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Abstract: In aquaculture, shrimp farming is a popular field. The benefits of shrimp farming include
a relatively short grow-out time, high sale price, and good cost recovery. However, outbreaks of
serious diseases inflict serious losses, and acute hepatopancreatic necrosis disease (AHPND) is an
emerging challenge to this industry. In South American white shrimp (Penaeus vannamei) and grass
shrimp (Penaeus monodon), this disease has a 70–100% mortality. The pathogenic agent of AHPND
is a specific strain of Vibrio parahaemolyticus which contains PirAvp and PirBvp toxins encoded in the
pVA1 plasmid. PirAvp and PirBvp have been shown to cause the typical histological symptoms of
AHPND in infected shrimps, and in this review, we will focus on our structural understanding of
these toxins. By analyzing their structures, a possible cytotoxic mechanism, as well as strategies for
anti-AHPND drug design, is proposed.
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1. Introduction

Acute hepatopancreatic necrosis disease (AHPND), which was originally known as early mortality
syndrome (EMS), first broke out in China in 2009, then spreading to Vietnam, Malaysia and Thailand [1,2].
Because of this disease, shrimp production dropped to ~60% compared with 2012, and total economic
losses have been estimated at more than $1 billion per year, globally [3]. The causative agent of AHPND
was soon found to be a specific strain of Vibrio parahaemolyticus. V. parahaemolyticus is a halophilic
Gram-negative bacterium that is commonly found in estuarine, marine and coastal environments [4],
and originally it was not known how this opportunistic bacterium had become virulent and capable of
causing disease in shrimps.

In addition to the readily observable symptoms in infected P. monodon and P. vannamei—lethargy,
an empty stomach and midgut, and a pale to white atrophied hepatopancreas [4]—histological
examination of the diseased shrimp further showed that the HP tubule epithelial cells sloughed into
the HP tubule lumens [4,5]. Meanwhile, in the initial, acute stage of AHPND, even when a large
number of bacteria could be found in the stomach, there were still sometimes no obvious bacterial
colonies in the hepatopancreas tube lumens [1,4,6]. This led Tran et al. to propose that the symptoms
of AHPND were caused by a toxin secreted by the pathogen [4]. This proposal was further supported
by reverse gavage experiments in which introduction of the bacteria-free supernatant of the bacterial
culture into healthy shrimp induced typical AHPND symptoms [4,7].

Subsequent investigations focused on isolating AHPND variants [8] and on comparing the
draft genome sequences of AHPND-causing versus non-AHPND-causing strains [1,9–12]. By using a
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next-generation sequencing (NGS) platform to sequence and compare three virulent (3HP, 5HP and
China) and one non-virulent (S02) V. parahaemolyticus strains [9], Yang et al. (2014) found that a 69-kb
extrachromosomal plasmid was present in all AHPND-causing strains but not in the non-virulent
strain. This plasmid was named pVA1, and sequence analysis showed that it contained homologs of
the insecticidal Photorhabdus insect-related (Pir) binary toxin PirA/PirB [13]. The importance of these
two toxins to AHPND was confirmed by subsequent studies [14–16], and they are now referred to as
V. parahaemolyticus PirA/PirB (PirAvp/PirBvp).

2. The Structural Similarity between V. parahaemolyticus PirAvp/PirBvp and Bacillus thuringiensis
Cry Toxins

Photorhabdus PirA and PirB were first reported as potential toxins by genomic sequencing of
the entomopathogenic bacterium Photorhabdus luminescens W14 [17], and in 2009, Waterfield et al.
reported that both Photorhabdus PirA and PirB were necessary for the insecticidal activity against
caterpillars of the moth Galleria mellonella [18]. Although sequence similarity had previously led to
Photorhabdus PirB being initially identified as a juvenile hormone esterase-like (JHE-like) protein [19],
Waterfield et al. found that Photorhabdus PirB did not have JHE activity [20], and another study
further showed that it had sequence similarity to the pore-forming domain I of the B. thuringiensis
Cry toxin [21]. However, although it was established that Photorhabdus PirA/PirB was an effective
insecticidal binary toxin [18,20–22], its cytotoxic mechanism remained unclear.

The first crystal structures to be reported for any PirA/PirB toxins were for V. parahaemolyticus
PirAvp and PirBvp, and the accompanying structural analysis also suggested a relationship between
B. thuringiensis Cry and PirAvp/PirBvp toxins [13]. Cry proteins are one of the B. thuringiensis insecticidal
toxins, and they have an important potential use in agriculture [23,24]. Although Cry toxins can be
divided into at least 75 primary subgroups, and can show differences in their amino acid sequences,
the determined and predicted structures of almost all of the Cry toxins are similar [25]. Cry toxins
have three functional domains: the pore-forming domain I, the receptor-binding domain II and
the sugar-binding domain III [23–29]. The specificity and cytotoxic mechanisms of Cry toxins are
mediated by these three domains, and they have been discussed in many review articles [23–25,28–31].
For example, B. thuringiensis Cry1A uses domains II and III to target receptors that are abundant
in the midgut of insect larvae, such as alkaline phosphatase (ALP) or aminopeptidase N (APN).
The concentrated Cry1A toxins then interact with another receptor, cadherin-like receptor (CAD),
which facilitates the proteolytic cleavage of its domain I helix α1. This cleavage induces the formation
of the Cry oligomer, which uses the activated domain I to form non-selective pores in the apical
membrane. This causes colloidal osmotic lysis of the cells.

Figure 1 shows the crystal structure of the PirAvp and PirBvp toxins. Figure 2 shows how
PirBvp corresponds to Cry domains I and II, while PirAvp has similar topology to Cry domain III.
These structural similarities suggest PirAvp/PirBvp binary toxin is a Cry-like, three-domain toxin,
but with a dissociated domain III [13,27]. The following sections discuss this idea in more detail.
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Figure 1. Crystal structures of PirAvp (left) and PirBvp (right) toxins. The α-helices and β-strands are 
shown in red and yellow, respectively. PirAvp has a jelly-roll topology which is folded into an 
eight-stranded antiparallel β-barrel. PirBvp has two domains with distinct structural features: the 
N-terminal of PirBvp (PirBvpN; residues 12–256) forms a seven-α-helix bundle; while the C-terminal 

(PirBvpC; residues 279–436) contains two pairs of four-stranded antiparallel β-sheets. PirBvpN and 
PirBvpC are connected by a long loop. The PDB codes 3X0T and 3X0U were used to produce the 
figures for PirAvp and PirBvp, respectively. 

2.1. PirBvp Contains Both Cry-Like Pore-Forming and Receptor Domains 

Both the N-terminal domain of PirBvp (PirBvpN) and Cry domain I contain a bundle of α-helices 
(Figure 2A) [13]. Figure 2B further shows that there are abundant hydrophobic residues located in 
the center of the PirBvpN α-bundle, and that the hydrophobic α-helix 8 of PirBvpN is sheltered within 
a bundle of amphipathic α-helices. This “inside-out membrane fold” is consistent with other 
pore-forming toxins that can switch between soluble and transmembrane conformations [32]. After 
triggering conformational change, these hydrophobic residues become exposed on the surface of 
the protein, where they are able to interact with membrane lipids. It should also be noted that these 
helices are generally longer than 40 Å, which is sufficient to cross the cell membrane (the length of 
the lipid bilayer is ~40 Å). Similar features are seen in the pore-forming domain I of Cry toxin, as 
well as in other pore-forming toxins, like colicin [28,29,32,33]. All of this strongly suggests that 
PirBvpN has the ability to form a pore on the cell membrane that causes cell death. Meanwhile, the 
C-terminal domain of PirBvp (PirBvpC) has three antiparallel β-sheets arranged in a manner similar to 
that seen in Cry domain II (Figure 2C) [13]. Since the Cry domain II contains an 
immunoglobulin-like folding that is involved in protein–protein or protein–ligand interactions [34], 
it seems likely that the PirBvpC domain plays a similar functional role. Further, since Cry domain II 
could interact with insect receptors [23–26,29–31], the structural similarity suggests PirBvpC is also a 
receptor binding domain. 

Figure 1. Crystal structures of PirAvp (left) and PirBvp (right) toxins. The α-helices and β-strands
are shown in red and yellow, respectively. PirAvp has a jelly-roll topology which is folded into
an eight-stranded antiparallel β-barrel. PirBvp has two domains with distinct structural features:
the N-terminal of PirBvp (PirBvpN; residues 12–256) forms a seven-α-helix bundle; while the C-terminal
(PirBvpC; residues 279–436) contains two pairs of four-stranded antiparallel β-sheets. PirBvpN and
PirBvpC are connected by a long loop. The PDB codes 3X0T and 3X0U were used to produce the figures
for PirAvp and PirBvp, respectively.

2.1. PirBvp Contains Both Cry-Like Pore-Forming and Receptor Domains

Both the N-terminal domain of PirBvp (PirBvpN) and Cry domain I contain a bundle of α-helices
(Figure 2A) [13]. Figure 2B further shows that there are abundant hydrophobic residues located
in the center of the PirBvpN α-bundle, and that the hydrophobic α-helix 8 of PirBvpN is sheltered
within a bundle of amphipathic α-helices. This “inside-out membrane fold” is consistent with
other pore-forming toxins that can switch between soluble and transmembrane conformations [32].
After triggering conformational change, these hydrophobic residues become exposed on the surface of
the protein, where they are able to interact with membrane lipids. It should also be noted that these
helices are generally longer than 40 Å, which is sufficient to cross the cell membrane (the length of the
lipid bilayer is ~40 Å). Similar features are seen in the pore-forming domain I of Cry toxin, as well as in
other pore-forming toxins, like colicin [28,29,32,33]. All of this strongly suggests that PirBvpN has the
ability to form a pore on the cell membrane that causes cell death. Meanwhile, the C-terminal domain of
PirBvp (PirBvpC) has three antiparallel β-sheets arranged in a manner similar to that seen in Cry domain
II (Figure 2C) [13]. Since the Cry domain II contains an immunoglobulin-like folding that is involved
in protein–protein or protein–ligand interactions [34], it seems likely that the PirBvpC domain plays a
similar functional role. Further, since Cry domain II could interact with insect receptors [23–26,29–31],
the structural similarity suggests PirBvpC is also a receptor binding domain.
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Figure 2. A detailed comparison between structures of B. thuringiensis Cry and PirAvp/PirBvp toxins. 
The α-helices and â-sheets of Cry domain I and PirAvp/PirBvp are colored cyan and magenta, and red 
and yellow, respectively. (A) A comparison between Cry domain I and PirBvpN; (B) Inside the 
α-helical bundle of PirBvpN. The hydrophobic residues Leu, Ile, Val, Met, Phe, Trp and Cys are 
shown in yellow; (C) A comparison between Cry domain II and PirBvpC showing the receptor 
binding loops of Cry domain II. A possible receptor-binding region of PirBvpC is proposed based on 
a structural comparison to Cry domain II; (D) A comparison between Cry domain III and PirAvp; (E) 
A potential ligand-binding site of PirAvp. GalNAc is shown docked into the structure of PirAvp using 
the docking tool iGEMDOCK [35]. Briefly, each atom of the residues and the compound was first 
assigned an atom type (e.g., donor or acceptor) and formal charge based on their physiochemical 
properties. The scoring function of iGEMDOCK was then used to measure intermolecular 
interactions between PirAvp and GalNAc. In this docking model, the oxygen heteroatom of GalNAc 
forms hydrogen bonds with residue Lys29. Residue Glu36 yields a hydrogen bond with one of 
GalNAc’s hydroxyl groups. Gly38 is a non-polar residue that is sandwiched in close proximity to 
two hydroxyl groups. Residues Val37 and Arg84 interact with the compound via van der Waals 
forces. The PDB code 1CIY was used to produce the figures for the Cry toxin. 

Figure 2. A detailed comparison between structures of B. thuringiensis Cry and PirAvp/PirBvp toxins.
The α-helices and â-sheets of Cry domain I and PirAvp/PirBvp are colored cyan and magenta, and red
and yellow, respectively. (A) A comparison between Cry domain I and PirBvpN; (B) Inside the α-helical
bundle of PirBvpN. The hydrophobic residues Leu, Ile, Val, Met, Phe, Trp and Cys are shown in
yellow; (C) A comparison between Cry domain II and PirBvpC showing the receptor binding loops
of Cry domain II. A possible receptor-binding region of PirBvpC is proposed based on a structural
comparison to Cry domain II; (D) A comparison between Cry domain III and PirAvp; (E) A potential
ligand-binding site of PirAvp. GalNAc is shown docked into the structure of PirAvp using the docking
tool iGEMDOCK [35]. Briefly, each atom of the residues and the compound was first assigned an atom
type (e.g., donor or acceptor) and formal charge based on their physiochemical properties. The scoring
function of iGEMDOCK was then used to measure intermolecular interactions between PirAvp and
GalNAc. In this docking model, the oxygen heteroatom of GalNAc forms hydrogen bonds with residue
Lys29. Residue Glu36 yields a hydrogen bond with one of GalNAc’s hydroxyl groups. Gly38 is a
non-polar residue that is sandwiched in close proximity to two hydroxyl groups. Residues Val37 and
Arg84 interact with the compound via van der Waals forces. The PDB code 1CIY was used to produce
the figures for the Cry toxin.
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2.2. PirAvp Contains a Possible Sugar-Binding Pocket

Like PirBvp, the biological functions of PirAvp may also be revealed by its structural features.
PirAvp contains two antiparallel β-sheets that are packed together in a jelly-roll topology [13].
This folding is similar to domain III of the Cry toxin (Figure 2D). Cry domain III contains a
galactose-binding domain-like fold [36,37]; this is thought to be related to the toxin’s specificity
via its recognition of receptor-bound N-acetylgalactosamine (GalNAc) [23–26,29–31,36–38]. In the
interaction between Cry1Ac and APN, Cry1Ac domain III first interacts with the GalNAc sugar on
the APN receptor to facilitate the subsequent toxin-receptor binding [23]. PirAvp does indeed play a
similar role to Cry domain III, then it should facilitate target-specific recognition by binding to certain
ligands on the cell membrane/receptor. Interestingly, a potential sugar-binding cavity formed by three
loops was found in PirAvp (Figure 2E). The docking model shows that when the GalNAc molecule
was fitted into this cavity, it could potentially interact with the PirAvp residues Lys29, Glu36, Val37,
Gly38 and Arg84 (Figure 2E). We further note that, since the potential binding cavity of PirAvp is
deep and narrow (Figure 2E), it may be possible that PirAvp not only targets the monosaccharides like
GalNAc, but also oligosaccharides.

2.3. Unanswered Questions Relating to the Cytotoxic Mechanism of PirAvp/PirBvp

We have shown that the PirAvp/PirBvp toxin has structures that are similar to the functional
domains of Cry. This further suggests that PirAvp/PirBvp might also induce cell death via the
respective Cry-like steps of receptor binding, oligomerization and pore forming. To explore this
model, identification of the cell receptors that might interact with PirAvp/PirBvp is a logical place
to start. We note that although the main folding of Cry domain II and PirBvpC is similar, the loop
regions between these two domains are quite different (Figure 2C). Since the loop á-8, loop 2 and loop
3 of Cry Domain II are very important to aminopeptidase N (APN)-, alkaline phosphatase (ALP)-
and cadherin (CAD)-receptor binding [26,39–41], these divergent loop regions suggest either that
the toxin-interacting regions on shrimp’s APN, ALP and CAD receptors are different to those found
in insects, or else that PirBvp targets different receptors on the shrimp cell’s membrane. In either
case, given that PirAvp/PirBvp toxin induces cell death in the shrimp’s hepatopancreas, but not in
the stomach or other organs, it seems very likely that these putative PirAvp/PirBvp receptors will
be found exclusively in the hepatopancreas membrane. However, we caution that there is as yet
no experimental evidence in support of this; at present, the structure of these shrimp receptors
remains unknown. We also note that several other critical processes still need to be investigated
experimentally. For example, we do not yet know whether the cleavage of N-terminal á-helices on
PirBvp is important for toxin activation, or whether PirAvp/PirBvp forms an oligomer in order to make
a pore in the membrane.

Determination of the binding ligand of PirAvp is also worth investigating. Although the binding
model between PirAvp and GalNAc seems reasonable, this interaction still needs to be confirmed by
experiments such as surface plasmon resonance. To explore more possibilities, a high-throughput
screening of PirAvp bound ligands would be useful, and we note that a feasible chip platform designed
for carbohydrate-protein interactions has recently been developed [42–44].

To become a true three-domain toxin, PirAvp and PirBvp must first form a complex. Although the
complex formation of PirAvp/PirBvp was confirmed using gel filtration [13], the resulting structure is
still unknown, so how these two toxins bind to each other is still unclear. Based on the locations of the
corresponding domains in the Cry toxin, a possible binding model of PirAvp and PirBvp was proposed
(Figure 3; [13]). In this model, á-helices 1, 2, 12 and 13, and loops 12 and 13 of PirBvp create a potential
binding cavity for PirAvp, while the â-sheets 1, 3 and 9 of PirAvp interact with PirBvp (Figure 3A).
Figure 3B shows how the surface charges on the PirAvp/PirBvp interface are complementary to each
other, further suggesting that this model is reasonable. However, as noted above, this PirAvp/PirBvp

binding model still needs to be verified experimentally.
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Furthermore, although there are many structural similarities, some physiological characteristics
between Cry and PirAvp/PirBvp toxins may be different. For example, the Cry protoxins generally
form crystals in the mother cell compartment [45,46]. Since the crystals have to be solubilized in
the gut of insect larvae to become biologically active, this ability of the protoxins to crystallize may
decrease their susceptibility to premature proteolytic degradation [45]. Previous reports have shown
that the solubility of these Cry crystals is dependent on pH [45,47,48]; the crystals that form in the
neutral pH of the mother cells subsequently dissolve in the acidic environment (<pH 4) of the insect
gut. However, unlike Cry toxins, there are no reports of in vivo crystal formation for PirAvp/PirBvp,
and although in vivo crystallization of Cry toxins is an important control step of their toxicities, it seems
unlikely that PirAvp/PirBvp would use a similar control mechanism. Nevertheless this has not yet been
demonstrated experimentally.

A more complete understanding of the cytotoxic mechanisms of PirAvp/PirBvp toxins is likely to
be important for AHPND research, but could also be important for agricultural applications. Although
there is genetic distance between PirAvp/PirBvp and the PirA/PirB homologs that are found in other
bacteria such as Photorhabdus asymbiotica (WP_015835800/WP_015835799) [18], Photorhabdus luminescens
(ABE68878/ABE68879) [19], Xenorhabdus doucetiae (CDG18638/CDG18639), Xenorhabdus cabanillasii
(CDL79383/CDL79384), Xenorhabdus nematophila (WP013183676/WP010845483) and Alcaligenes faecalis
(WP003801867/WP003801865), these insecticidal PirA and PirB toxins have allowed Photorhabdus and
Xenorhabdus to be used in biological pest control [18,21,22]. The study of PirAvp/PirBvp should also
therefore provide useful information for insecticidal applications.
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Figure 3. Possible binding mode and interface between PirAvp and PirBvp toxins. (A) Cry and proposed
PirAvp/PirBvp complex. The PirAvp/PirBvp complex was predicted by reference to the positions of the
three Cry domains. The possible binding regions of PirAvp and PirBvp are colored orange and blue;
(B) The surface charges on the complex interfaces of PirAvp and PirBvp. Red and blue respectively
indicate negatively and positively charged regions.

3. Strategies for Designing Drugs to Block the Cytotoxic Effects of V. parahaemolyticus PirAvp

and PirBvp Toxins

Although AHPND-detection methods that can monitor the shrimps and the environment during
cultivation have already been developed [7,49,50], there are still no available drugs that can be used
in the treatment of AHPND. It has already been clearly established that PirAvp and PirBvp toxins are
the main cytotoxic source of AHPND; for example, the deletion/mutation of their pirAvp and pirBvp
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genes from pVA1 can decrease AHPND severity and reduce the mortality of the shrimps [12,13,15,16].
Additionally, PirAvp and PirBvp are both secreted proteins [13,15], which means that they could be
easily targeted by drugs/inhibitors. Neutralization of PirAvp and/or PirBvp toxicity is therefore a
rational direction for AHPND drug design. Further, since the structures of PirAvp and PirBvp are both
available, a structure-based drug design can be used to achieve this goal more efficiently.

Structure-based drug design has been successfully used before. For example, in the well-studied
pore-forming toxins, such as colicin and hemolysin, structural biology provided a wealth of
useful knowledge regarding conformation rearrangement, receptor/ligand binding regions and
oligomerization [32]. Structural insights into toxins also enables the development of novel therapeutic
strategies [32]. For example, small molecules or engineered antibodies can be designed to interact
with specific sites on the toxins. In the case of Aeromonas hydrophila aerolysin, which targets
glycosylphosphatidylinisotol (GPI)-anchored proteins, synthetic GPI molecules and GPI analogues
have been proposed as inhibitors [51]. It has also recently been shown that Staphylococcus aureus
hemolysin can be neutralized by an antibody that targets the receptor binding site of this toxin [52].
Similarly, with other pore-forming toxins, receptors that bind these toxins, such as CCR5 and ADAM10,
can also be considered in a reverse strategy for drug design [53,54]. For example, Leukotoxin ED
pore-forming toxin targets human CCR5 receptor, and CCR5 receptor antagonists such as maraviroc
were shown to block Leukotoxin ED-induced cell death [53]. The structural characteristics of PirAvp

and PirBvp suggests three regions that are potentially suitable for structure-based drug design:
(1) the potential receptor-binding region of PirBvp; (2) ligand-binding region of PirAvp and (3) the
interacting region between PirAvp and PirBvp (Figure 4, Table 1). Interface information such as amino
acid sequences and structural motifs can be used for antibody engineering, as well as for in silico
compound screening.
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Although engineered antibodies can be used to investigate the importance of these various
PirAvp and PirBvp regions in the laboratory, they are probably too expensive and difficult to use in
the field. By contrast, small compounds may be more suitable for AHPND treatment in aquaculture.
Recently, in silico screening approaches have been used to identify small molecules that disrupt
protein–protein interactions [55,56], and currently, data is available for over 35 million compounds on
databases such as ZINC (http://zinc.docking.org/; [57]). By using in silico screening approaches, these
compounds can be virtually docked into specific sites on PirAvp or PirBvp. Furthermore, the binding
affinities between PirAvp/PirBvp and compounds can be predicted using molecular docking tools,
such as iGEMDOCK [35] and AutoDock Vina [58]. Ligand-based screening is another approach
that can be used to identify inhibitors [59]. On the assumption that similar compounds can mimic
physicochemical properties of the interacting regions and occupy the interface of the target protein,
this approach uses online chemistry tools (e.g., Open Babel; [60]) to search for compounds that are
similar to interacting peptides (e.g., a loop) of partner proteins (e.g., the PirAvp binding interface on
PirBvp). Ultimately, compounds with high docking scores that predict greater affinity can be considered
as potential inhibitors, and these can then be validated through bioassays, as well as shrimp challenge
assays. Using these approaches, we are hopeful that a potential PirAvp/PirBvp drug/inhibitor can be
discovered in the near future.

Table 1. Potential interacting regions on PirAvp and PirBvp that may be suitable targets for
structure-based drug design.

Potential Function Regions Involved in Possible Interactions Amino Acid Sequences

Receptor binding

PirBvp Loop 12 274-VGFPS-278
PirBvp Loop 14 316-SIEIHYYNRV-325
PirBvp Loop 18 369-GPE-371
PirBvp Loop 22 413-QEGSDKV-419

PirAvp/PirBvp complex formation

PirAvp β-sheet 1 11-YSHDWTV-17
PirAvp β-sheet 3 26-VDSKH-30
PirAvp β-sheet 9 104-GFCTIYY-110
PirBvp α-helix 1 35-YAFKAMVSFG-43
PirBvp α-helix 2 45-LSN-47

PirBvp α-helix 12 247-MILWQKIKEL-256
PirBvp α-helix 13 260-DVFVHSNLISY-270
PirBvp Loop 12 298-PNMFGERR-305
PirBvp Loop 13 431-PDEF-434

Ligand binding
PirAvp β-sheet 3 26-VDSKH-30 *
PirAvp Loop 4 31-TPIIPEVGRS-40 *
PirAvp Loop 8 83-QRPDNAFY-90 *

* GalNAc interacting residues are shown in bold.

4. Conclusions

In this review, we have presented structural views of the major pathogenic factors of AHPND:
V. parahaemolyticus PirAvp and PirBvp. Based on the structural similarity to B. thuringiensis Cry
pore-forming toxin, we hypothesized that PirAvp and PirBvp may use similar mechanisms to cause cell
death in shrimps. Furthermore, strategies for drug/inhibitor design against these two toxins were
proposed. As more details are discovered, we anticipate that the future safety and usefulness of the
insecticidal applications of this toxin family will also be improved.
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