 0.542

Calcium channel blocker, n (%) 40 (40.0) 21 (44.7) 19 (35.8) 0.368
Statin, n (%) 31 (31.0) 13 (27.7) 18 (34.0) 0.496

Fibrate, n (%) 25 (25.0) 12 (25.5) 13 (24.5) 0.908

Values for continuous variables are shown as mean ± standard deviation after analysis by Student’s t-test; variables
not normally distributed are shown as median and interquartile range after analysis by the Mann-Whitney U test;
values are presented as number (%) and analysis after analysis by the chi-square test. HD, hemodialysis; MDA-LDL,
malondialdehyde-modified low-density lipoprotein, Kt/V, fractional clearance index for urea. * p < 0.05 was considered
statistically significant.

Compared to the non-PAS group (n = 48), the PAS group (n = 52) were older (67.37 ± 12.11 vs.
57.94 ± 13.35 years, p < 0.001), had lower serum albumin levels (4.06 ± 0.43 vs. 4.25 ± 0.41 g/dL,
p = 0.022), lower serum creatinine levels (8.99 ± 1.67 vs. 9.85 ± 1.98 mg/dL, p = 0.021), higher
serum MDA-LDL levels (119.67 [81.65–176.54] vs. 78.38 [59.41–98.35] mg/dL, p < 0.001), and
higher serum CRP levels (0.35 [0.10–1.01] vs. 0.16 [0.05–0.40] mg/dL, p = 0.007).

Table 2 demonstrated the multivariable logistic regression analysis results that higher
serum MDA-LDL levels (odds ratio [OR] =1.014, 95% confidence interval [CI]: 1.004–1.025,
p = 0.009), older age (OR = 1.044, 95% CI: 1.004–1.085, p = 0.031), and higher serum CRP
levels (OR = 3.697, 95% CI: 1.149–11.893, p = 0.028) were independently associated with
PAS in HD patients.

Table 2. Multivariable logistic regression analysis of the factors correlated to peripheral arterial
stiffness among chronic hemodialysis patients.

Variables Odds Ratio 95% Confidence Interval p Value

MDA-LDL, 1 mg/mL 1.014 1.004–1.025 0.009 *
Age, 1 year 1.044 1.004–1.085 0.031 *

C-reactive protein, 1 mg/dL 3.697 1.149–11.893 0.028 *
Albumin, 1 g/dL 0.526 0.144–1.926 0.332

Creatinine, 1 mg/dL 0.971 0.734–1.285 0.837
MDA-LDL, malondialdehyde-modified low-density lipoprotein. * p < 0.05 was considered statistically significant
in the multivariate logistic regression analysis (adopted factors: age, albumin, creatinine, C-reactive protein,
and MDA-LDL).

Table 3 shows the correlation between baPWV, serum MDA-LDL, and clinical variables.
Spearman’s rank-order correlation analysis revealed that left baPWV values were positively
correlated with age (r = 0.284, p = 0.004), serum MDA-LDL levels (r = 0.385, p < 0.001),
log-transformed glucose levels (r = 0.227, p = 0.023), and log-transformed CRP levels
(r = 0.307, p = 0.002) and negatively correlated with serum creatinine levels (r = −0.221,
p = 0.027). Right baPWV values were positively correlated with age (r = 0.308, p = 0.002),
serum MDA-LDL levels (r = 0.390, p < 0.001), and log-transformed CRP levels (r = 0.249,
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p = 0.013) and negatively correlated with serum creatinine levels (r = −0.216, p = 0.031). Log-
transformed serum MDA-LDL levels were positively correlated with waist circumference
(r = 0.225, p = 0.025), total cholesterol (r = 0.218, p = 0.029), and log-transformed CRP levels
(r = 0.197, p = 0.049).

Table 3. Spearman correlation coefficients between left baPWV, right baPWV, log-transformed
malondialdehyde-modified low-density lipoprotein, and clinical variables in chronic hemodialysis patients.

Variables Left baPWV (m/s) Right baPWV (m/s)

Spearman’s Coefficient of
Correlation p Value Spearman’s Coefficient of

Correlation p Value

Age (years) 0.284 0.004 * 0.308 0.002 *
Log-HD duration (months) –0.037 0.711 0.009 0.930

Height (cm) –0.115 0.256 –0.136 0.178
Pre-HD body weight (kg) –0.168 0.094 –0.147 0.146
Body mass index (kg/m2) –0.146 0.146 –0.115 0.253
Waist circumference (cm) 0.003 0.973 0.029 0.778

Systolic blood pressure (mmHg) 0.121 0.232 0.119 0.238
Diastolic blood pressure (mmHg) –0.070 0.487 –0.096 0.343

Left baPWV (m/s) — — 0.875 <0.001 *
Right baPWV (m/s) 0.875 <0.001 * — —
Hemoglobin (g/dL) 0.053 0.601 0.054 0.593

Albumin (g/dL) –0.160 0.111 –0.180 0.072
Total cholesterol (mg/dL) 0.025 0.806 0.060 0.553

Triglyceride (mg/dL) 0.075 0.461 0.021 0.835
Log-MDA-LDL (mg/dL) 0.385 <0.001 * 0.390 <0.001 *

Log-Glucose (mg/dL) 0.227 0.023 * 0.191 0.054
Blood urea nitrogen (mg/dL) –0.126 0.212 –0.101 0.317

Creatinine (mg/dL) –0.221 0.027 * –0.216 0.031 *
Total calcium (mg/dL) –0.100 0.323 –0.031 0.758
Phosphorus (mg/dL) –0.099 0.329 –0.070 0.466
Log-iPTH (pg/mL) –0.184 0.067 –0.085 0.403
Log-CRP (mg/dL) 0.307 0.002 * 0.249 0.013 *
Urea reduction rate 0.184 0.067 0.106 0.292

Kt/V (Gotch) 0.195 0.052 0.154 0.127

Data of glucose, C-reactive protein, iPTH, and MDA-LDL levels showed skewed distribution and, therefore, were
log-transformed before analysis. HD, hemodialysis; baPWV, brachial-ankle pulse wave velocity; MDA-LDL,
malondialdehyde-modified low-density lipoprotein, iPTH, intact parathyroid hormone; CRP, C-reactive protein,
Kt/V, fractional clearance index for urea. * p < 0.05 was considered statistically significant (2-tailed).

The predictive value of serum MDA-LDL levels for PAS. The ROC curve analysis
reveals that the optimal cut-off value of serum MDA-LDL for predicting PAS among HD
patients was 80.91 mg/dL, with a sensitivity of 79.25%, specificity of 59.57%, positive
predictive value of 68.85%, and negative predictive value of 71.80% (Table 4). The area
under the ROC curve was 0.717 (95% CI: 0.618–0.803, p < 0.001) (Figure 2).

Table 4. The optimal cut-off value of serum MDA-LDL and related diagnostic performances for
predicting peripheral arterial stiffness among chronic hemodialysis patients.

Cutoff Sensitivity Specificity PPV NPV

80.91 mg/dL 79.25% 59.57% 68.85% 71.80%
MDA-LDL, malondialdehyde-modified low-density lipoprotein; NPV, negative predictive value; PPV, positive
predictive value.
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4. Discussion

In this cross-sectional study, we investigated the association between serum MDA-LDL
levels and PAS among HD patients. Using multivariable logistic regression analysis, we
found that higher serum MDA-LDL levels, older age, and elevated serum CRP levels were
independently associated with PAS in this population. Furthermore, ROC curve analysis
revealed that serum MDA-LDL levels greater than 80.91 mg/dL could potentially predict
PAS in HD patients.

Our findings highlight the association between serum MDA-LDL levels and PAS in
HD patients, suggesting that MDA-LDL potentially plays a role in the development of
PAS in this population. Oxidative stress as reflected by serum MDA-LDL levels plays an
important role in the pathogenesis of arterial stiffness and atherosclerosis [26,27]. MDA-
LDL, a surrogate of oxidative stress, has been associated with endothelial dysfunction
and atherosclerosis in various populations [28,29]. In the present study, we observed that
higher serum MDA-LDL levels were independently associated with PAS in HD patients,
even with adjusting for potential confounders such as age, CRP, albumin, and pre-dialysis
creatinine levels. This finding is consistent with previous studies reporting an association
between MDA-LDL and arterial stiffness in other populations [13,21].

The mechanisms underlying the association between MDA-LDL and PAS in HD
patients were likely multifactorial. MDA-LDL has been shown to promote endothelial
dysfunction by increasing the expression of adhesion molecules, facilitating leukocyte
recruitment, and impairing nitric oxide bioavailability [20,30,31]. Additionally, MDA-LDL
may contribute to arterial stiffening by stimulating the proliferation and migration of
vascular smooth muscle cells and promoting the synthesis of extracellular matrix com-
ponents, such as collagen [13,32]. Moreover, the uremic milieu in ESRD patients may
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exacerbate the adverse effects of MDA-LDL on the arterial wall leading to accelerated
arterial stiffening [33]. The ROC curve analysis identified a serum MDA-LDL level of
80.91 mg/dL as an optimal cut-off value for predicting the presence of PAS in our cohort
of HD patients. Further prospective studies are needed to validate the predictive value of
this cut-off level and to investigate the potential utility of serum MDA-LDL as a biomarker
for risk stratification and management of PAS in HD patients.

As stated above, most of the prior studies on the association between various kinds
of lipids such as modified LDLs and PAS and aortic wall stiffness were carried out in the
general population [34–39], while there were rare studies conducted for HD patients [21].
Among HD patients, serum LDL levels are commonly normal or lower, whereas TG-rich
lipoproteins levels are higher as compared to non-HD individuals [40]. Elevated TG levels,
frequently found in CKD patients, could contribute to oxidative stress, oxLDL, vascular
inflammation, and endothelial dysfunction which could be regarded as a critical precursor
of PAS [41,42]. In a study conducted by An et al. [43], oxLDL to LDL ratio was identified
as an independent predictor of vascular calcification in the feet, a representative of PAS,
of HD patients [44]. Based on currently available evidence including our prior study for
MDA-LDL and its association with increased aortic wall stiffness in HD patients, modified
LDLs might be potential contributors to reducing both the large and small arterial elasticity
in HD patients. While studies in non-HD populations have revealed that pharmacological
interventions, such as statins, can reduce oxLDL, oxidative stress, and arterial stiffness [40],
their effects on MDA-LDL levels and PAS in HD patients remain to be established.

Aging is a potent risk factor for PAS in the general population and in patients with
chronic kidney disease (CKD) [45], and this association is also observed in HD patients. This
association can be attributed to age-related changes in the arterial wall, including increased
collagen content, decreased elastin content, and accumulation of glycation end-product [46].
The cumulative exposure to both traditional and non-traditional CVD risk factors in older
HD patients may further contribute to the development of PAS [23]. Inflammation has been
involved in the development of arterial stiffness and CVD events in CKD patients [42,47]. It
has been well known that serum CRP may be a mediator of the development of CVD events
and post-statin therapeutic CRP levels rather than LDL were associated with subsequent
CVD events [48]. In our study, elevated serum CRP was independently associated with
PAS in HD patients. This finding is consistent with many prior reports that chronic
inflammation contributes to arterial stiffening in HD patients [46,49]. Modified LDLs have
been found to cause vascular inflammation and thus increase serum CRP levels [50,51]. In
a systemic review, a mild to moderate correlation between CRP levels and PWV (Pearson
r = 0.33 to r = 0.624) was observed in individuals with dyslipidemia in most of the relevant
studies [52]. As the levels of various modified LDLs may be increased in advanced CKD
or HD patients, the association of CRP levels with PAS independent of MDA-LDL was
possibly related to increases in other modified LDLs which were not assessed in this
study. The mechanisms linking inflammation to PAS in HD patients are complex and
involve the direct effects of pro-inflammatory cytokines on the arterial wall, as well as the
indirect effects of inflammation on oxidative stress, endothelial dysfunction, and vascular
calcification [53]. A combination of serum levels of MDA-LDL and CRP may be a good
target to assess the status of PAS in HD patients in future studies.

The potential therapeutic implication of our findings merits more consideration. Strate-
gies aimed at reducing oxidative stress and inflammation levels may be effective in pre-
venting or slowing the progression of PAS among HD patients. Antioxidant therapies,
such as vitamin E supplementation, have demonstrated promise in reducing CVD risk in
some populations [54], although their efficacy in HD patients remains to be established.
Similarly, anti-inflammatory agents, e.g., statins and angiotensin-converting enzyme in-
hibitors, have been shown to improve PAS in CKD patients [55], while their beneficial
effects in HD patients require further investigation. Lifestyle modifications, e.g., regular
exercise and dietary interventions, may reduce oxidative stress and chronic inflammation
in HD patients. Exercise training has been shown to improve PAS and endothelial function
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in CKD patients [56], and dietary approaches, e.g., the Mediterranean diet, have been
associated with reduced chronic inflammation and improved CVD outcomes in the general
population [57]. However, the optimal exercise regimen and dietary strategy for preventing
PAS in HD patients remain to be determined.

Several limitations of this study should be acknowledged. First, the cross-sectional
design precludes the establishment of a causal relationship between serum MDA-LDL
levels and PAS. Prospective studies are needed to confirm our findings and to evaluate
the prognostic value of serum MDA-LDL levels in predicting CVD events in HD patients.
Second, the relatively small sample size and single-center setting may limit the generaliz-
ability of our results. Larger, multicenter studies are warranted to validate our findings.
Finally, we did not assess other biomarkers of oxidative stress or inflammation, which may
have provided additional insights into the pathogenesis of PAS in this population.

5. Conclusions

Our study demonstrated that higher serum MDA-LDL, older age, and elevated serum
CRP were independently associated with PAS in HD patients. Moreover, serum MDA-
LDL levels ≥80.91 mg/dL may serve as a useful biomarker for predicting PAS in this
population. The mechanisms linking inflammation to PAS in HD patients are complex and
involve the direct effects of pro-inflammatory cytokines on the arterial wall, as well as the
indirect effects of inflammation on oxidative stress, endothelial dysfunction, and vascular
calcification. While our study demonstrates the independent associations of MDA-LDL
and CRP with PAS in HD patients, further cohort studies with larger sample sizes and
clinical trials are needed to evaluate the potential therapeutic implications of the findings
to develop effective strategies for reducing CVD in this vulnerable population.
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