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Abstract: Collagen has become a key-molecule in cell culture studies and in the tissue 

engineering field. Industrially, the principal sources of collagen are calf skin and bones 

which, however, could be associated to risks of serious disease transmission. In fact, 

collagen derived from alternative and riskless sources is required, and marine organisms 

are among the safest and recently exploited ones. Sea urchins possess a circular area of soft 

tissue surrounding the mouth, the peristomial membrane (PM), mainly composed by 

mammalian-like collagen. The PM of the edible sea urchin Paracentrotus lividus therefore 

represents a potential unexploited collagen source, easily obtainable as a food industry waste 

product. Our results demonstrate that it is possible to extract native collagen fibrils from 

the PM and produce suitable substrates for in vitro system. The obtained matrices appear as 

a homogeneous fibrillar network (mean fibril diameter 30–400 nm and mesh < 2 μm) and 
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display remarkable mechanical properties in term of stiffness (146 ± 48 MPa) and viscosity 

(60.98 ± 52.07 GPa·s). In vitro tests with horse pbMSC show a good biocompatibility in 

terms of overall cell growth. The obtained results indicate that the sea urchin P. lividus can 

be a valuable low-cost collagen source for mechanically resistant biomedical devices. 

Keywords: sea urchin collagen; native fibril; collagen matrix; biocompatibility; tissue 

regeneration; mesenchimal stromal cells 

 

1. Introduction 

Collagen is the main structural component of animal tissues and shows peculiar mechanical 

properties conferring strength and elasticity to the tissue itself. The use of collagen as a biomaterial for 

scaffold development is a topic of great interest, particularly in the tissue engineering field [1,2]. 

The most used commercial sources of collagen are calf skin and bones, which, however, could carry 

the risk of serious disease transmission (i.e., bovine spongiform encephalopathy) [3]. This induced 

researchers to investigate alternative collagen sources, the most interesting and promising ones coming 

from marine organisms. Scaffolds made of soluble jellyfish or squid collagen exhibited lower 

immunogenicity and higher cell viability than other naturally derived biomaterials, including bovine 

collagen, gelatin, hyaluronic acid and glucan [3,4]. 

Furthermore, good cell viability and osteo-inductive potential was displayed by scaffolds derived 

from marine sponges [5]. This latter in vitro feature is in agreement with the fact that collagen plays a 

fundamental role as universal template for in vivo skeletogenesis processes in marine invertebrates [6,7]. 

Collagen derived from fish, as well as from cuttlefish outer skin waste material, is also under 

evaluation as a promising alternative [8,9]. 

Among marine organisms sea urchins are very common coastal inhabitants. They possess a soft 

membranous area surrounding their mouth: the peristomial membrane (PM) (Figure 1a,b). 

The PM mainly consists of a thick ossicle-reinforced dermal layer externally covered by an 

epidermis and internally by a coelomic epithelium. The collagenous meshwork is the most significant 

component in terms of both structure and mechanical properties [10,11].  

The PM collagen is similar to the mammalian type-I in terms of chain composition, 

immunoreactivity and ultrastructure (D-period) [12–14] and therefore may represent a suitable 

alternative source of collagen to be used for biomedical applications. In this research we specifically 

focused on the common sea urchin Paracentrotus lividus, the main Mediterranean and North-Atlantic 

edible species [15]. Its gonads are collected for food purpose and the rest of the body, including the 

PM, is discharged: therefore this waste-material can be potentially exploited for an “eco-friendly” and 

low-cost collagen extraction. Additionally, sea urchins are harvested in several countries (Japan, USA, 

France), thus potentially allowing an industrial and constant supply of rough collagenous material to be 

used by biotech companies. 
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Figure 1. The peristomial membrane of P. lividus. (a) Oral side of P. lividus. Around the 

mouth (m), the peristomial membrane (pm) is well detectable; (b) Schematic anatomy of 

the peristomial membrane. Dermis (de), ossicles (sp), epidermis (ep), coelomic epithelium 

(ce). Reproduced with permission from [11]; published by Ital. J. Zool., Journals Taylor & 

Francis Group, 1995. 

 

Differently from most commercial mammalian collagens, sea urchin collagen cannot be extracted 

by traditional methods of acid solubilization, which normally make it in a hydrolyzed jelly form. On 

the contrary PM collagen is easily extracted in its insoluble fibrillar form, i.e., the native form. This 

characteristic provides the considerable advantage of producing scaffolds/substrates more closely 

mimicking the natural extracellular matrix (ECM) and potentially displaying higher mechanical 

performances. In tissue engineering it is now well known that mechanical properties and scaffold 

geometry/ultrastructure play a crucial role in cell differentiation and specification [16,17]. By 

specifically implementing and adjusting previous protocols [18,19], we were able to isolate undamaged 

native collagen fibrils from the sea urchin P. lividus [20] in a sufficient amount and purity to produce  

fibrillar scaffolds. 

In tissue engineering the assembling of collagen fibrillar matrices usually includes fibrillization 

steps on partly defibrillated or hydrolized collagen [21,22]. This method causes the production of 

fibrils which are only partially similar to the native ones in terms of structure and mechanical 

properties [22]. Among the authors who worked with native collagen fibrils from both vertebrates [23–32] 

and invertebrates [18,33–37], only a few, i.e., [30,32]—and exclusively in vertebrates—produced 

substrates for cell cultures using this type of collagen (in literature often regarded as “insoluble collagen”). 

Irrespective of its form (hydrolized or fibrillar), collagen for scaffolding needs appropriate cross-linking 

procedures for stabilizing the matrix and, if needed, for reducing enzymatic degradation phenomena 

when surgically implanted in vivo. Since a few years ago, glutaraldehyde was one of the most used 

substances for collagen crosslinking, but it was recently substituted by other compounds due to its 

potential cell toxicity [38,39]. Among alternative biocompatible cross-linkers, EDC-NHS  

[1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC)/Nhydroxysuccinimide (NHS)] is well 

known and widely used for its several advantages and for in vitro system applications [3,40–43]. 
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The present work is addressed to evaluate sea urchin collagen as a potential low-cost alternative for 

the production of scaffolds for biomedical applications. This was achieved following different steps 

and approaches, including the development of a specific protocol for fibrillar collagen extraction and 

matrix preparation as well as a deep evaluation of the produced matrices in terms of ultrastructure, 

mechanical properties (stiffness and viscosity) and in vitro biocompatibility. 

2. Results and Discussion 

2.1. Collagen Extraction 

As previously underlined, most of the common and industrial methods for collagen extraction are 

based on an acid-solubilization and partial hydrolysis of the collagen triple helix [22], which 

consequently involves the partial or total loss of structural fibril organization. The method we 

developed here leads to the extraction of intact collagen fibrils from P. lividus PM.  

Besides the basic collagen matrix, the PM contains other different components (cellular elements, 

ossicles; Figure 1b), which represent a serious obstacle in obtaining a clean fibril suspension (Figure 2a). 

In order to properly remove both cell debris, skeletal parts and pigments, the minced native tissue 

was sequentially treated with two different specifically developed solutions: a hypotonic solution and a 

SDS-based decellularizing solution [20,44]. The former induced cell lysis whereas the latter removed 

cell debris and most of the non-collagenous extracellular material acting as a detergent (Figure 2b). 

Only the most strictly fibril-associated glycosamynoglycans (GAGs) remained, periodically organized 

along the fibril surface according to the standard D-patterning (Figure 2c,d). The presence of these 

GAGs is important to preserve fibril integrity [45], can increase matrix hydrophylicity (GAGs are 

polianionic molecules) and allows the production of a more biomimetic collagen matrix. Indeed, the 

ECM naturally contains GAGs and proteoglycans (GAG-protein association), which are important for 

several functions including tissue hydration, structural organization and cell adhesion. In tissue 

engineering, GAGs are often secondarily added to improve scaffold structural, mechanical and 

physiological performances [46]. 

Careful PBS washing of the minced tissue before the final disaggregation step (in β-mercapto-ethanol 

solution) resulted a crucial passage: an incomplete removal of SDS strongly reduced the yield of 

following fibril extraction. On the other hand SDS treatment was clearly necessary for obtaining a 

clean collagen suspension suitable for scaffold production.  

After 3–4 days in the disaggregating solution a suspension of fibrils could be observed (Figure 2b).  

Undissociated collagen fibers were then removed by a filtration step, although increasing the purity 

of the extracted fibrils, often implied a partial loss of material and might be problematic due to filter 

occlusion. The employment of a gradual two-step filtration (200 µm mesh filtering followed by a 

100 µm mesh passage) represented the best compromise between the need of obtaining a clean 

collagen suspension and the effective yield of collagen extraction from the PM.  
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Figure 2. Collagen fibrils. (a) Collagen aqueous fibrillar suspension obtained by a protocol 

in which the hypotonic and decellularizating solutions were omitted. The brown color is 

mainly due to the presence of cell debris and pigments; (b) Clean aqueous collagen fibrillar 

suspension obtained by the complete protocol; (c) Transmission Electron Microscope (TEM). 

Cuprolinic Blue staining on isolated collagen fibrils. After collagen extraction, fibril-associated 

glycosaminoglycans (GAGs) could be detected periodically organized along the fibril 

surface (arrows); (d) TEM, negative staining on isolated collagen fibrils. The collagen 

fibril D period is clearly visible. 

 

Removal of the β-mercapto-ethanol (that might be toxic for cells if present in high concentrations) 

was obtained dialyzing the collagen suspension against EDTA (3 h) and, subsequently, against distilled 

water (overnight), which represented the final stocking medium. SDS-page analyses (Figure 3) showed 

that the main proteins contained in the obtained suspension correspond to the α1 (140 kDa) and α2  

(120 kDa) sea urchin type I-like collagen chains previously described in the literature [13,47]. As 

expected for collagen SDS-page, some of these chains do not completely dissociate under denaturating 

condition thus producing the characteristic β-sheet bands at 260 kDa (α1 + α2) and 280 kDa (α1 + α1). 

Overall these biochemical data confirm the main collagenous nature of the fibrillar suspension. Further 

more detailed analyses will help to clarify the nature of the other observed bands (e.g., other collagen 

types or collagen associated proteoglycans). 
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Figure 3. SDS-PAGE gel of the obtained sea urchin collagen suspension. ** = α1 collagen 

chain; * = α2 collagen chain. Lane 1 = marker. Lane 2 = collagen suspension. 

 1 2 

 

The protocol here described represents the most effective technique to obtain a pure and highly 

concentrated fibril suspension. Collagen yield from the PM was calculated: in optimal conditions and 

taking into account 7 different collagen stocks produced in different periods of the year, the average 

yield is 7% (dry weight collagen fibrils/dry weight PM). This is a much higher value if compared to 

the yield previously obtained in mammals with a similar protocol [24]. The classical acid-based 

extraction procedures might provide higher yields, but usually implies damages of fibril structural 

integrity [31]. 

The obtained aqueous collagen suspension (Figure 2b) can be directly stored at −20 °C for at least  

3 months without significant problems in re-suspension as on the contrary occurred with solid collagen 

stocks (dried at 37 °C in silicone molds). 

2.2. Collagen Matrix Production  

The collagen suspension was centrifuged, resuspended in Triton-X-100 0.01%, plated on cell 

culture dishes and left to dry. This step was necessary to minimize surface tension phenomena and thus 

produce a quite homogeneous matrix thickness on the plastic dish (Figure 4a,b). 

Omission of T-X-100 caused a collagen network deposition confined to the dish borders.  

Collagen matrices needed to be cross-linked in order to have suitable mechanical properties for  

in vitro studies or biomechanical manipulations. The collagen matrix was therefore exposed to 

EDC/NHS mix solution, which acts as a fibril crosslinking agent. After 4 h of exposure, the collagen 

film resulted tightly adhering to the plastic surface. No significant detachment phenomena were 

observed, and the inter-fibrillar crosslink apparently displayed a remarkable resistance, even after 

numerous washings with different media (see Experimental section). 

Among the chemical methods for collagen crosslinking, EDC/NHS appeared to be the best option 

both for providing mechanical resistance to the matrices and for its biocompatibility, already tested by 

different authors [3,40–43]. 
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Figure 4. Sea urchin collagen matrix (SCM). (a) Light microscopy (LM). After the 

treatment with Tx-100, collagen fibrils resulted homogeneously distributed on the plastic 

surface; (b) Scanning Electron Microscope (SEM). No cell debris, skeletal parts or 

undissociated collagen fibers are visible among fibrils; (c) LM. The average thickness of 

SCM is 5–7 µm. The thickness could slightly vary depending on the different areas of the 

matrix; (d) SEM. Different fibrils with different diameters are present in the SCM; (e) 

SEM. The average porosity of the matrix (mesh of the fibrillar interlace) is around 1–2 μm2. 

Below is an example of interlace area measurement. Pa1 = 753 nm (major length);  

Pa2 = 253 nm (minor length). The area resulted less than 0.2 µm2; (f) SEM. Collagen D 

period is well detectable on collagen fibrils. 

 

2.3. Characterization of Collagen Matrices  

The sea urchin collagen matrices (hereafter referred as SCMs) were observed by SEM to investigate 

the ultrastructural characteristics of the fibrils as well as their reciprocal interactions and organization. 

After preliminary tests to find optimal concentrations, SCMs were prepared in a 24 multi-wells using 

300 µL of collagen suspension at the concentrations of 2 mg/mL. Values below these limits barely 
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produced a complete and homogeneous covering of the surface. The so produced SCM had an average 

thickness of 5–7 µm. (Figure 4c). 

SEM and light microscopy observations showed a randomly distributed fibril pattern and confirmed 

the absence of undesired aggregates (cell debris, skeletal parts or undissociated collagen fibers) 

between the fibrils (Figure 4a,b). Fibril diameter ranged between 25 nm and 300 nm (Figure 4d) which 

corresponds to what has been reported for mammalian fibrils [48] as well as for the PM [10]. Sea 

urchin collagen denaturation temperature is 27 °C in Strongylocentrotus purpuratus [49]. Nevertheless, 

despite the step at 37 °C, the experimental protocol did not influence the final chance to get a matrix 

where fibrils maintained their integrity and could be efficiently cross-linked.  

The SCM “porosity” (mesh of the fibrillar interlace) was maximum 1–2 μm2 on the superficial layer 

(Figure 4e). These values are referred to the dry matrix, observed under SEM high vacuum conditions, 

and might be slightly higher in wet conditions (as in cell culture studies or in vivo applications). 

Empirical and preliminary calculation of the swelling ratio indicated that the wet matrix increased its 

thickness of about 30%. Even considering this swelling variation, the density of collagen matrix is 

such that mammalian cells could hardly penetrate it and only surface adhesion can be expected. 

The D period of collagen fibrils could be clearly observed both after collagen extraction (Figure 2d) 

and matrix preparation (Figure 4f). This further indicates that the overall protocol did not affect fibril 

structural integrity. 

2.4. Biomechanics 

Creep (isotonic) and force-extension (isometric) tests were specifically designed and employed to 

mechanically test the SCM.  

2.4.1. Creep Tests 

Maximum stress and viscosity of the SCM were calculated in hydrated conditions (Leibovitz cell 

culture medium) in order to more closely mimic physiological in vitro or in vivo applications. The 

initial load (39.57 g) was gradually increased until complete rupture of the collagen scaffold. The 

breaking load was 17 ± 2.8 MPa (mean ± SD) with minimum and maximum registered values of 

13.97 MPa and 24.56 MPa, respectively.  

Collagenous samples, when subjected to a tensile stress, underwent a typical elongation pattern that 

consisted of three main phases: a primary phase immediately after load application, in which the 

collagen fibrils of the sample rearranged rapidly, resulting in a substantial sample elongation; a 

secondary phase in which the extension rate tended to stabilize and in which the viscosity was 

calculated; a final phase, where the sample was no longer able to support the load and broke. Our 

results showed that the SCM had generally a very fast primary phase (<2 s) suggesting that the 

orientation of the collagen fibrils was very rapid soon after the stress was applied. This implies that 

EDC/NHS crosslinking does not block fibrils in a strictly fixed disposition, thus allowing a certain 

level of structural matrix reorganization. The tests showed a relatively high variability in the 

mechanical tensile resistance. 7/36 samples underwent rupture few seconds after starting the test 

(tensile stress at start was 14–17 MPa), whereas 15/36 samples ruptured within 3 min from the 

application of the tensile stress. This implies that most of the samples were not able to resist for a long 
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period to a single applied stress of 14–17 MPa. On the other hand, 14/36 samples needed multiple and 

progressive loads additions before rupture. In this latter case we could calculate the viscosity of the 

sample in a range between 14 MPa and 24 MPa. Overall, the mean final viscosity of all the tested SCM 

was 60.98 ± 52.07 GPa·s. This value is much higher than that measured in most fresh tissues of sea 

urchins and other echinoderms (crinoids, sea cucumbers, etc.) as well as in mammalian tissues (human 

tendons) (Table 1). 

Table 1. Viscosity of different collagenous tissues. Values are reported as mean ± SD or range. 

Structure Viscosity (MPa·s) References 

Sea urchin compass depressor ligament (P. lividus) 560.6 ± 364.7 [50] 

Sea urchin spine joint ligament (Diadema setosum) 20–5860 [51] 

Sea cucumber dermis (Stichopus japonicus) 3.0 ± 5.6 [52] 

Sea cucumber dermis (Holothuria leucospita) 11 [52] 

Sea cucumber dermis (Actinopyga echinites) 100 [52] 

Sea cucumber dermis (Thyone inermis) 5100 [53] 

Brittle star intervertebral ligament (Ophiocomina nigra) 2260 ± 1940 [54] 

Feather star stalk (Cenocrinus asterius) 16,700 [55] 

Human patellar tendon 438.13 ± 232.2 [56] 

Only the cirrus apparatus of the crinoid Cenocrinus asterius has a higher viscosity than that 

recorded in our samples (Table 1). Noteworthy, soluble porcine collagen films crosslinked with 

glutaraldehyde displayed a maximum viscosity of 230.53 MPa·s [57]. This result underlines the 

relevant mechanical resistance to tensile stress exerted by the SCM, which reflects the presence of 

strong internal interfibrillar bonds. Most of these bonds were likely due to an effective EDC/NHS 

collagen crosslinking, possibly helped by the GAG-decorated fibrillar structure of the employed collagen. 

2.4.2. Force-Extension Tests 

SCM were also evaluated in terms of stiffness (Young’s modulus or elastic modulus). This 

parameter indicates the capability of a material to resist when subjected to forced elongations (or from 

another point of view predicts how it reacts to a tensile stress) and it depends on the structural 

characteristics of the material itself. Stiffness is one of the most important parameters for material 

engineering applications. Higher stiffness implies less elastic deformation magnitude in response to 

mechanical stresses and higher energy storage without plastic deformation.  

In our tests the mean calculated stiffness was 146 ± 48 MPa (range: 91–206 MPa) and the mean 

tensile strength (tension before rupture) was 44.58 ± 9.56 MPa (range 32.85–66.19 MPa) whereas 

mean tensile strain (relative elongation before rupture) was 32.3% ± 5.8%. 

The stiffness of native collagenous tissues/substrates reported in literature is highly variable 

(Table 2), covering a range from kPa (soluble collagen substrates) to GPa (bones). 

Our results, summarized in Table 3, indicate that, even in wet (physiological) conditions, the SCM 

is a highly resistant material, particularly to uniaxial tensions, with stiffness values in the range of 

mammalian Achille’s tendons or skin (Table 2). Furthermore, this is an extremely high value if 

compared to most of the commonly used cell culture collagen substrates, which usually are in an  
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acid-solubilized jelly form. As previously underlined, acid-treatment can cause a partially irreversible 

denaturation of the collagen molecules, which therefore might reduce its natural and intrinsic 

mechanical resistance.  

Table 2. Stiffness values of different collagenous structures. Values are reported as  

mean ± SD or range. 

Structure 
Stiffness (Elastic or 

Young’s Modulus) 
References 

Sea urchin compass depressor ligament (P. lividus) 16.65 ± 8.93 (Mpa) [50] 

Sea urchin spine catch apparatus (Anthocidaris crassispina) 90 ± 0.87 (Mpa) [58] 

Sea cucumber dermis (Actinopyga mauritiana) 1 (Mpa) [59] 

Sea cucumber single native collagen fibril (C. frondosa) 1–2 (Gpa) [36] 

Bovine single collagen fibril 0.2–0.8 (Gpa) [60] 

Rat Achille’s tendon (Rattus norvegicus) 310 (Mpa) [61] 

Pig liver 6.9–34.7 (kPa) [62] 

Human skin 98.97 ± 97 (Mpa) [63] 

Human cornea 0.3–7 (Mpa) [64] 

Human articular cartilage (hip joints) 1.816 ± 0.868 (Mpa) [65] 

Human cortical bone (femoral diaphysis) 17.9 (Gpa) [65] 

Bovine Trabecular bone material 0.76 ± 0.39 (Gpa) [66] 

EDC crosslinked bovine collagen 31 ± 4.4 (Mpa) [67] 

Soluble rat tail collagen (1–3 mg/mL) 1–28 (kPa) [68] 

PCL/collagen scaffold crosslinked with glutaraldheyde 11 (Mpa) [69] 

Table 3. SCM mechanical properties. Values are reported as mean ± SD; n: number of samples. 

Sea Urchin (P. lividus) Collagen Matrices (SCM) 

Mechanical Properties Mean ± SD n 

Viscosity  60.98 ± 52.07 GPa·s 
36 

Breaking load 17± 2.8 MPa  

Stiffness (Elastic or Young’s modulus) 146 ± 48 MPa 

19 Tensile strength  44.58 ± 9.56 MPa  

Tensile strain  32.3% ± 5.8% 

Grover et al. [67] showed that substrates prepared from a fibrous bovine collagen suspension, 

crosslinked by EDC-NHS, displayed a stiffness of 31 ± 4.4 MPa (wet conditions), a nearly 5 folds 

lower value than that we obtained with SCM which was similarly crosslinked.  

A high elasticity of the SCM was observed by comparing the average thickness before and after the 

mechanical tests and by analyzing the fracture area (SEM and confocal observations). Indeed, the 

average thickness of the samples did not significantly vary after the mechanical testing (11.16 ± 3.18 μm 

before; 10.91 ± 3.18 μm after) and its value was constant along the entire length of the samples. 

Additionally, the fracture surface appeared quite sharp confirming the absence of a plastic deformation. 
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2.5. In Vitro Biocompatibility 

Preliminary biocompatibility tests were performed to assess mammalian cell behavior when in 

contact with the SCM; indeed, since these substrates might be used for tissue engineering and 

regenerative medicine purposes, a first fundamental requirement is the lack of cytotoxicity. Having in 

mind these potential applications we decided to focus on primary stem cell cultures rather than well 

established cell lines: mesenchymal stem cells (MSCs) isolated from peripheral blood of horses were 

therefore grown on SCM to check its suitability as cell substrate. Overall, both cell counting and Cell 

proliferation Assay (XTT) indicated that the SCM are not toxic for MSCs: despite the lower absolute 

values than on plastic, cells adhered, survived and in the medium-long time (7–21 days) they also 

increased in number (Figures 5 and 6), thus suggesting an active proliferation. 

Figure 5. Cell counting of mesenchymal stromal cells (MSCs) seeded on SCM and on 

plastic at 24 h, 4 and 7 days. Each histogram represents the mean ± SD of four 

experiments; * p < 0.05 plastic versus SCM.  

 

The initial decrease of MSCs proliferation on the sea urchin collagen observed in the XTT assay 

(Figure 6) might suggest a first “adaptation phase” encountered by the cells on the substrate 

(structurally very different from the flat homogeneous plastic dish); even if present (this was not 

observed in cell counting tests), this initial phase did not affect the following constant cell growth 

which led to a subsequent 3 folds increase (Figure 6). In progress studies will help to elucidate this cell 

behavior and to understand in detail if the SCM influences the cell cycle or the differentiation pathway. 
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Figure 6. Cell proliferation assay of MSCs seeded on SCM and plastic using XTT Elisa 

Kit (Roche) at 24 h, 4, 7, 14, 21 days. Each histogram represents the mean ± SD of  

four experiments; * p < 0.05 plastic versus SCM. 

 

3. Experimental Section 

Specimens of Paracentrotus lividus were collected in Paraggi (“Area Marina Protetta di Portofino”) 

on the Ligurian coast of Italy. Once transported to the Department of Biosciences (Milan), animals 

were immediately dissected and their oral halves were stored at −20 °C. 

3.1. Extraction of Collagen from the PM of P. lividus  

PMs were dissected on ice from frozen oral halves, minced, left in an hypotonic buffer (10 mM 

Tris, 0.1% EDTA) for 12 h (RT) and rinsed with a decellularizing solution (10 mM Tris, 0.1% SDS) 

for 12 h (RT). After several and careful washings in PBS, the solution was replaced by a 

disaggregating solution (0.5 M NaCl, 0.1 M Tris-HCl pH 8.0, 0.1M β-mercapto-ethanol, 0.05 M 

EDTA-Na) according to Matsumura [18]. The suspension was then filtered and dialyzed against 0.5 M 

EDTA-Na solution (pH 8.0) for 3 h (RT) and successively against distilled water overnight (RT). Long 

term storage of the obtained collagen suspension was performed by freezing 1.5 mL aliquots at −20 °C 

or drying them (37 °C) in silicone molds. These samples were then used for production of either cell 

culture substrates or samples for mechanical testing (see below). 

3.2. Ultrastructural Analysis of Isolated Collagen Fibrils 

A 50 µL drop of fibril suspension was placed on a 300 mesh copper grid with FORMVAR 

membrane. After 5 min, the suspension in excess was removed by a filter paper. The grid was stained 

with uranyl acetate 2% (10 min) and with lead citrate (5 min) and subsequently observed at the 

transmission electron microscope (TEM JEOL SX 100, Tokyo, Japan). 
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3.3. Cuprolinic Blue Staining for GAG Visualization in Isolated Collagen Fibrils 

The isolated collagen samples were applied to 200 mesh Formvar-coated grids. After 5 min, the 

suspension in excess was removed by a filter paper. The grids were stained with Cuprolinic blue by 

exposing them sequentially to the following solutions for the indicated times and number of 

washings [19]: 500 mM NaC1 (60 s × 1), fixative solution (2.5% glutaraldehyde, 25 mM sodium 

acetate, 300 mM MgCl2, pH 5.6; 60 s × 1), Cuprolinic blue (60 s × 1), fixative solution (30 s × 2), 

sodium tungstate (60 s × 1), water (30 s × 2), 1% uranyl acetate (60 s × 1), and water (30 s × 2). 

Isolated and unstained fibrils were used as a control. The grids were then observed at the transmission 

electron microscope (TEM JEOL SX 100, Tokyo, Japan). 

3.4. SDS-PAGE Analyses of the Collagen Suspension 

A 1 mL of stocked collagen suspension (in distilled water) was centrifuged (10,000× g, 45 min, 

4 °C), the supernatant was discharged and 1 mL of pepsin (1 mg/mL) in acetic acid 0.5 M was added. 

Samples were left 48 h (4 °C) on an rotary shaker, centrifuged (17,000× g, 1 h, 4 °C) and the 

supernatant was collected in another tube. NaCl was added to reach a final concentration of 5 M, then 

samples were left on the rotary shaker overnight to allow collagen precipitation (4 °C). The day after 

samples were centrifuged (16,000× g, 1 h, 4 °C), the supernatant was discharged and 500 μL of 

distilled water were added. The obtained solution was mixed with sample buffer (2:1), heated at 95 °C 

for 5 min, and run over a 10% precast gel (Biorad, Hercules, CA, USA) at a constant voltage of 150 V. 

10 µL of Precision Plus Protein™ Dual Color Standards (Biorad, Hercules, CA, USA) were used for 

molecular weight (MW) determination. The separated proteins were visualized by staining with 

Coomassie Blue R-250. 

3.5. Production of SCM for Cell Cultures 

The concentration of the stored collagen suspension was calculated from a sub-sample as follows: 

500 μL of the suspension were diluted in few millilitres of distilled water and centrifuged at 50× g 

(10 min) to remove possible undissociated material. The supernatant was then centrifuged at 2000× g 

(20 min) to obtain a pellet of collagen, and resuspended in 500 μL of deionized water. The so obtained 

collagen suspension was dried in a silicon mold at 37 °C, overnight. The resulting solid sheet of 

collagen was weighted and the obtained value was used to calculate the original collagen 

concentration. Once having this information, the remaining collagen suspension was centrifuged at 

50× g (10 min.) and then at 2000× g for 20 min. The pellet was rinsed with 0.01% TritonX-100 in a 

proper volume to reach 2 mg/L final collagen concentration. 300 μL of collagen suspension were 

placed in each 24-multiwells dish and left at 37 °C overnight. The so obtained SCM were then exposed 

to 300 μL EDC/NHS cross-linker solution (EDC 30 mM/NHS 15 mM in MES buffer 100 mM) for 4 h 

and subsequently washed several times with PBS, distilled water and ethanol 70%. In order to check 

their suitability (cleanness and homogeneity), the obtained SCMs were observed under the inverted 

microscope Axiovert 200M (Zeiss, Oberkochen, Germany)—AxioCam HRM HAL 100, equipped with 

an image acquisition system Axio Vision Rel 4.5. Prior to use, SCM were carefully washed with 

Leibovitz medium, the same used in the following cell cultures. 
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3.6. Production of SCM for Mechanical Tests  

The protocol’s first steps were the same previously described for cell culture substrates production. 

Then 800 μL of the 2 mg/mL suspension were placed in a specifically prepared rubber silicone mold  

(10 mm × 16 mm) and left to dry at 37 °C overnight. Samples were then treated as previously 

described with EDC/NHS solution and washed with PBS and distilled water. The so obtained SCM 

were then cut into small strips (2 mm × 10 mm) to be tested for mechanical tests. Four strips were used 

for thickness evaluation by confocal microscopy (Leica TCSNT confocal laser microscope, Wetzlar, 

Germany) and/or SEM (LEO-1430, Zeiss, Oberkochen, Germany).). For confocal analysis strips were 

stained with Sirius red (50 μM in acetic acid 0.5 M) for 20 min, then washed with PBS to remove the 

residues of the dye and mounted on a glass slide. Thickness of sample for mechanical tests was 11–12 μm. 

3.7. Scanning Electron Microscopy (SEM) 

SCMs were washed in 0.1 M sodium cacodylate buffer overnight and then fixed with 2% 

glutaraldehyde in 0.1 M cacodylate buffer (2 h, 4 °C). This fixation preceded a secondary fixation with 

1% osmium tetroxyde in 0.1 M sodium cacodylate buffer (2 h, RT). After being washed with distilled 

water, samples were dehydrated with increasing percentages of ethanol (25%, 50%, 70%, 90%, 100%). 

Absolute ethanol was gradually substituted with HMDS (Hexamethyldisilazane) (25%, 50%, 75%, 

100%). After that, SCMs were left to dry on a filter paper. Samples were then mounted on stubs and 

covered with pure gold (Agar SEM Auto Sputter, Stansted, UK). Finally, samples were observed at the 

scanning electron microscope (LEO-1430, Zeiss, Oberkochen, Germany). 

3.8. Mechanical Tests 

The mechanical properties of SCM were investigated under creep (isotonic test) and force-extension 

(isometric tests) conditions. The experimental apparatus consisted of an isotonic force transducer 

(Harvard Apparatus, Holliston, MA, USA) or an isometric force transducer (LCM System Ltd., 

Newport, UK) plugged to a PowerLab 2/26 recorder device (AD Instrument, Dunedin, New Zealand) 

via pre-amplifier. All the data originated from the mechanical tests were recorded with Labchart 7 

software (AD Instrument, Dunedin, New Zealand). Each SCM strip was fixed at the two ends to rigid 

plastic supports with cyanoacrylate cement (Superattak®, Heckel, Düsseldorf, Germany) so that the 

strip length left between the supports was 6 mm. Each strip was photographed before testing (Figure 7). 

In order to mimic as much as possible a physiological condition under mechanical stress all the 

SCMs were tested in L-15 Leibovitz cell culture medium; samples were immersed and hold in position 

5 min before the test started and kept in immersion for all the duration of the experiments. 
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Figure 7. LM. SCM for mechanical test. Plastic support (ps), sea urchin collagen  

matrix (scm). 

 

3.8.1. Creep Tests 

Twenty-nine strips were used for creep tests. The upper part of each strip was connected with a 

stainless steel chain to the lever of the isometric force transducer; the lower part was tightly clamped to 

a fixed hook. A locking device prevented the elongation of the samples before the start of the test. 

From the obtained curves we extrapolated the strain rate in order to calculate the viscosities of the 

samples. The breaking load was the load at which the samples broke. Viscosity values were calculated 

as follows:  

Coefficient of viscosity (MPa·s) = 
ratestrain

stressinalNom
 (1)  

Nominal stress (N/mm2) = 
)sec( areationcrosssampleCSAInitial

Force
 (2)  

Strain rate = 
)/( smmt

l




 (3)  

3.8.2. Force-Extension Test 

Nineteen strips were used for force-extension tests. The upper part of the strip was attached to the 

force transducer with a stainless steel chain whereas the lower part was fixed to a hook connected with 

a micromanipulator. Samples were subjected to elongation of 0.1 mm every 10 s until rupture or until 

reaching the maximum load of the transducer. The force peaks generated at each elongation step were 

used to produce a stress-strain curve; the tangent to the steepest straight-line portion of each curve was 

used to calculate the stiffness of each sample. The breaking strain and breaking stress were obtained 

from the curves when samples underwent rupture. Stiffness values were calculated as follows: 
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3.9. Biocompatibility 

3.9.1. Mesenchymal Stromal Cell Cultures  

Mesenchymal stromal cells (MSCs) were obtained from equine peripheral blood by gradient 

separation [70] and they were maintained at 37 °C in an incubator with an atmosphere of humidified 

air 5% CO2 in growth medium. 

3.9.2. Cell Counting 

The MSCs were seeded at a concentration of 2 × 104/well in 6-wells (plastic wells and wells treated 

with MCT 5 mg/mL) for 24 h, 4 and 7 days. At different time points the cells were trypsinized and 

counted with Burker chamber. Four experiments were carried out and for each experiment 6 replicates 

were performed. 

3.9.3. Proliferation Assay 

Cell proliferation was evaluated using the Cell Proliferation Kit II (XTT)-base (Roche, Milan, Italy) 

colorimetric assay. Cells (1 × 104) were grown in 96-well tissue culture plates for 24 h, 4, 7, 14 and  

21 days. MSC were grown in plastic wells and in wells plated with SCM. At each time point, cells in 

selected wells were incubated with the yellow XTT solution for 1 h. After incubation with XTT, the 

metabolically active cells developed an orange formazan product, which was quantified using an 

enzyme-linked immunosorbent assay plate reader (Spectra Count, Perkin Elmer, Milan, Italy). The 

amount of orange formazan produced was directly correlated to the number of living cells. Four 

experiments were carried out and for each experiment three replicates were performed.  

3.10. Statistical Analysis 

Data are expressed as the mean ± SD. Statistical analysis was performed using the paired Student  

t-test (SPSS software, version 11.0). The level of statistical significance was set at p ≤ 0.05. 

4. Conclusions  

The sea urchin is a well known and common experimental model widely used in basic and  

applied biology. P. lividus is also an edible species, appreciated for the delicacy of its gonads and 

therefore collected and often cultured in many countries for alimentary purposes. All the non-edible 
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body parts, such as the PM, could be collected and used as a recycled material for producing low-cost 

collagen substrates. 

The protocol here proposed and developed allows us to obtain native collagen fibrils in sufficient 

amount and purity to produce a cohesive matrix. High resistance to mechanical stress and elasticity are 

the main viscoelastic properties of the produced SCM, which therefore might be suitably employed for 

specific tissue engineering applications such as tendon or skin regeneration (Tables 1–3). Alternatively, 

they might be useful as highly resistant dermal stitches for surgical purpose or skin tape for topical 

applications (lacerations or burns). Furthermore, our results showed that the sea urchin collagen 

matrices may be successfully seeded with mesenchymal stromal cells isolated from equine blood thus 

indicating they can be a promising clinical tool for mammalian damaged tissues in regenerative 

medicine. Further ongoing in vitro and in vivo tests will help to confirm the SCM biocompatibility. In 

conclusion, we think that the SCM might provide cells a more biomimetic environment in terms of 

structure (fibrillar), biochemical composition (collagen) and mechanical characteristics than other 

existing substrates.  
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