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Abstract: The long-lasting interest in bioactive molecules (namely toxins) produced by (microalga)
dinoflagellates has risen in recent years. Exhibiting wide diversity and complexity, said compounds
are well-recognized for their biological features, with great potential for use as pharmaceutical
therapies and biological research probes. Unfortunately, provision of those compounds is still far from
sufficient, especially in view of an increasing demand for preclinical testing. Despite the difficulties to
establish dinoflagellate cultures and obtain reasonable productivities of such compounds, intensive
research has permitted a number of advances in the field. This paper accordingly reviews the
characteristics of some of the most important biotoxins (and other bioactive substances) produced
by dinoflagellates. It also presents and discusses (to some length) the main advances pertaining
to dinoflagellate production, from bench to large scale—with an emphasis on material published
since the latest review available on the subject. Such advances encompass improvements in nutrient
formulation and light supply as major operational conditions; they have permitted adaptation of
classical designs, and aided the development of novel configurations for dinoflagellate growth—even
though shearing-related issues remain a major challenge.

Keywords: biotoxin; microalgae; pharmacological applications; microbial factories; therapeutical
value

1. Introduction

During the latest few years, demand for new biocompounds, and its derivatives with
biotechnological and pharmacological potential have experienced a remarkable increase [1].
This trend—to create/find innovative and competitive products through win-win approaches—has
placed a considerable emphasis upon research on marine organisms, including microalgae and
macroalgae [2]. Dinoflagellates, in particular, are a unique group of the former; they are unicellular
planktonic microalgae, and a source of biotoxins affecting seafood safety—yet bearing a potential for
human health at large. A recent boom has indeed been noticed, due to their unexpected applications
as pharmacological drugs, and potential uses in the biology, biomedical and toxicological fields [3].

Commonly found in all types of ecosystems (marine, freshwater, benthic and even sea ice),
this complex taxon is estimated to include 2000+ living species [4]. Half of them are photoautotrophs [5],
whereas the remainder rely on mixotrophy or heterotrophy, as well as parasitic or symbiotic
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behaviors [3,6]. Ecologically speaking, dinoflagellates possessing photosynthetic pigments play a
major role as primary producers in freshwater and marine habitats [7]. They can also be found in
association with other marine organisms, e.g., sea anemones, protozoa, tissues of certain invertebrates,
and stony corals [8].

Dinoflagellates have been reported as potent natural biotoxin producers, as many of these
compounds are effective at far lower dosages than conventional chemical agents [9]. Their ability to
synthesize toxic compounds, accompanied by sudden and booming growth in marine environments
make them the major cause of harmful algal blooms (HABs). HABs cause discoloration on the sea
surface, and are thus called ‘red tides’; 75–80% of toxic phytoplankton species therein are in fact
dinoflagellates [10]. ‘Red tides’ may vary in color from common red to brown, yellow, green or
blue, depending on the dominant species, concentration and depth [11]. Such high densities of
dinoflagellates have been associated to aquatic faunal mortalities worldwide, since they can kill fish
and/or shellfish—either directly via toxin production, or because their large numbers block animal
gills and deplete available oxygen [12]. In addition, toxins accumulated in these organisms can be
transferred to higher trophic levels through the food chain [9]. The negative impact on coastal areas
is particularly notorious; it can not only disrupt the marine environment, but also disturb human
economic activities (e.g., tourism, aquaculture, fisheries), and ultimately affect human health. How and
why these natural phenomena occur remain to be fully understood, but weather and hydrographic
conditions probably play a role [13].

According to the Taxonomic Reference List of Toxic Plankton Algae of Intergovernmental
Oceanographic Commission (IOC), there are at least 95 dinoflagellates known to produce toxins
(called phycotoxins), among 179 species of marine microalgae [14]. For some toxins, doses at the
microgram per kilogram level are more than sufficient to kill [15]. It is not clear why some microalgal
species produce biotoxins. Quilliam [16] claimed some of these second metabolites to be allellochemical
agents against other species, aids in competing for a specific niche, defense against predation, and
enzyme regulation or sexual response induction (feromones).

Several biotoxins produced by marine microalgae can traditionally be organized on the basis on
their effects upon humans: paralytic shellfish poisoning (PSP), neurotoxic shellfish poisoning (NSP),
diarrheic shellfish poisoning (DSP) and amnesic shellfish poisoning (ASP)—released by diatoms,
azaspiracid poisoning (AZP), and ciguatera fish poisoning (CFP). Most such poisonings are caused by
neurotoxins, which exhibit highly specific effects upon the nervous system in birds, animals or even
humans upon ingestion of contaminated shellfish [9]. Human clinical effects/symptoms have been
revised elsewhere [9,17].

Despite the above unfavorable aspects, the unique structure and diverse functionality of
dinoflagellate biotoxins make them valuable and quite interesting compounds. Several toxicological
and biological studies, entailing mixed and axenic cultures, have unfolded the potential of
dinoflagellate-derived compounds (including biotoxins) as promising pharmacological effectors
and/or biological investigation probes.

This review will focus on the pharmacological and biotechnological potential specifically of
dinoflagellate-originated biotoxins, but will also briefly cover other important bioactive compounds
produced thereby for the sake of completeness. It will also provide a brief overview of efforts (in terms
of bioreactors and operational conditions) to improve their production, and discuss a few issues that
still need improvement in attempts to attain higher dinoflagellate biomass and toxin productivities.

2. Characterization of Main Dinoflagellate Bioactive (Potential) Applications

Dinoflagellates are able to produce bioactive compounds with distinctive chemical structures,
and a wide range of functional groups and toxicological and biological features; macrolides, cyclic
polyethers, spirolides and purine alkaloids are but examples of such categories [18]. Due to
their disparate functional structures, said biocompounds form a heterogeneous group that may
strongly affect a variety of biological receptors and metabolic processes [10]. Hence, they may find
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application in human or veterinary medicine—in view of their wide range of potential pharmacological
activities, i.e., in analgesic, antitumor, anticholesterol, cytotoxic, anti-infective, immuno-suppressive
and/or neurological disease therapeutics [3]. Furthermore, other interesting dinoflagellate-derived
compounds, such as pigments (e.g., peridinin), fatty acids (e.g., PUFAs) or polysaccharides, have
shown noteworthy evidence for extra health benefits as nutraceuticals, prevention of development
and anti-proliferation of tumor cells, and anti-inflammatory and antiviral activities [2,19,20].

Due to their biological potential—and despite several difficulties in getting the minimum amounts
of biotoxins for testing, several studies and patents encompassing applications of dinoflagellates,
directly associated to biotoxins, have been published or filed (Table 1).

Table 1. Selected patents related to biotoxins produced by dinoflagellates and potential
therapeutic uses.

Patent Name/Application Biotoxin Used Year Reference

10′,11′-modified saxitoxins useful for treatment of pain Modified saxitoxin 2017 US20170029431

Use of sodium channel blockers for treatment of neuropathic pain developing
as consequence of chemotherapy

Tetrodotoxin, saxitoxin
(analogues and derivatives) 2017 US20170000797

Ladder-frame polyether conjugates Brevetoxin, maitotoxin,
yessotoxin, gambierol 2016 US20160128321

Sodium channel blocker for treatment of loss of superficial sensitivity Gonyautoxin 2016 US20160000793
Palytoxyn, medical use and process for its isolation Palytoxin 2014 EP3087172
Neosaxitoxin combination formulations for prolonged local anesthesia Neosaxitoxin 2014 WO2014145580
Treatment of loss of sense of touch with saxitoxin derivatives Saxitoxin 2014 EP2533785
Using yessotoxin and its derivatives for treatment of gliomas Yessotoxin and derivatives 2013 ES2393696

Use of yessotoxin and analogues and derivatives thereof for treating and/or
preventing neurodegenerative diseases linked to tau and beta amyloid

Yessotoxin (analogues and
derivatives) 2013 US20130035302

Use of gambierol for treating and/or preventing neurodegenerative diseases
related to tau and beta-amyloid Gambierol 2012 US20120283321

Use of yessotoxins and derivatives thereof for treatment and/or prevention of
metabolic diseases Yessotoxin and derivatives 2012 WO2012140298

Use of gymnodimine, analogues and derivatives for treatment and/or
prevention of neurodegenerative diseases associated with tau
and beta-amyloid

Gymnodimine (analogues
and derivatives) 2012 US20120245223

Therapeutic use of yessotoxin as human tumor cell growth inhibitor Yessotoxin 2011 EP1875906

Methods and compositions for studying, imaging, and treating pain Saxitoxin, gonyautoxin and
other analogues 2011 WO2010129864

Use of sodium ion channel blocker in treating biology drug resistance
of antibiotic Tetrodotoxin, saxitoxin 2009 CN101450056

Polyether brevetoxin derivatives as treatment for cystic fibrosis, mucociliary
dysfunction, and pulmonary diseases Brevetoxins and derivatives 2008 US7399782

Use of sodium channel blockers for treatment of preterm labor Tetrodotoxin, saxitoxin
(analogues and derivatives) 2007 WO2007096170

Polyether brevetoxin derivatives as treatment for neurotoxic shellfish
poisoning and ciguatera fish poisoning Brevetoxin and derivatives 2005 WO2005027903

Methods of treating wounds with gonyautoxins Gonyautoxin 2005 WO2005110275

Dinoflagellate karlotoxins, methods of isolation and uses thereof Karlotoxin 2005 US2005/0209104

Use of yessotoxin in treatment of allergic and asthmatic processes Yessotoxin 2003 EP1875907

The next sub-sections entail an overview of the most important biotoxins, complemented later
by a brief reference to selected bioactives (i.e., gambieric acid, goniodomin, ampidinolide and
ampidinol)—regarding their mode of action and biological potential, toward pharmaceutical and
biotechnological applications.

2.1. Saxitoxin (and Analogues)

Saxitoxin (STX) and ca. six dozen naturally occurring analogues (such as gonyautoxins and
neosaxitoxin) are produced mainly by marine dinoflagellates belonging to genera Alexandrium (e.g.,
A. minutum, A. tamarense, A. catenella), Gymnodinium (G. catenatum) and Pyrodinium (P. bahamense).
However, other sources of STX-group toxins were identified—as is the case of cyanobacteria, including
Anabaena, Cylindrospermopsis, Aphanizomenon, Planktothrix and Lyngbya genera [21].

STX is an alkaloid belonging to a group of marine natural products containing guanidine groups
as main structural components. STX is composed of a 3,4-propinoperhydropurine tricyclic system
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(Figure 1), and the presence of two guanidine groups makes this molecule highly polar [21–23].
According to the specific functional group, there are carbamonyl (e.g., STX, neosaxitoxin, gonyautoxin
1 and 4 GTX1 and GTX4), decarbamoyl (e.g., GTX2 and GTX3) and N-sulfocarbamoyl (i.e., GTX5
and GTX6) saxitoxins. Another group comprises hydroxylated saxitoxins [24]. The corresponding
chemical substituent in the main structure is a clue to its toxic potency (carbamoyl > decarbamoyl >
N-sulfocarbamoyl) in model organisms (i.e., mouse) [24,25].

This group of biotoxins act as highly selective sodium channel blockers, thus preventing the
influx flow of Na+ ions and compromising generation of action potentials [21,26]. Since STXs and
their analogues make neurons and muscle cells lose their ability to transmit electrical impulses [27],
they have a therapeutic potential as anesthetic agents. They may indeed reduce, or even block
pain sensation, decrease muscle spasm, induce muscle relaxation and reduce wrinkles. Despite its
potential applications, human clinical trials pose an obstacle—since toxicity often persists [21]. Several
studies suggest that interaction with binding site 1 of voltage-gated Na+ channels (VGSCs) can induce
prolonged anesthetic effects when STX is combined with other drugs [28,29]. For instance, some
liposomal formulations of STX (either alone or conjugated) were tested, and able to provide extended
sciatic nerve block within rats, along with marginal systemic and local toxicities [28]. Apart from
their application as therapeutic agents, STXs and their analogues may behave as markers to locate
sodium channels, and constitute a research tool in the study of those channels. This could be an asset
for sodium channel related-diseases, including diagnosis and treatment of patients suffering from
those disorders.

Additionally, STXs have been reported as possessing antimicrobial activity (namely antibacterial,
antifungal, antialgal and antiprotozoal). However, most such studies have resorted only to in vitro
assays [30].

Some important analogues of STXs, e.g., gonyautoxins (GTXs), are produced by Amphydinium
dinoflagellates, and exhibit a similar mode of action. They are paralytic toxins as well, and bind to
VGSCs thus blocking the synaptic function. However, those biotoxins have proven a safe therapeutic
approach against acute or chronic anal fissures. GTXs aid in sphincter relaxation, and thus function as
pain killer [31]. GTX2 and GTX3 have also been used to treat chronic tension-type headache [32].
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2.2. Tetrodotoxin

Tetrodotoxin (TTX) is traditionally known as the chief toxin in pufferfish, even though it
is also produced by other marine animals (e.g., octopuses, gobies, sea stars) [17]. TTX-bacteria
producing species were also identified in Actinomyces, Aeromonas, Alteromonas, Bacillus and Pseudomonas
genera [33]; the only reference to a microalga producer is (dinoflagellate) A. tamarense [34]. There are at
least 30 structural analogues of TTX reported to date, and their toxicity degree can differ according to
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the chemical structure [35]. TTX possesses a highly unusual chemical structure, containing a positively
charged guanidinium moiety attached to a highly oxygenated carbon backbone. The carbon backbone
of TTX consists of a 2,4-dioxyadamantane structure, decorated with 5 hydroxyl groups (Figure 2) [36].
This potent neurotoxin is of particular interest owing to its resemblance to saxitoxins (and analogues)
in terms of effects. In fact, TTX has high affinity to VGSCs, thus blocking the propagating nerve and
muscle action potentials [33]. Although TTX is extremely sensitive to Nav1.1, Nav1.2, Nav1.3 and
Nav1.7, it can bind to other VGSCs subtypes to a lesser extent [37,38].

Besides VGSC key role in pain, TTX-sensitive subtypes have been implicated in normal and
pathological pain [39]; TTX is indeed a powerful and selective drug, with an analgesic/anesthetic
effect associated to its sodium channel-blocking properties. Several studies have demonstrated its
effectiveness in many types of pain management protocols [40–42]. For instance, a powerful drug from
this potent neurotoxin—Tectin® by Wex Pharmaceuticals in Canada (http://www.wexpharma.com),
is currently undergoing phase III clinical trials, with great success as pain controller in cancer
patients [43]. Phase II clinical trials are also ongoing, aimed at assessing the efficacy of TTX
against neuropathic pain produced by chemotherapy-induced peripheral neuropathy. In addition,
a formulation—TocudinTM, is under investigation for local and topical anesthesia, and preclinical
testing will start soon [39]. The aforementioned TTX is currently obtained from pufferfish, since the
production directly by dinoflagellates has proven unfeasible to date [3]. Additionally, TTX had been
applied as moderator for acute heroin withdrawal symptoms (headache), with minor side effects [44].
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2.3. Okadaic Acid and Dinophysistoxin

Okadaic acid (OA) and its derivatives, including dinophysistoxins (DTX)-1, 2 and 3, are polyether
marine biotoxins found in various species of shellfish, and produced by several dinoflagellates [45].
They were first isolated from benthic dinoflagellates of Prorocentrum genus (e.g., P. lima, P. concavum,
P. belizeanum, P. maculosum) and Dinophysis genus (e.g., D. acuta, D. acuminate, D. fortii) [46]; said
biotoxins are potent protein phosphatase inhibitors, specifically serine and threonine phosphatases [10].
They are organized into long chain compounds (Figure 3), containing transfused or spiro-linked cyclic
polyether rings with hydroxyl and carboxyl functions and methyl groups differing in number or
position [16,47].

OA and DTXs are highly selective inhibitors of protein phosphatase types 1 (PP1) and 2A (PP2A);
these enzymes have been implicated in a wide spectrum of reaction cascades. In fact, they were
associated with metabolism, gene expression, cell proliferation, morphogenesis, ion regulation,
neurotransmission, membrane transport, and cell cycle progression or secretion [48]. Blocking protein
phosphatase activity results in hyperphosphorylation of many cell proteins, which in turn leads
to dramatic effects upon normal regulatory pathways [49]. Therefore, OA and its analogues are
extremely useful research tools for investigating cellular regulation processes, especially those related
to reversible phosphorylation of proteins—such as signal transduction, cell division and memory [50].

http://www.wexpharma.com
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Several studies, either in vitro or in vivo, have demonstrated the value of OA in
medical/pharmacological research [51]. OA is a potent promoter of tumorgenesis [52], apart from
having cytotoxic effects (apoptosis and cell growth inhibition) in many cell types—including intestinal
cells, blood cells, neuronal cells, lung cells and hepatic cells. Its cytotoxic effects extend to embryonic
development, immune and nervous system [51]. Due to inhibition of protein PP2A, OA has been used
as an emerging tool for research on Alzheimer’s and other neurodegenerative disorders associated
to memory-impairment [53–57]. Studies on diabetes, AIDS and cancer have also resorted to OA as
biotoxin-model to elucidate several mechanisms associated thereto [58–60]. Furthermore, OA seems to
have immunoregulatory potential, since it induces down-regulation of T-cell receptor expression—thus
compromising T-cell responsiveness, and consequently immune response [61]. It has also the ability to
stimulate inflammatory response via a considerable increase of interleukin 8 (IL-8) in HL-60 human
cells [62]. Being a powerful tumor promoter, OA has also been claimed as angiogenic inducer in human
endothelial cells, via the increasing activity of hypoxia-inducible factor-1 (HIF-1)—closely related to
vascular endothelial growth factor [63].

Finally, OA from Prorocentrum has been shown to possess fungicidal activity—namely ability to
inhibit growth of Candida albicans [64].
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2.4. Yessotoxin

Yessotoxin (YTX) is a marine sulphated polyether, produced by Protoceratium reticulatum,
Lingulodinium polyedra [66] and Gonyaulax spinifera [67] dinoflagellate species. Data have been generated
pertaining to more than 90 natural analogues of YTX recovered from cultures of P. reticulatum; the
chemical structure of this toxin has already been elucidated, yet the structures of most of its analogues
remain to be resolved [68]. This toxin is composed by a distinctive ladder-shape formed by several
ether rings of different sizes, and a terminal acyclic unsaturated side chain consisting of 9 carbons
and 2 sulfate ethers (Figure 4). The core structure is liposoluble, but the two sulfate groups convey
amphoteric features to the molecule. Owing to this characteristic, such a compound is considered one
of the most polar among the otherwise lipophilic toxins [69,70].

YTX and its analogues are particularly interesting tools for probing biological and pharmacological
mechanisms [71]; they indeed can interfere with several biological apoptotic pathways in a variety
of cellular systems, including tumor cells [72]. YTX can also induce non-apoptotic cell death in
BC3H1 myoblast cells, primary cortical neurons and glioma cells [71,73]. Some studies have pointed
at YTX as a potent phospodiesterase (PDE) activator [74,75], although the exact mode of action
remains uncertain [17]. PDEs play a key role as regulators of signal transduction, mediated by such
second messenger molecules as cyclic adenosine monophosphate (cAMP) [76]. Moderate modulation
of intracellular calcium and cAMP levels [75,77], promotion of caspase protein activation [78],
permeability transition through mitochondria [79], alteration of cytoskeleton (viz. selective disruption
of F-actin microfilaments) [80,81], and fragmentation of adhesion proteins (specifically E-cadherin) [82],
are among the reported YTX effects—dependent on cell line used and treatment duration [83]. Recently,
YTX was found to induce mitotic catastrophe and genetic alterations—which may be of interest
for control of tumor progression [84]. Additionally, Tobío et al. [85] have claimed regression of
melanoma tumor cells in mouse cells in vivo, along with negligible toxicity. YTX may also pay a minor
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role as anti-allergenic and -asthmatic drug, even though the mechanism underlying these therapies
remains poorly understood [85]. YTX seems to interfere with the immune function, since it reduces
phagocytic activity on J774 cell line and increases expression of cytokines in J774 phagocyte mammalian
cells [80]. Moreover, it appears to regulate the immune-effect on T-lymphocyte EL-4 cells via reversible
down-regulation of the T-cell receptor complex [49,61]. Regarding other pharmacological effects,
YTX and its analogues may be employed as therapy for Alzheimer’s disease [73]. These compounds
have improved the levels of t- and β-amyloid—both insoluble structures that appear in the brain and
are responsible for triggering said disease [86]. Furthermore, YTX may aid in treatment/prevention
of lipid and glucose metabolism-associated diseases [73]. Early studies unfolded fatty degeneration,
with alterations in pancreas and liver [87]; significant transcriptional alterations in lipid and glucose
metabolism were in fact described in glioma cells [88].

Mar. Drugs 2017, 15, x  7 of 44 

 

mechanism underlying these therapies remains poorly understood [85]. YTX seems to interfere with 
the immune function, since it reduces phagocytic activity on J774 cell line and increases expression 
of cytokines in J774 phagocyte mammalian cells [80]. Moreover, it appears to regulate the immune-
effect on T-lymphocyte EL-4 cells via reversible down-regulation of the T-cell receptor complex 
[49,61]. Regarding other pharmacological effects, YTX and its analogues may be employed as therapy 
for Alzheimer’s disease [73]. These compounds have improved the levels of t- and β-amyloid—both 
insoluble structures that appear in the brain and are responsible for triggering said disease [86]. 
Furthermore, YTX may aid in treatment/prevention of lipid and glucose metabolism-associated 
diseases [73]. Early studies unfolded fatty degeneration, with alterations in pancreas and liver [87]; 
significant transcriptional alterations in lipid and glucose metabolism were in fact described in 
glioma cells [88]. 

 
Figure 4. Chemical structure of yessotoxin (adapted from [89]). 

A markedly increased activity against fungi and yeasts was reported when YTX had been 
chemically desulfated, with reduced toxicity toward mouse species. Therefore, expectations remain 
high with regard to YTX produced by dinoflagellates as promising candidates for novel and potent 
antifungals [64].  

2.5. Pectenotoxin 

Pectenotoxin (PTX), together with its analogues, are polyether macrolide compounds produced 
exclusively by Dinophysis species (e.g., D. fortii, D. acuta, D. tripus, D. acuminate, D. caudate, D. 
rotundata, D. norvegica) [65]. More than 20 analogues have been isolated to date [90], with disparate 
toxicological potency. Their common structural features include a spiroketal group, three oxolanes, 
a bicyclic ketal and a six-membered cyclic hemiketal (Figure 5) [91]. 

In general, they exhibit strong toxicity against hepatocytes; their action mechanism in vitro and 
in vivo encompasses actin filament depolymerization, leading to notorious effects upon cytoskeleton 
arrangement [92,93]. As a result, PTX causes cell cycle arrest and apoptosis [94]—being particularly 
effective against tumor cells, rather than normal cells of the same tissue [92]. For instance, PTX-2 has 
demonstrated antitumor activity against human lung, colon and breast cancer cells [95]; and was 
claimed as potent chemotherapeutic agent against p53-deficient tumors [96]. 

 
Figure 5. General structure of pectenotoxin (adapted from [97]). 

Figure 4. Chemical structure of yessotoxin (adapted from [89]).

A markedly increased activity against fungi and yeasts was reported when YTX had been
chemically desulfated, with reduced toxicity toward mouse species. Therefore, expectations remain
high with regard to YTX produced by dinoflagellates as promising candidates for novel and potent
antifungals [64].

2.5. Pectenotoxin

Pectenotoxin (PTX), together with its analogues, are polyether macrolide compounds produced
exclusively by Dinophysis species (e.g., D. fortii, D. acuta, D. tripus, D. acuminate, D. caudate, D. rotundata,
D. norvegica) [65]. More than 20 analogues have been isolated to date [90], with disparate toxicological
potency. Their common structural features include a spiroketal group, three oxolanes, a bicyclic ketal
and a six-membered cyclic hemiketal (Figure 5) [91].

In general, they exhibit strong toxicity against hepatocytes; their action mechanism in vitro and
in vivo encompasses actin filament depolymerization, leading to notorious effects upon cytoskeleton
arrangement [92,93]. As a result, PTX causes cell cycle arrest and apoptosis [94]—being particularly
effective against tumor cells, rather than normal cells of the same tissue [92]. For instance, PTX-2
has demonstrated antitumor activity against human lung, colon and breast cancer cells [95]; and was
claimed as potent chemotherapeutic agent against p53-deficient tumors [96].
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2.6. Ciguatoxin

Ciguatoxin (CTX) belongs to the group of marine polycyclic ether biotoxines implicated in
ciguatera fish poisoning outbreaks. This fat-soluble substance is produced by certain strains of
benthic Gambierdiscus toxicus, and may arise in fish from a biotransformation of gambiertoxins
(e.g., maitotoxins) as precursors [98]. It accumulates throughout the food chain up to higher
predators, and may ultimately reach human consumers—thus causing neurological, gastrointestinal
and cardiovascular disorders [99–102]. More than 20 analogues have been found in the Pacific area,
and multiple forms of CTX with minor molecular differences and toxicities were found in Caribbean
waters [100] and the Indian Ocean [103]. This group of lipid-soluble polyethers are composed by a
distinct and long semi-rigid ladder-like structure comprising several trans/syn ether rings at different
sizes (Figure 6) [104,105].

CTX is a potent modulator of site 5 on VGSCs of a wide variety of cells, following a mechanism
similar to BTX; however, it is one hundred-fold more potent than BTX in eliciting repetitive neuron
firing [105–107]. This compound is able to shift the potential activation (hyperpolarization), and change
gating properties by activating VGSCs in a persistent way (from nM- to pM-concentration range), thus
resulting in an enhanced Na+ inward current directly into excitable cells accompanied by an efflux of
K+ [108]. The plasma membrane is unable to maintain the internal conditions leading to modification
of bioenergetics mechanisms, bleb formation and cell and mitochondrial swelling [100,109]. They were
found to significantly slow nerve conduction rate, and reduce amplitude in human nerves—consistent
with abnormal and extended Na+ channel opening in nerve membranes in vivo [110,111]. In addition,
some normal cellular mechanisms counteract this effect when Na+ ions move into the cytosol—while
evoking Ca2+ capture and increase of its level inside the cells. This calcium acts as a second messenger,
thus disrupting important ion-exchange systems. Hence, elevated muscle contraction, especially in
cardiac tissue, and high fluid secretion by gastrointestinal cells are observed [100].

In neuromuscular junctions—and apart from elicitation of repetitive action potentials, said
biotoxin may cause a dramatic increase in asynchronous acetylcholine release, and impair synaptic
vesicles [112]. Other effects of CTX encompass catecholamine secretion from neuroendocrine cells [113].
The diversity of human symptoms associated to ciguatera may arise from the different affinity of CTX
for the various VGSCs (Nav) subtypes. The fact that CTX is reported as discriminatory of several
Nav channel subtypes—particularly Nav 1.2 and 1.3 (brain), Nav 1.4 (skeletal muscle), Nav 1.5 (heart),
Nav 1.6 (motor neuron, smooth muscle), Nav 1.7 (peripheral nervous system) and Nav 1.8 (peripheral
nervous system) [114–116], make this biotoxin a resourceful tool to investigate the biological function
and structure of said ion channels in further depth [107]. Note that these types of channels underlie
several human diseases and channelopathies (e.g., chronic pain, cardiac arrhythmias, epilepsy, and
even cancer) [116,117].
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2.7. Maitotoxin

A unique polyketide-derived polycyclic compound, maitotoxin (MTX), has been recognized
for its potential to aid in research in chemistry and biology [118]. It has indeed been reported
as the largest and most potent secondary metabolite ever isolated; its acute toxicity against mice
far exceeds that of tetrodotoxin [118,119]. Gambierdiscus (i.e., G. toxicus, G. australes, G. pacificus)
is the only genus found so far that produces the three existing forms of MTX (i.e., MTX-1, -2 and
-3) [120–122]. Recently, a new analogue—MTX-4, was found that is by Gambierdiscus excentricus (from
Canary Islands) [123]. In addition, some MTX precursors are produced by Amphidinium carterae,
Prorocentrum sp., Ostreopsis sp., Thecadinium sp. and Coolia monotis. MTX is water-soluble, and
entais a complex ladder-shaped polycyclic molecule composed by several hydroxyl and sulphate
groups (Figure 7) [9,119]. This toxin is believed to cause ciguatera, but with symptoms different from
those caused by ciguatoxins—due to an apparently distinct mode of action [124]. In early reports,
direct involvement with calcium voltage gated-channels was claimed for MTX. Nonetheless, other
observations [125] indicate that MTX binds to the cell membrane (lipophilic domain), thus inducing
non-selective influx of ions into the cells—which, in turn, activates the voltage-sensitive calcium
channels [125]. Unfortunately, the specific target of this compound remains unknown [118]. MTX is
believed to be a powerful disruptor of Ca2+ homeostasis, with a multiplicity of pharmacological
effects upon several cell lines [119]. Its ability to trigger intracellular cascades of events—e.g.,
membrane depolarization in excitable cells [126], insulin [127] and neurotransmitter secretion [128,129],
phosphounisitide breakdown (important in cell lipids and cell signaling) [130], programmed cell
death [131], and fertilization [132,133], justify why this compound is a powerful tool for research in
cell biology, namely when attempting to elucidate Ca2+-dependent cellular processes [119]. MTX has
also been suggested to play a role in innate immune responses and inflammation in vivo [119,134].
Its toxic effect seems to trigger a mediated inflammation response via secretion of pro-inflammatory
cytokines IL-1β; this may be viewed as an interesting tool for studying specific components of innate
immune response and/or the physiology of inflammatory effector cells [119]. More recently, MTX was
claimed as selective activator of a specific transient receptor potential (TRP) in Xenopus laevis Oocytes;
TRP channels are apparently involved in the regulation of non-selective cation channels. MTX may be
of potential use for further studies in these type of biological channels [135].
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2.8. Palytoxin and Ostreocin

Palytoxin (PLTX) is a large and complex polyether compound, with a remarkable biological
activity [9]—including a wide spectrum of pharmacological effects [136]. Originally isolated from
the zoantharians of Palythoa genus [137], PLTX is also found in a number of marine organisms,
including all species of Ostreopsis dinoflagellates (e.g., O. siamensis, O. mascarenensis, O. lenticularis,
O. ovata, O. fattorussoi) [138]. This complex polyhydroxylated marine-derived molecule has both
lipophilic and hydrophilic regions, and is composed by the longest continuous carbon atom chain of
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any known natural product (next to maitotoxin). Along its backbone, it possesses several hydroxyl
groups, two diene motifs, and two hydrophobic hydrocarbon chains, among other structural features
(Figure 8) [137,139].

Mar. Drugs 2017, 15, x  10 of 44 

 

natural product (next to maitotoxin). Along its backbone, it possesses several hydroxyl groups, two 
diene motifs, and two hydrophobic hydrocarbon chains, among other structural features (Figure 8) 
[137,139]. 

 
Figure 8. Chemical structure of palytoxin (adapted from [139]). 

PLTX-like compounds produced by dinoflagellates are commonly known as ostreocins. They 
are quite toxic against mammals; PLTX and its analogues may actually be the most lethal marine 
toxins known at present [136]. These compounds affect cellular function via inhibition of ATPase 
Na+/K+ pump—a transmembrane enzyme, essential to maintain ion homeostasis in excitable and non-
excitable tissues [140]. PLTX accordingly restrains active transport of ions, and blocks the 
electrochemical gradient generated across the cell membrane—thus transforming the pump into a 
non-specific, permanently open ion channel. This leads to membrane depolarization and massive 
influx of calcium into the cytosol, thus compromising several cellular functions [139]. A number of 
studies have also indicated a wide variety of secondary pharmacological actions—including 
hemolysis, modulation of some neurotransmitters (norepinephrine and/or acetylcholine), and 
activation of pro-inflammatory signaling cascades (i.e., release of histamine and prostaglandin-E2) 
[141]. PLTX and ostreocin-D are apparently also involved in actin cytoskeleton distortion and 
dynamics, as proven via different cellular models (e.g., intestinal and neuroblastoma cells) [139,142]. 
The data so far available suggest that PLTX and ostreocin-D can modulate the unassembled actin 
pool, by activating signal transduction pathways not related to Ca2+ influx [143]. Despite these two 
compounds sharing the same molecular target, a few small structural differences can significantly 
reduce cytotoxicity and hemolytic potency in the case of ostreocin-D [144]. 

PLTX has also been claimed as powerful tumor promoter, and accounts for several effects, e.g., 
stimulation of arachidonic acid metabolism, modulation of epidermal growth factor (EGF) receptor, 
production of prostaglandins, and activation of mitogen-activated protein (MAP) kinase cascades 
[140]. In addition, patent EP3087172 claims that a pharmaceutical formulation with PLTX (sourced 
from Palythoa clavata polyps, comprising Symbiodinium dinoflagellate) is suitable for therapeutic use 
against lymphoblastic or myelogenous leukemia (Table 1). 

Discovery of novel properties of PLTX and PLTX like-compounds, from marine dinoflagellates, 
may constitute a potential pathway for biotechnological characterization of living systems (e.g., 

Figure 8. Chemical structure of palytoxin (adapted from [139]).

PLTX-like compounds produced by dinoflagellates are commonly known as ostreocins. They are
quite toxic against mammals; PLTX and its analogues may actually be the most lethal marine toxins
known at present [136]. These compounds affect cellular function via inhibition of ATPase Na+/K+

pump—a transmembrane enzyme, essential to maintain ion homeostasis in excitable and non-excitable
tissues [140]. PLTX accordingly restrains active transport of ions, and blocks the electrochemical
gradient generated across the cell membrane—thus transforming the pump into a non-specific,
permanently open ion channel. This leads to membrane depolarization and massive influx of calcium
into the cytosol, thus compromising several cellular functions [139]. A number of studies have also
indicated a wide variety of secondary pharmacological actions—including hemolysis, modulation of
some neurotransmitters (norepinephrine and/or acetylcholine), and activation of pro-inflammatory
signaling cascades (i.e., release of histamine and prostaglandin-E2) [141]. PLTX and ostreocin-D are
apparently also involved in actin cytoskeleton distortion and dynamics, as proven via different cellular
models (e.g., intestinal and neuroblastoma cells) [139,142]. The data so far available suggest that PLTX
and ostreocin-D can modulate the unassembled actin pool, by activating signal transduction pathways
not related to Ca2+ influx [143]. Despite these two compounds sharing the same molecular target,
a few small structural differences can significantly reduce cytotoxicity and hemolytic potency in the
case of ostreocin-D [144].

PLTX has also been claimed as powerful tumor promoter, and accounts for several effects, e.g.,
stimulation of arachidonic acid metabolism, modulation of epidermal growth factor (EGF) receptor,
production of prostaglandins, and activation of mitogen-activated protein (MAP) kinase cascades [140].
In addition, patent EP3087172 claims that a pharmaceutical formulation with PLTX (sourced from
Palythoa clavata polyps, comprising Symbiodinium dinoflagellate) is suitable for therapeutic use against
lymphoblastic or myelogenous leukemia (Table 1).

Discovery of novel properties of PLTX and PLTX like-compounds, from marine dinoflagellates,
may constitute a potential pathway for biotechnological characterization of living systems (e.g., focused
on pump mechanism) [145,146]; and it may set the basis for a promising form of anti-tumor therapeutics.
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2.9. Gambierol

Produced by Gambierdiscus toxicus dinoflagellate, gambierol is part of the group of polycyclic
ethers; it is believed to be one of the components involved in ciguatera fish poisoning [147].
Its chemical structure resembles those of cigatoxins and brevetoxins, with potent neurotoxicity [105,148];
and is characterized by eight ether rings with two pyranyl rings—with methyl groups in a 1,3-diaxial
orientation (Figure 9) [149,150]. As happens with other marine polyether metabolites, its scarcity from
natural sources has hampered further biological studies. Chemical synthesis has been attempted to
overcome these difficulties, and assure a higher availability of this substance for tests in vitro and
in vivo [151]. Unlike such other marine polycyclic toxins as ciaguatoxins, gambierol does not envisage
VGSCs as main targets [152]; it instead exerts a powerful modulatory action upon voltage-gated K+

channels (Kv) [153,154]. It acts as an intermembrane anchor, by binding specifically to Kv3.1 channels
that, in turn, block Kv channels. As a consequence, the channels remain closed, thus lowering K+

ion currents [155]. Furthermore, it is able to evoke cytosolic calcium oscillations in cerebrocortical
neurons, as an outcome of channel Kv inhibition [156–158]. Cao and co-workers [156] demonstrated
that gambierol also induces outgrowth of neurites in a bidirectional manner; this may be promising for
victims of neural injury.

Despite its toxicity, this compound and its (less toxic) synthetic analogues have been suggested
as new drugs for immunotherapy [159,160]. In fact, Kv3.1 channels play a key role on modulation of
Ca2+ signaling, which in turn induces T-cell proliferation, immune activation and cytokine production.
Said channels are believed to be therapeutic targets of T-cell mediated autoimmune diseases [159,161].
Given its particular capacity to block Kv3.1 channels, gambierol is an interesting compound for
application as immunosupressor in dysfunctional immune system diseases, such as multiple sclerosis,
diabetes mellitus type 1 and rheumatoid arthritis [159,161]. Gambierol and two of its analogues (tetra
and heptacyclic forms) are promising molecules for modulation of Alzheimer’s disease hallmarks
in primary cortical neurons. It was shown that β-amyloid and/or tau hyperphosphorylation
overexpression can be reduced by gambierol, both in vitro and in vivo (Table 1).
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2.10. Brevetoxin

Brevetoxin (BTX) is a ladder-like polycyclic ether, recognized for its powerful neurotoxic and
ichthyotoxic features [9]. BTX originates from unarmoured dinoflagellate Karenia brevis (formerly
known as Gymnodinium breve or Ptychodiscus brevis) [163]. BTX has nine analogues, classified based on
its backbone structure: A-type or B-type [47,164]. More recently, a few other analogues were found
in fish-killing species that belong to the class of raphidophytes [165–167]. The brevetoxin type-A is
a decacyclic molecule, consisting in 10 transfused rings; and breveotxin type-B is an undecacyclic
molecule, with 11 transfused rings—both with a functional lactone in one of the terminal rings,
denominated “head”. They have also a strictly rigid region in the terminal four rings, a spacer region
that separates the rigid region from the A-ring lactone, and a side chain allowing modest modification
at the molecule terminus, or “tail” (Figure 10) [168]. Alterations in any type of such regions may induce
modification in their activity, or induce significant loss in binding activities [169]. BTX binds to the
α-unit of VGSCs, specifically site 5 [107,170–172].
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Several BTX analogues and derivatives possess distinct toxicity efficacies, depending on binding
affinity to VGSCs on site 5 [168,173]. Instead of blocking the channel, BTX action produces persistent
activation of VGSCs, and their extended opening leads to prolonged Na+ entry into the cells [174–176].
This causes membrane depolarization at the resting membrane potentials—which triggers repetitive
firing or excitatory cellular responses, and leads to such other physiological disturbances as Ca2+

influx [116,173,177,178]. Mattei and co-workers [109] also identified water movement across the
membranes in myelinated nerve fibers; however, the regulatory mechanisms involved could not be
elucidated. Another effect is enhanced release of neurotransmitters from autonomic nerve endings,
acetylcholine in particular—which lead to smooth tracheal contraction [179]. In fact, during exposure
to this substance, such symptoms as respiratory irritation (cough, nose irritability, congestion),
bronchoconstriction and/or asthma attacks were observed in healthy individuals, but were more
serious in airway-disease sensitive persons [180]. Therefore, it appears to yield an immune response,
and play a major role in allergic inflammation in pulmonary tissue [181,182]. Sas and Baatz [182]
suggested a primary inflammatory response in alveolar macrophage cells, mediated by the increase of
cytokines (such as TNF- and IL-2) involved in immune cell activation and phagocytosis promotion.
Another study [181], involving mouse bone marrow-derived mast cells, has shown that BTX can
directly activate mouse mast cells—thus leading to degranulation, as well as inflammatory cytokine
production involving Ca2+ signaling. Conversely, other authors claimed that exposure to BTX impairs
the immune function, thus leading to reduced phagocytosis activity, decreased plaque-forming ability
and/or decreased lymphocyte proliferation [183]. This biotoxin has also been described [178,183] to
affect cell proliferation in a dose-dependent manner, cause cell death through an apoptotic mechanism,
and possess genotoxic features.

Based on its neuro-activation properties, BTX-2 has been found to behave as neuronal stimulator,
able to increase neuronal plasticity. It might thus support advances in pharmacological treatment
aimed at recovering brain function after stroke or other traumatic brain injury [184]. Furthermore,
a therapeutic formulation based on BTX derivatives has been designed to regulate such diseases as
cystic fibrosis and mucociliary dysfunction related to increased mucus transport (Table 1).
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2.11. Azaspiracid

Azaspiracid (AZA) is a recently discovered polyether phycotoxin, quite toxic for mammal
systems [10]. AZA is responsible for azaspiracid poisoning, and is produced by dinoflagellate
Azadinium genus (e.g., A. spinosum, A. poporum, A. dexteroporum) [186–188]. Among its increasing
number of derivatives (over 30 so far) [189], Azaspiracid-1 (AZA1)—the first compound to be
isolated and the one with major toxicity in humans, appears to be the most important, followed
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by AZA2 and AZA3 [190]. AZA toxin consists in a highly hydroxylated linear carbon chain with a
tri-spiro ring assembly, together with a unique cyclic amine (or aza group) and a carboxylix acid
group (Figure 11) [188,191]. The unique cyclic amine is a structural feature that differentiates
AZA from the other dinoflagellate toxins [9]. Its mechanism of development of toxic effects is
not fully understood [17], yet AZA is expected to possess a strong biotechnological significance.
Toxicological studies in vivo and in vitro have unfolded several aspects of cell biology that can be
affected thereby [192]. AZA presents indeed cytotoxicity against several human cell types [193], as well
as teratogenicity to finfish [194]. It has also the ability to induce alterations on cell morphology and
cytoskeleton structure, particularly on the E-cadherin system [65,192]. Furthermore, it was reported to
be a potent activator of c-Jun-N-terminal kinase (JNK) and caspases—implicated in stress-signaling
pathways, such as cell damage, apoptosis, and cytoskeleton regulation; and as an effective modulator of
intracellular cAMP and calcium levels [195–197]. Other known effects relate to altered gene expression
patterns in cells, and inhibition of cell cholesterol levels (particularly in T-lymphocyte cells) [198,199].
Finally, AZA apparently affects potassium ion channels [200].
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2.12. Gymnocin

Gymnocin-A (GYMA) is a rare and complex polyether toxin, isolated from the red tide
dinoflagellate Gymnodinium mikimotoi. This toxin is composed by fourteen contiguous polyether
rings, with 2-methyl-2-butenal side-chains (Figure 12) [201]. It is weakly toxic upon fish, but quite
cytotoxic against P388 mouse leukemia cells. Several other forms of GYMA have meanwhile been
isolated, including Gymnocin-B bearing even higher cytotoxicity [202].
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Karlotoxin (KmTx) is a linear polyketide toxin [203], synthesized exclusively by Karlodinium genus;
K. veneficum sp. is indeed considered as the main source of this biotoxin [204]. Different strains of
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this dinoflagellate, collected across distinct geographic locations produce several forms of KmTx with
differing physicochemical properties [205,206]. Its chemical structure has recently been elucidated,
and three groups of KmTxs accordingly emerged—differing mostly in length of lipophilic arm,
a structural feature that apparently modulates haemolytic activity [207–211]. In KmTx 1, the side chain
has 18 carbons in length, whereas KmTx 2 is two carbons shorter and KmTx 3 differs from KmTx 1 in
having one less methylene group in the saturated portion of its lipophilic arm (Figure 13) [210,211].
Surprisingly, KmTxs have remarkable structural similarities with amphidinols—bioactives produced
by dinoflagellate of genus Amphidinium sp. [212], characterized by long carbon chains with multiple
hydroxyl groups and polyolefins. KmTx chemical structure consists of a complex hairpin-like structure,
with three distinct regions: a polyol arm bearing variable hydroxylation and methylation; a hinge
region containing two pyran rings; and a lipophilic arm with a terminal diene [213].

KmTx holds a range of activities, such as haemolytic, cytotoxic, ichthyotoxic and
antifungal [206,207,214,215]. Its similarity to amphidinols (produced by Amphidnium genus) suggests
a similar mode of action, based on membrane cell permeabilization [203,206,216]. KmTx acts on cell
membranes via pore formation, which disrupts cell osmotic balance and eventually leads to cell death.
A study on Km-Tx2 revealed that lysis is preceded by permeabilization of the plasma membrane
to various cations, including Ca2+, K+ and Na+ [207,215]. The bioactivity of these compounds is
dependent on the sterol composition of the target cell [204,205]. During pore formation, KmTxs
selectively bind to 4-desmethyl sterols (e.g., cholesterol or ergosterol), whereas cells containing
4α-methyl sterols (e.g., gymnodinosterol and brevesterol) are immune to said biotoxin. This might
explain why KmTx is capable of lysing animal cells, fungi and/or protists, but leaves K. veneficum
cell membranes intact; dominance of 4α-methyl sterols in the latter may be the key to this lack of
autotoxicity [205,217]. The KmTx properties to trigger formation of pores in cholesterol-containing
cell membranes convey a noteworthy potential to treat several human health conditions, including
coronary heart disease (CHD). Furthermore, KmTx may be formulated as a new chemotherapeutic
agent for cancer control. Cholesterol acts as both adhesive and spacer unit between the sphingolipids
that hold the lipid raft in cell membranes together—being critical for biological competence. In some
solid tumor lines, e.g., breast and prostate cancer cells (two of the most widespread cancer forms
worldwide), much more lipid rafts are present than in their healthy counterparts—so they are more
sensitive to cholesterol depletion-induced cell death [204,207].
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2.14. Cyclic Imine Toxins (Spirolide and Gymonodimine)

Spirolide (SPX) and gymnodimine (GYM) are biotoxins belonging to the cyclic imine group,
known to be “fast action toxins”—i.e., able to produce potent and rapid death in rodents [10].
SPX is synthesized by Alexandrium ostenfeldii/peruvianum [219,220], and also by Karenia selliformes [221];
and 16 isoforms have been identified to date [222]. This toxin is a macrolide characterized by a cyclic
imine group; the most common analogue found is 13-des-methyl-C-spirolide (see Figure 14A) [89].
The latter is included in the first of the four groups of SPXs, defined as per functional group present.
For instance, the first group includes ten forms having a characteristic 6,5,5-spiroketal ring system (i.e.,
SPX-A, SPX-B, SPX-C, SPX-D, and 13-des-methyl-C-spirolide, among others). The second group of
spirolides (SPX-E and -F) chemically resembles SPX-A and SPX-B, except for lack of toxicity; instead
of the cyclic imine group, they have other structural component (acyclic aminoketone) [223–225].
The third and fourth groups (i.e., SPX-G or SPX-I) are represented by analogues resembling SPX-C
and -D, except that some compounds have a 6,5- instead of the 6,5,5-spiroketal ring system [225,226].
Generally speaking, SPX toxins have confirmed their major activity upon muscarinic and nicotinic
acetylcholine receptors, along with damage to astrocytes and neurons that negatively disturb the
central nervous system [227].

GYM (including Gymnodimine-A, and its two analogues GYM-B and -C) [221] are produced
by gymnodinoid dinoflagellates, specifically Karenia selliformis (formerly named Gymnodinium
selliforme) [221,228]. A fourth analogue of GYM—12-methylgymnodimine—was isolated from
Alexandrium ostenfeldii [229]; GYM-D was recently found as new analogue [230]. GYM molecules
present typically a six-membered cyclic imine, with no methyl substituents in spiroimine ring system,
and with such typical fragments as tetrahydrofuran ring and unsaturated lactone (Figure 14B) [230].

Both SPXs and GYMs contain a unique cyclic imine ring, hypothesized to be their pharmacophore
moiety [223]; it might be responsible for activation of L-type calcium channels of brain receptors [228].
Nevertheless, recent studies have demonstrated that these compounds can target neuronal and
muscular nicotinic acetylcholine receptors with high affinity [231,232]. Such dinoflagellate toxins
are accordingly proposed as additional tools to elucidate structural domains on various acetylcholine
receptors (AChR); and to advance understanding of interactions between antagonists, and nicotinic
and muscular AChR [232]. SPX and GYM mechanisms of action appear to be similar, yet they remain
largely undisclosed [10]. Some reports have shown that GYM (combined with OA) can be used
therapeutically to enhance the anti-cancer effects of chemotherapeutic agents—many of which work
partially via toxicity against tumor cells. It was demonstrated that GYM can sensitize cells to apoptotic
stimuli Neuro2a neuroblastoma cell line [233]. GYM has also been claimed to cause a reduction
of β-amyloid levels and tau phosphorylation, which could potentially contribute for treatment of
degenerative diseases [234].
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2.15. Gambieric Acid (Bioactive)

Gambieric acid (GA) belongs to a family of marine polyether natural products, originated in
dinoflagellate Gambierdiscus toxicus; gambieric acids A, B, C and D have been isolated from their



Mar. Drugs 2017, 15, 393 16 of 43

culture broth [236]. Such compounds are composed by nine trans-fused ether rings of six, seven and
nine members, and one isolated tetrahydrofuran ring (Figure 15) [237]. They are potent antifungal
agents, displaying a remarkable activity against filamentous fungi, while being ineffective against
bacteria or yeasts. A study involving GA-A and GA-B has confirmed their potency against fungus
Aspergillus niger—more than 2000-fold that of amphotericin B, a common antifungal drug [238]. On the
other hand, GA does not show substantial toxicity against cultured mammalian cells, or even in vivo.
Mice subjected to doses of 1 mg per kg of body weight, via intraperitoneal injection, did not develop
abnormal reactions or considerable toxicity—despite GA sharing structural features with polycyclic
ethers, e.g., ciguatoxins, brevetoxins, gambierol and maitotoxin [239]. GA-A is able to displace binding
of tritiated brevetoxin B to voltage-gated sodium channels in excitable membranes—even though its
binding affinity is significantly lower than those of brevetoxins and ciguatoxins [240].
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2.16. Goniodomin A (Bioactive)

Goniodomin A (GDA) is an antifungal polyether macrolide, produced by Alexandrium genus,
namely A. hiranoi [241], A. monilatum [242] and A. pseudogonyaulax [243]. Pharmacological studies have
indicated its strong effect upon cytoskeleton reorganization [242]. Structurally similar to pectenotoxin,
this compounds is composed by a macrolide lactone ring, with a spirocetal ring and a hemiacetal ring
attached thereto (Figure 16) [244]. This compound inhibits angiogenesis (regeneration of vessels)
by inhibiting endothelial cell migration and basic fibroblast growth factor (bFGF)-induced tube
formation—in part via inhibition of actin reorganization. Angiogenesis is also inhibited by GDA
in vivo [245]. Mizuno et al. [246] reported that GDA affects the actin state in astrocytoma cells,
causing cell morphological changes by increasing filamentous actin. GDA was shown to induce
increase of filamentous actin content in Clone 9 rat hepatocytes, as well as cytotoxicity against human
neuroblastoma cells. Goniodomin B, an analogue of GDA, seems to have effects similar to GDA but
less potent [247].
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GDA can be a useful tool for analysis of the relationship between structure and function of
actin. On the other hand, this substance has shown antifungal activity against Candida albicans and
Mortierella ramannianus [241].

2.17. Amphidinolide (Bioactive)

Amphidinolide (AMP) constitutes a group of citotoxic macrolides, produced by symbiotic
dinoflagellates of Amphidinium genus [248]; more than 40 AMPs were identified to date [249].
Such compounds exhibit great variation in size of macrocyclic lactone rings, from twelve- to twenty
seven-membered systems (Figure 17) [250,251], with other unique structural features that make them
quite complex molecules. In general, they exhibit potent cytotoxicity against murine lymphoma L1210,
and human epidermoid carcinoma KB cells in vitro [248]. Among all AMPs, the noteworthy anti-tumor
capacity of AMP-N and AMP-H is likely related to distinct inhibitory patterns. While AMP-N
seems to have more affinity for mitochondria of malignant cells, AMP-H apparently targets actin
cytoskeleton [252]. These compounds are expected to lead to new anticancer drugs—but again
their limited availability has hampered more detailed studies [248,251]. Other related compound,
caribenolide-I, was reported to possess strong cytotoxic activity against human colon tumor cell line
and murine tumor P388 in vivo [97].Mar. Drugs 2017, 15, x  18 of 44 
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2.18. Amphidinol (Bioactive)

Amphidinol (AM) belongs to a unique group of polyhydroxy polyene compounds, produced by
Amphidinium species (e.g., A. klebsii, A. carterae); it possesses antifungal and haemolytic properties [253].
At least 23 AMs (including 7 analogues) [254–256] have been reported, ever since amphidinol 1 (AM1)
was first isolated from A. klebsii in 1991 [257]. AMs belong to a large family of long-chain linear
polyethers, presenting noteworthy potent biological activities—including antifungal, cytotoxic, and
haemolytic properties [255]. Amphidinol-3 (AM3) (Figure 18)—the first of this series of compounds
to be fully elucidated [212,258], notably exceeds other derivatives in terms of both activities. It was
initially believed that AM permeabilizes phospholipid membranes, by interacting directly with such
bilipidic layer and forming ion-permeable pores across the membrane (toroidal pore model) [203,259].
A recent study revealed, however, that AM3 is able to perforate membranes by specific molecular
recognition, but without apparent disruption of the membrane itself. A novel action mechanism based
on a barrel-stave pore model has been proposed for the interaction of AM with sterol membranes [260].
Cholesterol and ergosterol enhance AM permeabilization, thus bringing along potent cytotoxic and
antifungal capacities. In addition, AM3 showed higher affinity to ergosterol membrane; this suggests
formation of a more stable complex, which may provide insights for a new antifungal drug [216].

Another structural class of AM related-compounds isolated from benthic Amphidinium
species—amphirionin-5, seems to potentiate proliferation of murine bone marrow stromal ST-2
cells and murine osteblastic MC3T3-E1 cells [261]. Interestingly, another study encompassing
amphirionin-4 [262] reported promotion of high intensive proliferation only in murine bone marrow
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stromal ST-2 cells at low concentrations, but not in NIH3T3 and MC3T3-E1 cells. It was suggested that
ST-2 cells, treated with amphitionin-4, experience an increase in actin and tubulin—so enhancement
of assembly of proteinaceous cytoskeleton may be involved. The proliferation-promoting ability in
ST-2 cells by amphitionin-4 unfolds a great potential for bone and cartilage regeneration—as well
as other organs obtained from mesenchymal stem cells, derived in turn from multipotent marrow
stromal cells. Since ST-2 cells are relevant toward development of lymphocytes from bone marrow
cells, this compound may improve the immune system in its ability to detect infection [262].

Another AM related-compound, also isolated from Amphidinium benthic species, is iriomoteolide;
it revealed cytotoxic activity against human cervix adenocarcinoma HeLa cells [263].Mar. Drugs 2017, 15, x  19 of 44 
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3. Biotoxin and Bioactive Production

3.1. Dinoflagellate Bioactive Supply

Owing to a wide diversity and compound production complexity, microalgae at large—and
dinoflagellates in particular, are attractive as natural sources of bioactive molecules. Remember that
natural product screening continues to seek and explore a variety of chemical structures, for eventual
use as structural models for new drug development by the pharmaceutical industry [265].

Despite its potentially wide applicability, unavailability of dinoflagellate-generated material to
sufficient amounts has raised systematic challenges in attempts to further biochemical investigation
and clinical testing—thus compromising eventual development into commercial products [266].
Cripthecodinium chonii is the only nontoxic dinoflagellate grown to commercial level as of now;
it indeed produces docosahexaenoic acid (DHA) to great levels. DHA is used for enrichment of
infant formulae—and its production is via heterotrophic culture in conventional fermenters [267].
Only scarce quantities of bioactives from photoautotrophic dinoflagellates are indeed commercially
available (Table 2).

Such compounds derive from a limited number of dinoflagellates (e.g., Gambierdiscus toxicus,
Prorocentrum concavum, Karenia brevis, Protogonyalaux sp.) [3]—and prices can range from 1000 up to
500,000 €/mg, depending on purity and source. Furthermore, these substances are often discontinued
without previous notice, and the effective purity and quantity claimed by companies is sometimes
doubtful [16]. Pure compounds are needed for use as analytical standards in seafood safety screening
programs, as well as research purposes (e.g., study of mechanism of action and pharmacology); lack,
or unsuitable amounts of material will obviously hamper regular development of those studies [268].
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Table 2. Commercially available biotoxins—with corresponding suppliers, sources and price range
(per mg).

Toxin Supplier Source Price Range (€ mg−1)

Okadaic acid

SGA
GEN
LCL
MER

SL
TC
BP

SCB

Prorocentrum concavum
unkown
unkown

Prorocentrum sp.
unkown
unkown
unkown

Prorocentrum sp.

1430
3510
561

2538
3479
5000
1210
1850

Okadaic acid, ammonium salt SGA
LCL

Prorocentrum concavum
unkown

16,620
561

Okadaic acid, sodium salt

SGA
GEN
LCL
SL

Prorocentrum concavum
unkown
unkown
unkown

9730
2320
561

2657

Okadaic acid, potassium salt
SGA
GEN
LCL

Prorocentrum concavum
unkown
unkown

8050
2320
561

Okadaic acid, solution MER Prorocentrum sp. 4480

Tetrodotoxin GEN
TC

unkown
unkown

451
195

Saxitoxin, diacetate GEN unkown 9920

Brevetoxin 2 GEN unkown 17,960
MER Karenia brevis 4390
SCB Karenia brevis 5970

Brevetoxin 3 GEN unkown 17,530
MER Karenia brevis 3880

Brevetoxin 9 GEN unkown 19,380
Yessotoxin, antibody GEN unkown 1580

Maitotoxin LCL unkown unkown
Azaspiracid-1 SCB Marine mussel 357,000
Azaspiracid-2 SCB Marine mussel 359,000
Azaspiracid-3 SCB Marine mussel 540,000

SGA: Sigma-Aldrich (St. Louis, MO, USA) (www.sigmaaldrich.com); GEN: Gentaur Molecular Products
(Kampenhout, Belgium) (www.gentaur.com); LCL: LC Laboratories (Woburn, MA, USA) (https://www.lclabs.
com/); WK: Wako Pure Chemical Industries Ltd. (Osaka, Japan) (www.wako-chem.com); MER: Merck Millipore;
SL: ScienceLab (Dickinson, ND, USA) (www.sciencelab.com); TK: Tocris (Bristol, UK) (www.tocris.com); Bertin
Pharma (Montigny le Bretonneux, France) (www.bertinpharma.com); SCB: Santa Cruz Biotecnology, Inc. (Dallas,
TX, USA) (https://www.scbt.com/scbt/home/).

Dinoflagellates in general grow slowly, and are quite shear-sensitive. It might seem paradoxal
that they can cause algal blooms in Nature—yet the latter are observed only during periods of
calm (and warm) waters; in fact, turbulent waves disrupt such a possibility, due to the associated
high shearing. Furthermore, the rate of shearing in classical bioreactors is much higher than that
prevailing in relatively still open waters. Therefore, massive production of biotoxins and other
products of interest from dinoflagellate culture has proven extremely difficult [97,269]. Unlike culture
of microalgae at large, the maximum biomass concentration attainable in photosynthetic cultures of a
dinoflagellate remains well below 1 gram per liter [3,270]; regarding toxin production per cell, it is
of the order of picogram [266]. Improvements in cultivation techniques still lag far behind practical
requirements: around 150 g of a pure bioactive compound is typically needed for preclinical studies
and clinical trials, so current cultivation methods will require broth medium volumes in excess of
100,000 m3—i.e., far above that needed by a typical antibiotic [3]. Genetic and metabolic engineering
have also been attempted [271] to circumvent low productivities and enhance concentrations of target
compound; however, the efforts involved are absolutely not straightforward [3]. These approaches are
normally available for nondinoflagellate microalgae, and target chiefly biofuel production [272,273].

www.sigmaaldrich.com
www.gentaur.com
https://www.lclabs.com/
https://www.lclabs.com/
www.wako-chem.com
www.sciencelab.com
www.tocris.com
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The difficulties arise from the astonishingly large and complex dinoflagellate genomes—with great
amounts of introns, bearing redundant repetitive noncoding sequences [274]. Their massive genome
is organized into a permanent liquid crystalline form, with a high proportion of unusual bases [275].
Furthermore, dinoflagellate genes lack recognizable promoter features, as well as common eukaryotic
transcription factor binding sites [276]; and their biotoxin production capabilities apparently result
from multiple independent evolutionary origins [277]—which make the identification of toxin-related
genes particularly complex. Despite said difficulties, high-throughput omics technologies have been
moving toward exploring toxin genes and proteins related to dinoflagellate toxin production, and are
expected to provide some insights about their biosynthesis in the near future [278].

Chemical synthesis of dinoflagellate-derived toxins had also been tested, with more than 100 steps
reported in some cases. Hence, de novo synthesis is considered as exceedingly complex—and
economically unfeasible at present (except in the case of okadaic acid). Nevertheless, this process
has proven useful for elucidation of structure and biological mode of action in the case of several
complex bioactives of dinoflagellates (e.g., brevetoxin B [279], brevetoxin A [280], gambierol [281],
gymnocin A [282], azaspiracid-1 [283], and gambieric acid A [284]). Moreover, some chemical routes
from biotoxin fragments have been proposed as more efficient for some compounds [3]—such as
maitotoxin [118] or yessotoxin [285]; however, more practical synthetic ways remain a challenge,
unlikely to succeed in the short run.

In view of the above arguments, cultivation of dinoflagellates and extraction and purification of
biotoxins (and other metabolites of interest) from closed photobioreactor seems to be the best approach
to obtain significant amounts of those compounds [286]. Researchers have been investing a great deal of
effort into developing dinoflagellate bioreactor controlled cultures [268,287–290], and understand what
mechanisms underlie their low biomass and biotoxin/bioactive productivities [3,269,270]. A deeper
know-how on dinoflagellate metabolism, cultivation and production processes is essential to rationally
develop reproducible and economical systems with improved productivities—in order to permit
these microalgae acquire a distinctive biotechnological role in value-added biotoxin production [291],
for eventual pharmaceutical and biomedical purposes.

3.2. Culture of Dinoflagellates and Biotoxin Production

While culturing nondinoflagellate microalgae in large volume photobioreactor cultures is a routine
practice [292–294], dinoflagellate culturing usually poses a number of difficulties [97]. Besides their
quite low rates of growth, dinoflagellates exhibit an intricate metabolism and low biomass yields—thus
resulting in low biotoxin production. Said fastidious growth may be explained by a complex nucleus,
with cumulative acquisition of several prokaryotic genes throughout evolution—coupled to an
inefficient Rubisco enzyme to distinguish CO2 from O2 [295].

Dinoflagellate cells exert some exceptional features compared to eukaryotic cells though.
They possess a distinctive nucleus with lack of nucleosomes and histones, and chromosomes remain
permanently condensed, even during mitosis [295,296]. These marine microorganisms are known to
have complex circadian systems that control behavior in vivo, as they establish a vertical migration
pattern according to daylight and nutrient level [297]. In general, photosynthetic dinoflagellate cells
divide at the end of the dark period, and grow during the light phase (corresponding to the G1 phase
of the cell cycle), precisely when production of many toxins occur. Apparently, coupling progression
of cell cycle to cell growth enables them to make best use of available resources [295]. Therefore,
one promptly realizes that dinoflagellate cells are extremely complex, and have singular metabolic
requirements that can hardly be provided by conventional (closed) photobioreactor configurations
and operating conditions. In fact, classical photobioreactors comprise simplistic modes of light
supply (e.g., continuous external illumination)—which, combined with the typical uniform levels
of nutrients, may break down natural rhythms and cause metabolic behavior to deviate from the
original one. Continuous supply of CO2 is also a sine qua non for photosynthesis, owing to its low
solubility in water—which calls for turbulence to minimize resistance to mass transfer. However,
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dinoflagellates are extremely sensitive to turbulence, since it leads to high shear stress or cell damage [3].
Even though dinoflagellate microalgae may grow well in natural environment (i.e., HABs), agitation
and turbulent conditions in water columns in vitro have proven unsuccessful. It has been suggested
that hydrodynamic forces may reduce time-integrated light exposure of individual cells, and promote
physical dispersion; another explanation claims that mechano-external stimuli impact directly on cell
physiology [298].

Nutritional requirements, illumination (i.e., cycle, intensity, irradiance) and specific patterns of
agitation (i.e., laminar flow) are thus essential issues to circumvent their low rates of growth, and
accordingly attain higher levels of metabolite synthesis. Parameters such as optimal temperature,
pH, oxygen tolerance and ionic strength are also important, because they can influence production
of some toxins. For instance, temperature and salinity were shown to induce variations in saxitoxin
content in Alexandrium catenella [299,300]; and temperature and light have been shown to affect
palytoxin-like compounds content in Ostreopsis ovata [301], as well as amount of okadaic acid (OA)
produced by Prorocentrum belizeanum [302]. Elucidation of what triggers synthesis of biotoxins and
other bioactive compounds, and mitigation of shear-stress through reactor engineering are central
issues to be addressed regarding mass cultivation of dinoflagellates and bioactive production thereby.

3.2.1. Nutritional Requirements

The composition of the nutrient mixture in growth media can strongly influence dinoflagellate
survival (i.e., cell division) and biotoxin production. The L1 is the most frequently used formulation to
culture dinoflagellates [303], despite the fact that it was originally developed to grow marine diatoms.
Other common cited media are f/2 and K, initially designed to grow diatoms [304,305] and oligotrophic
oceanic phytoplankters [306], respectively. Media formulation typically derives from enrichments of
natural seawater, and is almost exclusively used in dinoflagellate culture.

In some dinoflagellate cultures, the effect of macronutrients is essential for maintenance
of cellular processes; for instance, nitrates and phosphates seem to trigger different responses
regarding biotoxin synthesis. Gallardo-Rodríguez et al. [307] have shown unsatisfactory phosphorous
concentrations in L1 basal medium to achieve high growth rates and biomass yields of Protoceratium
reticulatum cultures. In addition, cell-specific production of yessotoxin bioactive was not influenced
by concentration of phosphate, but by higher nitrate concentrations. On the other hand, studies with
Alexandrium spp. and Karenia brevis have demonstrated that limited-phosphorous concentrations
induce higher biotoxin content [308,309]. Other reports suggest an increase in toxin content when
N and P are severely depleted, thus suggesting a synergistic effect of their availability [310]; while
studies using Ostreopsis ovata suggest an opposite effect, with biotoxin production limited by N and P
depletion [311].

Trace elements and vitamins have also proven to be of great importance. For instance,
P. reticulatum was found to exhibit higher growth rates when selenium and iron were added to cultures,
and yessotoxin production was significantly improved with selenium addition [312]. Field and
culture-based studies with HAB dinoflagellates support the idea that exogenous B vitamins (i.e.,
B1, B7, B12) have the potential to broadly influence marine biomass productivity and associated
composition [313]. Tests with P. reticulatum and K. veneficum, using artificial neural networks
as predictive tool for nonlinear interactions among all nutrients in culture media, suggest that
micronutrients and vitamins (even to lower concentrations) are relatively more significant than
macronutrients toward growth of both microalgae [314,315].

Since medium formulations comprise many components, virtually hundreds of combinations
are possible to improve biotoxin production—but quite difficult to test in practice. For that reason,
the process to improve nutritional requirements of dinoflagellates may to advantage resort to a
genetic-algorithm (GA). This tool is superior in performance to conventional statistical experimental
designs, and has been commonly employed to develop microbial culture media [316]. GA-based
stochastic search is able to explore a large experimental space, and has been successfully applied in
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medium formulation for P. reticulatum and K. veneficum. The new media developed have allowed 40%
and 190%-enhancement of biotoxin titer, and 60% and 120%-enhancement in final cell concentration
relative to basal L1 medium, respectively [317,318].

The effect of nutritional requirements upon overall growth and total amount of biotoxin
synthesized seem to strongly depend on dinoflagellate species. Hence, efforts to find better medium
formulations, via efficient methods of search and optimization, remain a priority.

3.2.2. Culture Light Provision

Light is the basic energy source, and a critical parameter for dinoflagellate autotrophic
growth—and thus for achieving higher productivities. Both natural and artificial light have been
reported to bring about growth of dinoflagellates of interest [270,289,302]. Artificial light provides
better control of the light spectrum, irradiance or photosynthetic photon flux density (PPFD),
as well as photoperiod (light/dark cycle) in closed photobioreactors. Several culture studies have
employed conventional cool fluorescent lamp (Table 3), but light-emitting diodes (LEDs) are gaining
importance in dinoflagellate culturing [319]. LED performance is very similar to fluorescent light,
but they require less energy and narrower wavelength bands are possible. They are also less
damaging to dinoflagellate cells, as they do not generate excessive heat; and can be easily designed
to convey predefined levels of light delivery to photobioreactors. Until now, K. veneficium and
A. tamarense were the only dinoflagellate species of interest to be cultured with success using LED
technology, at pilot-scale [319,320]. For instance, A. tamarense growth was stimulated under blue
LED, but suppressed under yellow and red LEDs to below 70 µmolphoton.m−2.s−1. In fact, high
growth efficiencies under blue wavelength have been reported for several dinoflagellates [320], but a
correlation between cellular toxin levels and wavelengths remains to be established [321].

The light intensity (irradiance) and utilization efficiency are crucial in dinoflagellate cultures, and
consequently in toxin bioproduction. Light energy should be delivered evenly over the photobioreactor;
in order to prevent growth-limiting, photoxidation and/or photoinibition, an adequate PPFD must
indeed be provided to cells [322]. Conventional green microalgae can stand elevated irradiance
levels (e.g., 3000 µmolphoton.m−2.s−1) [302], but those levels are detrimental for dinoflagellates. Several
intensities have been reported for different dinoflagellate cultures [302,323,324]. Maximal and optimum
intensity thresholds in dinoflagellate cultures seem to be species-dependent [325]. While some
dinoflagellates grow better under low light intensities (e.g., 10–40 µmolphoton.m−2.s−1), others can
effectively grow between 50–500 µmolphoton.m−2.s−1 or even more [47,268,324,325]. On the other
hand, the light time exposure or photoperiod are also of interest for growth and biosynthesis of toxins.
The most commonly used light/dark cycles are 12 h/12 h, 14 h/10 h and 16 h/8 h (Table 3). Optimal
cellular DTX-1 and OA concentrations and good growth performance of P. lima were reported under
12 h/12 h photoperiod, thus emphasizing the importance of photosynthesis and dark respiration in
such toxin biosyntheses [321]. Early studies suggests that biotoxin production of microalgal cells is
controlled by light and dependent on cell cycle [326,327]. The biosynthesis of SPX in A. ostenfeldii is
in fact governed by light-dependent mechanisms; toxin concentration per cell quota increases in the
beginning of the dark period, probably corresponding to the G1 or S phase cell cycle [328].

Understanding the photosynthetic apparatus and light requirements at large-scale will pose great
challenges in attempts to obtain successful amounts of dinoflagellate biomass and biotoxins. Several
aspects regarding light have thus to be considered for closed bioreactor systems.
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Table 3. Major results of studies on bioreactor type, culture mode and other operational conditions for dinoflagellate growth and/or biotoxin synthesis optimization.

Species and Strain Type of Reactor Reactor Operation Reactor
Size

Type of
Aeration/Agitation T (◦C) Irradiance Culture

System
Light Intensity

(µmol m−2 s−1) Light Regime Biotoxin Produced Specific r-Emsarks Ref.

Prorocentrum lima spp. Carboy Batch 36 L Stirring (discontinuous) 18 ± 1 - 90 ± 5 Continuous
dark/14 h:10 h

Okadaic acid
Dinophysistoxin - [326]

Protoceratium reticulatum
CAWD129 Carboy Batch 226 L - - - - 12 h/12 h Yessotoxin

Furanoyessotoxin Serial bulk culture (size ~14 L each) [329]

Azadinium spinosum 3D9 Chemostat in series Continuous 100 L Stirring (not specified) 18 - 200 16 h/8 h Azaspiracid - [330]

Azadinium spinosum 3D9 Tubular PBRs in series Continuous 100 L Stirring (Rushton
turbine) 18 Neon tube lamps 200 16 h/8 h Azaspiracid Culture collected in an aerated

harvesting tank (300 L) [331]

Alexandrium tamarense ATHK Airlift PBR Batch 2.5 L Airlift 22 Cool-white
fluorescent lamps 60 Continuous Saxitoxin Two-step batch culture method [332]

Alexandrium tamarense ATCI01 Glass rectangular tank Batch/Semi-continuous 70 L
40 L

Air bubbling
(continuous) 23 Cool-white

fluorescent lamps 108 16 h/8 h C2 toxin - [333]
[334]

Protoceratium reticulatum
GG1AM Stirred-PBR Batch/Fed-batch

/Semi-continuous 15 L Stirring (impeller)/gas
sparging 19 ± 1 Cool-white

fluorescent lamps 242–766 - Yessotoxin - [290]

Protoceratium reticulatum
GG1AM and VGO764 Stirred-glass fermenter

Semi-continuous
Fed-batch

Continuous
2 L Stirring (impeller) - Cool-white

fluorescent lamps
(e.g., 34, 44, 54, 66,

81, 99, 100) - Yessotoxin - [335]
[270]

Amphidinium carterae ACRN03 Airlift bubble
column PBR Semi-continuous

540 L
320 L
48 L

Compressed air
(continuous) 23.3 ± 2.2 - 158 ± 22 (indoor)

~464 (outdoor) 18 h/ 6h N/A Production of biomass [289]

Karenia selliformes
CAWD79

Alexandrium ostenfeldii
CAWD135

Karenia Brevisulcata CAWD82

Column PBRs Carboy Batch/
Continuous

5.4 L
52 L

Magnetic stirring/Air
bubbling (low) - Cool-white

fluorescent lamps 38 12 h/12 h
Gymnodimine

Spirolide
Brevisulcatic acid

- [268]

Karlodinium veneficum K10 Bubble column PBR Batch (sequential) 80 L Gas Sparging 21 ± 1 LEDs 220
1500 (>7th day) 12 h/12 h N/A - [287]

Amphidinium sp. Flat-bottom flask Batch 3 L - 25 - 108 16 h/8 h Amphidinolide - [248]

Alexandrium minutum
AMAD06 and AMAD16 Alveolar panel PBR Batch/Semi-continuous 4 L Alveoli - Cool-white

fluorescent lamps 100 12 h/12 h

Gonyautoxin/fraction
of saxitoxin,

neosaxitoxin and
C-toxin

- [336]

Alexandrium ostenfeldii
CCMP1773 Flat-bottom vessel Batch 8 L N/A 16 Cool-white

fluorescent lamps 155 12 h/12 h Spirolide - [337]

Alexandrium ostenfeldii
CCMP1773 Column PBR Continuous 100 L Stirring (paddle

impeller turbines) 18 Cool-white
fluorescent lamps 190 16 h/8 h Spirolide - [337]

Alexandrium pacificum
HYM9704 Chemostat system Batch

Semi-continuous 2 L Air bubbling 15 Cool-white
fluorescent lamps 150 12/12

C-toxin
Gonyatoxin

Saxitoxin
- [338]

Amphidinium carterae
(Hulbert) Plastic cylinder Batch 40 L Airlift 22 Cool-white

fluorescent lamps 40 12 h/12 h N/A Identification of pharmacological
activity in vitro using algal extracts [339]

Prorocentrum lima CCMP 2579 Vertical flat PBR Batch 100 L Air bubbling 20 Cool-white
fluorescent lamps 100 12 h/12 h Okadaic acid

Dinophysistoxins - [321]

Karlodinium veneficum
ICMB 252

Alexandrium. minutum AMP4
Column PBR

Batch (indoors)
Semi-continuous

(outdoors)
350 L Air bubbling

20 ± 1
(indoors)
Variable

(outdoors)

Cool-white
fluorescent lamps

110 (indoors)
202–4020 (outdoors) 12 h/12 h N/A Each PBR column size ~35 L each

Production of lipids [340]
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Table 3. Cont.

Species and Strain Type of Reactor Reactor Operation Reactor
Size

Type of
Aeration/Agitation T (◦C) Irradiance Culture

System
Light Intensity

(µmol m−2 s−1) Light Regime Biotoxin Produced Specific r-Emsarks Ref.

Symbiodinium voratum Twin Layer PBR
(Biofilm-immobilization) Continuous 414 cm2 Air tube (continuous) 23 ± 1

25 ± 3

Cool-white
fluorescent and
Sodium lamps

26 ± 2
73.5 ± 17.5 14 h/10 h N/A Production of peridin [341]

Amphidinium carterae
(JHWAC)

Symbiodinium sp. (JHLSD1)
Prorocentrum rathymum

(JHWPMX1)

Vertical column PBR
system (12× column) Batch 700 L Air bubbling 20 ± 1 Cool-white

fluorescent lamps 40–50 12 h/12 h N/A Each PBR column size ~60 L each
Screening antioxidant properties [342]

Karlodinium veneficum
(CCMP 2936) Vertical column PBR Batch 31 L N/A 24 LEDs 50 14 h/10 h N/A Study on vertical migration [343]

N/A—Not Applicable.
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3.2.3. Bioreactor Culture and Design

The dropping productivities associated with dinoflagellate growth in photobioreactors are
often related to the shear-sensitivity of their cells—as made apparent by the negative effects of
turbulence. The success of biotoxin production for pharmaceutical and/or investigational purposes
implies attainment of adequate amounts of biomass in a safe way—which challenges conventional
photobioreactor engineering design [286,336]. At present, cultivation in open ponds is not a
viable solution for safety reasons and environmental contamination [3]. The majority of reports
on dinoflagellate cultivation are indeed limited to flask or bottle cultures at laboratory scale—yet
complementary studies have been developed aiming at larger scale operation [344]. Based on different
technologies employed, volumes ranging from 2 L to 700 L have been tested (Table 3). The culture
systems at stake include a variety of configurations—encompassing from carboys, chemostats or
stirred-tanks, to typical airlift, bubble column, tubular reactor and flat-plate PBRs (photobioreactors).
The technology Twin-Layer PBR, at laboratory scale, introduced by Benstein and coworkers [341] for
growth of Symbiodinium voratum and production of peridinin pigment in an immobilized support,
suggested a new configuration approach that could also be suitable for biotoxin production.

Culture operation modes can greatly influence the efficacy of biomass and toxin productivities.
Beuzenberg and coworkers [268] have demonstrated that K. selliformis, A. ostenfeldii and K. brevisulata
continous cultures in column PBRs led to substantial improvements in productivity. Biotoxin yields
increased 2–3 fold relative to batch mode, except for K. brevisulata. Fuentes and co-workers [289]
reported successful production of biomass by A. caratarea in a semi-batch mode, either indoors or
outdoors. Wang and coworkers [333,334] observed lower growth of A. tamarense under semi-batch
mode—possibly due to inadequate dilution cycles and excess disturbance on cultures; however,
C2 toxin yields were considerably higher in batch mode. Special attention should also be given
to aeration regime applied to dinoflagellate cultures. Despite turbulent environments triggering a
few negative effects upon those cultures—e.g., reactive oxygen species accumulation, lipoperoxide
formation, changes in cell membrane fluidity, or/and calcium mobilization [3,269], aeration seems to
improve biomass productivities and biotoxin concentrations if provided and carefully controlled [336].
Air flow helps stripe dissolved oxygen, hence minimizing harmful effects upon microalga cells [270].
Hu and co-workers [332] reported on a two-step batch culture method, first favoring growth in static
conditions, and then applying aeration in a subsequent step to improve saxitoxin yields by A. tamarense.
Wang and co-workers [333,334] have reached higher contents of C2 toxin Alexandrium permeabilization
following a similar strategy; Gallardo-Rodríguez and co-workers [269,286] also observed increasing
levels of yessotoxin in cultures of P. reticulatum.

Consequently, bioreactor scale-up remains largely undeveloped, so researchers are to explore
several economical and viable options regarding bioreactor design and culture strategies. Successful
scale-up will ultimately dictate industrial feasibility of any process based on dinoflagellate biotoxins.

4. Final Considerations

Dinoflagellates have proven to be a rich biotechnological source of biotoxins, with interesting
biological activities that are potentially useful in a wide spectrum of pharmacological and medical
fields, besides being promising tools for chemical biology. Despite such recognized value, scarcity of
such biotoxins for preclinical testing (and later for commercial exploitation) remains a major issue.
As chemical synthesis and genetic engineering are extremely difficult to achieve, a lot of effort and
resources have been directed to improve modes of culturing dinoflagellates in photobioreactors,
aimed at obtaining larger biotoxin concentrations. Nutritional and operation conditions, such as
light and aeration/agitation patterns, have to take into account that dinoflagellates obey specific
circadian rhythms, and are extremely sensitive to shearing when cultivated in a reactor. Conventional
engineering and bioreactor design methods have thus to be overcome, so as to circumvent the fastidious
growth and shear-sensitivity of dinoflagellate cells.
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