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Abstract: The carbonic anhydrase (CA, EC 4.2.1.1) superfamily of metalloenzymes catalyzes the
hydration of carbon dioxide to bicarbonate and protons. The catalytically active form of these enzymes
incorporates a metal hydroxide derivative, the formation of which is the rate-determining step of
catalytic reaction, being affected by the transfer of a proton from a metal-coordinated water molecule
to the environment. Here, we report the cloning, expression, and purification of a particular CA,
i.e., nacrein-like protein encoded in the genome of the Pacific oyster Magallana gigas (previously known
as Crassostrea gigas). Furthermore, the amino acid sequence, kinetic constants, and anion inhibition
profile of the recombinant enzyme were investigated for the first time. The new protein, CgiNAP2X1,
is highly effective as catalyst for the CO, hydration reaction, based on the measured kinetic
parameters, i.e., keat = 1.0 X 100 s~ ! and keat /Ky = 1.2 x 108 M—1.s71, CgiNAP2X1 has a putative
signal peptide, which probably allows an extracellular localization of the protein. The inhibition data
demonstrated that the best anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide,
sulfamate, phenylboronic acid and phenylarsonic acid, which showed a micromolar affinity for
this enzyme, with Kjs in the range of 76-87 uM. These studies may add new information on the
physiological role of the molluskan CAs in the biocalcification processes.

Keywords: nacrein-like protein; carbonic anhydrase; molluskan; signal peptide; kinetic constants;
phylogeny; anion inhibitors

1. Introduction

The genome of Eubacteria, Archaea, and Eukarya encodes for a superfamily of metalloenzymes,
known as carbonic anhydrases (CAs, EC 4.2.1.1). The CA superfamily includes seven known families:
&-, 3-,v-, 8-, -, - and 6-CAs [1-3], which represent a fashionable example of convergent/divergent
protein evolution. The main peculiarities of this superfamily can be summarized as follows: all the
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CA families aforementioned efficiently catalyze the hydration of carbon dioxide to bicarbonate and
protons [4-8]; the catalytically active form of the enzyme is the metal hydroxide derivative [1-3];
the velocity of the catalytic reaction depends on the formation of a metal hydroxide species, which is
formed by the transfer of a proton from the metal-coordinated water molecule from the enzyme active
site to the surrounding solvent [2—4,6-17]. Taking into account the three-dimensional structure of the
CA families, the seven genetic families are characterized by a different arrangement of the active site,
with the metal ion playing an important part, as the apoenzymes are devoid of any catalytic activity.
In fact, the metal ion in the active site is coordinated by three His residues in the -, y-, §- and, probably,
0-classes; by one His, and two Cys residues in 3- and ¢-CAs or by two His and one Gln residues in the
n-class, with the fourth ligand being a water molecule/hydroxide ion acting as the nucleophile in the
catalytic cycle of the enzyme [1,5-7,18,19]. The «-, -, 8-, n- and, perhaps 6-CAs are characterized by
a Zn(II) ion in the active site. y-CAs are probably Fe(Il) enzymes, although this family is active also
with bound Zn(II) or Co(Il) ions [20-27]. (-CAs are cambialistic enzymes, active both with Cd(II) or
Zn(Il) bound within the active site [28-30]. x-CAs are normally active as monomers or dimers; 3-CAs
are active only as dimers, tetramers, or octamers, whereas y-CAs must be trimers for accomplishing
their physiological function [21,22,25,31]. The crystal structure of (-CA showed three slightly different
active sites on the same polypeptide chain. X-ray crystal structures of 6-, (-, 1- and 8-CAs are not
at all available. Intriguing, «- and n-CAs also catalyze the hydrolysis of esters/thioesters, while no
esterase activity was detected for the other five CA families [1,32]. The CA gene families” distribution
is very variegated in living organisms investigated so far. In fact, CAs present in animals belong
to a-class [33,34], plants and algae have «-, 3-, -, - and 6-classes; fungi encode for «- and 3-CAs;
protozoa for «-, 3- and/or n-CAs; bacteria for «-, 3- and y-CA classes [4-7,12,35,36]. In metazoans,
the a-CAs are largely represented [37,38]. Moreover, in the mantle of the pearl oyster Pinctada fucata an
enzyme involved in the calcium carbonate crystallization has been identified and indicated with the
name of nacrein because it participates in the formation of the nacreous layer [39]. Nacrein is a matrix
protein with both a CA domain at the N-terminus and Gly-Xaa-Asn repeats at the C-terminal part [39].
These proteins are conserved in bivalves and gastropods and have a molecular weight ranging from
50 kDa to 60 kDa [39,40]. Recently, a novel nacrein-like protein with a molecular weight of about 38 kDa
was purified from the mantle of P. fucata, suggesting the existence of two kinds of CAs in the oyster [40].
Here, we cloned, expressed, and purified the recombinant nacrein-like protein (Accession number:
XP_011428406.1) encoded by the genome of the Pacific oyster Magallana gigas (previously known
as Crassostrea gigas). The protein is indicated here with the acronym CgiNAP2X. Furthermore, we
investigated the amino acid sequence, kinetic constants, and anion inhibition profile of this enzyme,
in order to add new information regarding the mineralization pathways of the molluskan organisms.

2. Results and Discussion

2.1. Amino Acid Sequence Analysis

By translated inspection of the Crassostrea gigas genome, we identified a gene encoding for a
nacrein-like protein, which is indicated with the acronym CgiNAP2X1 in this article. The CgiNAP2X1
nucleotide sequence consists of an open reading frame encoding for a 318 amino acid polypeptide
chain (Figure 1).
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Figure 1. Amino acid sequence of the nacrein-like protein identified in the genome of C. gigas. The upper

case letters are the amino acid residues.

To identify the typical features of the CgiNAP2X1 amino acid sequence, the protein was aligned
with those of other x-CAs, such as the human isoforms HumCAI and HumCAII, and the molluskan

MgaCA (Figure 2).
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Figure 2.  Alignment of the nacrein amino acid sequence identified in the genome of
Crassostrea gigas (CgiNAP2X1, Accession number XP_011428406.1) with the x-CA from the bivalve
Mytilus galloprovincialis (MgaCA, Accession number: ALF62133.1), and the two human x-CA isoforms
(HumCAI, Accession number: NP001729 and HumCAII, Accession number: P00918). HumCAI
numbering system was used. The zinc ligands (His94, 96, and 119 in red) and the gate-keeper residues

(Glu106 and Thr199 in blue) are conserved in aligned sequences; while the proton shuttle residue

(His64 in green) is preserved only in the human enzymes. The underlined residues represent the

identified signal peptide, in bold the residues of the cleavage site, and the arrow is the position of the

cleavage. The asterisk (*) indicates identity at all aligned positions; the symbol (:) relates to conserved

substitutions, while (.) means that semi-conserved substitutions are observed. Multialignment was

performed with the program MUSCLE, version 3.1.



Mar. Drugs 2017, 15, 270 4 0f 15

It may be observed that similar to the other investigated «-CA members, CgiNAP2X1 has
the conserved three His ligands which coordinate the Zn(II) ion crucial for catalysis (His94, 96,
and 119, HumCAI numbering system), and the gate-keeping residues (Glu106 and Thr199) which
orientate the substrate for catalysis, and are also involved in the binding of inhibitors. Interestingly,
the proton shuttle residue (His64) is missed in CgiNAP2X1 and MgaCA (Figure 2). His64 assists the
rate-determining step of the catalytic cycle, transferring a proton from the water coordinated to the
Zn(Il) ion to the environment, with formation of the zinc hydroxide, nucleophilic species of the enzyme.
Moreover, from the amino acid alignment shown in Figure 2, we noted the presence of amino acids
stretches at the N-terminus of the CgiNAP2X1 primary structure. This observation evoked our curiosity
and a strong interest in the automated determination of a possible signal peptide in CgiNAP2X1. Here,
we used SignalP version 4.1 (Center for Biological Sequence Analysis, Kongens Lyngby, Denmark),
which is a program designed to discriminate between signal peptides and transmembrane regions of
proteins [41]. The program is available as a web tool at http:/ /www.cbs.dtu.dk/services/SignalP/.
As shown in Figure 3, CgiNAP2X1 possessed a putative signal peptide of 22 amino acids at its
N-terminus and a predicted cleavage site located between Ala22 and Ser23. A common feature of
the human mitochondrial CAs (HumCAVA and HumCAVB), the salivary HumCAUV], all the bacterial
x-CAs, and some bacterial 3-CAs is the presence of an N-terminal signal peptide, which allows the
inter-membrane, extracellular, or periplasmic localization of these CA-classes [9,32,42,43].
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Figure 3. SignalP graphical output showing the three different scores C, S, and Y, for the first 70 positions
in the CgiNAP2X1 amino acid sequence. Legend: x-axis, amino acid position; C-score, raw cleavage
site score; S-score, signal peptide score; Y-score, combined cleavage site score.

2.2. Phylogenetic Analysis

We have constructed a phylogenetic tree in order to better investigate the evolutionary relationship
of nacrein or nacrein-like sequences found in mollusks with that of other «-CAs coming from
molluskan, bacteria, and mammals (Figure 4). The complete list of organisms, CA type, accession
numbers and cryptonyms used in the phylogenetic analysis are indicated in Table 1.
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Figure 4. Phylogenetic analysis of CAs from various organisms. The analysis was obtained by using the

amino acid sequences of nacrein and nacrein-like proteins identified in mollusks, and the x-CAs coming

from molluskan, bacteria, and mammals. Bootstrap values of 100 replicates are reported at branch

points. Legend: see Table 1 for sequence accession numbers, cryptonyms, and organisms considered.

Table 1. Cryptonyms, enzyme types, organisms, and accession numbers of the amino acid sequences

used in the phylogenetic analysis.

Acronym Enzyme Type Organism Accession Number
PfuNA Nacrein Pinctada fucata BAA11940.1
PmaNA Nacrein-like Pinctada maxima BAF42330.1
PmarNA Nacrein Pinctada margaritifera AEC03970.1
CgiNAPre Nacrein precursor Crassostrea gigas NP_001292235.1
CgiNAF Nacrein isoform F Crassostrea gigas EK(C37961.1
CgiNAX4 Nacrein isoform X4 Crassostrea gigas XP_011426380.1
CgiNAP2X1 Nacrein-like isoform P2X1 Crassostrea gigas XP_011428406.1
CgiNA Nacrein-like Crassostrea gigas XP_011428408.1
CgiNA_Mit Mitochondrial nacrein Crassostrea gigas EKC36446.1
TmaNA Nacrein Turbo marmoratus BAB91157.1
HtuCA a-CA Haliotis tuberculata AEL22200.1
HgiCA a-CA Haliotis gigantea BAHS58350.1
SsalCA x-CA Streptococcus salivarius] WP_002888224.1
NgonCA x-CA Neisseria gonorrhoeae WP_003688976.1
SspCA a-CA Sulfurihydrogenibium yellowstonense WP_012459296.1
HpylCA a-CA Helicobacter pylori WP_010882609.1
CruCA4 o-CA isoform 4 Corallium rubrum KU557746.1
SpiCA2 a-CA isoform 2 Stylophora pistillata ACE95141.1
HumCAI «-CA isoform 1 Homo sapiens NP_001729.1
HumCAIL a-CA isoform 2 Homo sapiens AAH11949.1
PokCA x-CA Phreagena okutanii BAO01209.1
MgaCA a-CA Mytilus galloprovincialis ALF62133.1
CgiCA2 a-CA isoform 2 Crassostrea gigas EK(C31880.1
CgiCA2X1 a-CA isoform 2X1 Crassostrea gigas XP_011447892.1
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Table 1. Cont.
Acronym Enzyme Type Organism Accession Number
CgiCA2X3 a-CA isoform 2X3 Crassostrea gigas XP_011447895.1
SpCAl «-CA isoform 1 Stylophora pistillata ACA53457.1
TgiCA a-CA Tridacna gigas AAX16122.1
CgiCA12 «-CA isoform 12 Crassostrea gigas EKC34762.1
ObiCA9X «-CA isoform 9X Octopus bimaculoides XP_014786584.1
HbICA a-CA Heterololigo bleekeri BAL42244.1

The dendrogram shows that a-CAs and nacrein/nacrein-like proteins clustered in two distinct
branches: one clade at the top of the Figure 4 containing all the nacreins, with the exception of the two
a-CAs from Haliotis tuberculata (HtuCA) and Haliotis gigantea (HgiCA); the other clade (bottom of the
Figure 4) included all the «-CAs considered in the present study. Interesting to note is the position of
CgiNAP2X1. It is closely associated to the nacrein identified in the mitochondrial genome of C. gigas, which
is characterized by a signal peptide similar to that found in CgiNAP2X1. When inspecting other molluskan
nacrein or nacrein-like proteins deposited in the protein data bank and used for this phylogenetic analysis
with SignalP, we found that nacreins, generally, are characterized by pre-sequences of 20 or more than
22 amino acid residues before the signal cleavage site (data not shown). These results could suggest that the
identified nacrein-like protein, CgiNAP2X1, is a mitochondrial protein or a secretory protein, as happens
for the human CAs isoforms Hum CAVA, HumCAVB, and HumaCAVI [9,32,42,43]. It is also possible to
observe, that the clade of nacrein has arisen from an ancestral sequence, which led before to the bacterial
a-CAs characterized by a signal peptide and then to the molluskan o-CA clade (Figure 4).

2.3. Production and Characterization of the Recombinant Enzyme (CgiNAP2X1)

The recombinant CgiNAP2X1 was prepared by designing a synthetic gene lacking the peptide
signal as described in “Materials and Methods” and heterologously expressed as a His-Tag fusion
protein using the method reported earlier for several CAs [44]. The recombinant enzyme was
recovered in the soluble fraction of the Escherichia coli ArcticExpress (DE3)RIL cells extract obtained
after sonication and centrifugation. Using an affinity column (His-select HF Nickel Affinity Gel),
CgiNAP2X1 was purified to an apparent homogeneity and the recovered amount of metalloenzyme
was 2 mg. SDS-PAGE of the purified CgiNAP2X1 showed a band with an estimated molecular weight
of about 36 kDa under reducing conditions (Figure 5). A subunit molecular mass of 37 kDa was
calculated on the basis of the amino acid sequence translated from the gene.

Std CgiNAP2X1 rec-MgaCA  MgaCA

50 kDa

37 kDa

25 kDa

Figure 5. SDS-PAGE of the recombinant molluskan proteins (CgiNAP2X1 and rec-MgaCA)
heterologously expressed in Escherichia coli and the native «-CA M. galloprovincialis (MgaCA). Lane
STD, molecular markers, M.W. starting from the top: 150 kDa, 100 kDa, 75 kDa, 50 kDa, 37 kDa, 25 kDa,
20 kDa; Lane CgiNAP2X1, recombinant nacrein-like protein from C. gigas; rec-MgaCA, recombinant

«-CA from M. galloprovincialis; Lane MgaCA; native x-CA purified from the mantle of M. galloprovincialis.
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Interestingly, the native MgaCA purified from Mytilus galloprovincialis showed an estimated
SDS-PAGE molecular weight of about 50 kDa, while the recombinant MgaCA (rec-MgaCA) had a
molecular weight of about 30 kDa, which is closer to the molecular mass of CgiNAP2X1 (Figure 5).
CgiNAP2X1 was also investigated by protonography, which is a technique based on monitoring the pH
variation in the gel due to the CA-catalyzed conversion of CO; to bicarbonate and protons [13,15,45].
The protonogram performed on CgiNAP2X1, rec-MgCA, and MgaCA showed a single hydratase
activity band on the gel having a molecular weight of 36 kDa, 30 kDa, and 50 kDa, respectively
(Figure 6), confirming the SDS-PAGE result. Moreover, since the dimer of the rec-MgaCA should
have a M.W. of 60 kDa (10 kDa higher than the molecular mass of the native MgaCA), it is reasonable
that the native MgaCA could be a multidomain protein with a CA domain at the N-terminus of the
protein (M.W. = 30 KDa) and another domain of about 20 kDa at the C-terminus. This hypothesis is
corroborated by the existence in the genome of the Japanese pearl oyster Pinctada fucata of a nacrein
characterized by a CA domain at the N-terminus part of the protein [46].

Std CgiNAP2X1 rec-MgaCA MgaCA

L

50kDa «

37kDa

25kDa &

Figure 6. Protonogram showing the CgiNAP2X1, rec-MgaCA, and MgaCA activity on the gel.
Protonography was run under denaturing but non-reducing conditions. The gel was loaded with
4 pg/well the aforementioned proteins and incubated for 20 for visualizing the hydratase activity
bands (yellow color on the blue background). Lane STD, molecular markers, M.W. starting from the
top: 75 kDa, 50 kDa, 37 kDa, 25 kDa, 20 kDa; Lane CgiNAP2X1, recombinant nacrein-like protein from
C. gigas; rec-MgaCA, recombinant «-CA from M. galloprovincialis; Lane MgaCA; native a-CA purified
from the mantle of M. galloprovincialis.

2.4. Enzyme Kinetics

The data of Table 2 show that CgiNAP2X1 has a high catalytic activity for the physiological
reaction of CO, hydration to bicarbonate and protons, with the following kinetic parameters: kcat of
1.0 x 10% s~ 1 and ket /Ky of 1.2 x 108 M~ 1.5~ (at 20 °C and pH of 7.5), being thus 1.4 times less active
than the human isoform HumCAII, which, together with SazCA («-CA from the thermophilic bacteria
Sulfurilydrogenibium azorense with a keat of 4.4 x 10° s71) is of one of the best catalysts known in nature.
Moreover, CgiNAP2X1 is one order of magnitude more effective as a catalyst for the physiological
reaction compared to a similar molluskan recombinant enzyme and the native enzyme (MgaCA)
and with respect to the slow human HumCAI and the other «-CAs identified in species of corals
(SpiCA1 and SpiCA2 from Stylophora pistillata; CruCA4 from Corallium rubrum) (Table 2). Interestingly,
the sulfonamide in clinical use, acetazolamide (5-acetamido-1,3,4-thiadiazole-2-sulfonamide), is an
excellent inhibitor of HumCAII, SpiCA1, and SpiCA2 (K;s = 12-74 nM), while it was less effective
towards CgiNAP2X1, HumCAI, CruCA4, and MgaCA (native and recombinant) with inhibition
constants in the range of 250-450 nM. These activity data cannot be easily rationalized taking into
consideration the amino acid sequence of CgiNAP2X1, which has been aligned with the x-CA from
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the bivalve M. galloprovincialis, and the two human «-CA isoforms (Figure 2). In fact, in the amino acid
sequence of CgiNAP2X1, the proton shuttle residue His64 is missing, which is normally responsible for
the velocity of the catalytic cycle (see paragraph 2.1 and Figure 2). Probably, the ke, of 1.0 x 106 571
showed by CgiNAP2X1 is attributed to other amino acid sequence features, such as the presence of an
amino acid insertion positioned at the half of the primary structure (Figure 2), which could increase
the flexibility of the molecules determining a higher kc,t. Of course, further studies are needed to
demonstrate this observation.

Table 2. Comparison of the kinetic parameters for the CO, hydration reaction catalyzed
by CgiNAP2X1 (nacrein) and the «-CAs from Homo sapiens (the two isoforms HumCAI and
HumCAll), Stylophora pistillata (isoforms SpiCA1 and SpiCA2), Corallium rubrum (isoform CruCA4),
Muytilus galloprovincialis (the native enzyme, MgCA; and the recombinant form, rec-MgaCA).
Acetazolamide (AAZ) inhibition data are also shown.

Enzyme Organism Class keat 1 ™) keat/ K M1 x s™1)  Kis (acetazolamide) 1 (nM)
HumCAI Homo sapiens o 2.0 x 10° 5.0 x 107 250

HumCAIl Homo sapiens o 1.4 x 10° 1.5 x 108 12
CgiNAP2X1 Crassotrea gigas Nacrein-like 1.0 x 10° 1.2 x 108 495

SpiCA1l Stylophora pistillata o 3.1 x10° 4.6 x 107 16

SpiCA2 Stylophora pistillata o 5.6 x 10° 8.3 x 107 74

CruCA4 Corallivm rubrum o 2.4 % 10° 5.2 x 107 450

MgaCA Mytilus galloprovincialis o 4.1 % 10° 3.6 x 107 380
rec-MgaCA Muytilus galloprovincialis o 42 % 10° 3.5 x 107 361

! Errors in the range of +-5% of the reported data from three different assays.

2.5. Anion Inhibition Profile

As inorganic anions represent a well-known class of CA inhibitors (CAls) due to their affinity
for metal ions in solution or when bound within metalloenzyme active sites, we investigated a rather
large number of such species for their interaction with CgiNAP2X1 (Table 3). The interest in this class
of CAls is due to the fact that Crassostrea gigas lives in the marine environment, which may contain
various concentrations of salts and, thus, a rather high amount of inorganic anions. Data of Table 3,
in which the inhibition of the human enzymes HumCAI and II is reported for comparison reasons,
show the following;:

1.  The anions with the smallest propensity to coordinate metal ions, perchlorate and tetrafluoroborate,
and inhibitors such as fluorosulfonate, iminodisulfonate, perrhuthenate, perrhenate, bisulfite,
divanadate, tellurate, azide, and cyanide were not inhibitors of CgiNAP2X1 up to concentrations of
100 mM. With the exception of perchlorate and tetrafluoroborate, a different profile was shown for
the human isoforms hCA I and II (Table 3).

2. Several other anions; fluoride, chloride, bromide, iodide, cyanate, thiocyanate, bicarbonate,
carbonate, nitrate, nitrite, hydrogen sulfite, stannate, selenate, peroxydisulfate, tetraborate,
selenocyanate, trithiocarbonate, and trifluorometansolfonato were also weak inhibitors of
CgiNAP2X1, with inhibition constants in the range of 3.1-20.7 mM (Table 3). Interesting to
note is that most of these inhibitors were micro and/or submicromolar inhibitors for the human
enzymes. It should be noted that the weak affinity of CgiNAP2X1 for bicarbonate and carbonate
might be a positive feature for the physiological role of this enzyme in the deposition of the
molluskan shell, since the enzyme is not appreciably inhibited in the presence of rather high
concentrations of these two anions. Moreover, for the same reason, the enzyme could have also a
potential biotechnological application in the CO, capture processes.

3.  The best anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide, sulfamate,
phenylboronic acid, and phenylarsonic acid, which showed a micromolar affinity for this enzyme,
with Kis in the range of 76-87 uM (Table 3). Diethyldithiocarbamate was recently shown to
lead to highly potent inhibitors directed against many «- or 3-CAs, and some X-ray crystal
structures also revealed their binding mode, which is achieved by coordination to the metal ion



Mar. Drugs 2017, 15, 270

9of 15

via a negatively charged sulfur atom [47-51]. It is conceivable that a similar binding mode is
achieved also within the CgiNAP2X1 active site. Sulfamide and sulfamate also coordinate (via an
ionized nitrogen atom) to the Zn(Il) ion within the hCA II active site, and probably the same

inhibition mechanism is valid against the oyster enzyme [47-51].

4. Most of these anions are weak, millimolar CgiNAP2X1 inhibitors probably because the enzyme
is in contact with sea water, rich in many inorganic anions (chloride, sulfate, etc.) which may
interfere with the enzyme’s activity. Similar behavior was observed earlier for other marine

organism CAs [37].

Table 3. Inhibition constants of anion inhibitors against x-CAs from mammals (hCA I, and II,

human isoforms), and the nacrein-like enzyme CgiNAP2X1 for the CO, hydration reaction, at 20 °C

and pH 7.5 [52].

s Kis [mM] 2
Inhibitor 1
hCA I hCA II CgiNAP2X1

F- >100 >100 12.1
Cl- 6 >100 10.8
Br- 4 63 16.6
I~ 0.3 26 8.86
CNO~ 0.0007 0.03 3.11
SCN~ 0.2 1.60 5.88
CN- 0.0005 0.02 >100
N3~ 0.0012 1.51 >100
HCO;5;~ 12 85 1.98
CO52- 15 73 6.62
NO;~ 7 35 10.3
NO,~ 8.4 63 7.14
HS~ 0.0006 0.04 8.19
HSO;~ 18 89 >100
SnO3%~ 0.57 0.83 3.47
Se0,2~ >100 >100 8.74
TeOy%2~ 0.66 0.92 >100
0s052~ 0.92 0.95 >100
P,O,4 25.8 48.5 9.47
Vo074~ 0.54 0.57 >100
B4O,%~ 0.64 0.95 8.85
ReO,~ 0.11 0.75 >100
RuOy4~ 0.101 0.69 >100
S,0g%~ 0.107 0.084 20.7
SeCN~ 0.085 0.086 8.21
CS32— 0.0087 0.0088 31.7
Et,NCS,~ 0.00079 0.0031 0.76
CF3S0;~ >100 >100 8.68
PFg~ >100 >100 >100
SO,2~ 63 >100 14.5
ClO4~ >100 >100 >100
BF,~ >100 >100 >100
FSO;~ 0.79 0.46 >100
NH(S03),2~ 0.31 0.76 >100
H,NSO,NH, 0.31 1.13 0.076
H,NSO;H 0.021 0.39 0.073
Ph-B(OH), 58.6 23.1 0.072
Ph-AsO3zH, 31.7 49.2 0.087

1 As sodium salt, except sulfamide, phenylboronic acid, and phenylarsonic acid; > Errors were in the range of 3-5%

of the reported values, from three different assays, by a CO, hydratase assay method [52].
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3. Materials and Methods

3.1. Gene Identification, Synthesis, and Cloning

The identification of the gene encoding for the Crassostrea gigas nacrein-like protein (CgiNAP2X1)
was performed following the strategy reported below. Briefly, the CgiNAP2X1 gene of C. gigas with
the accession number XP_011428406.1 was identified running the “Protein BLAST” program and
using as query sequence the amino acid sequence of the x-CA purified previously from the mantle
of the Mediterranean mussel, Mytilus galloprovincialis [37]. The GeneArt Company (Thermo Fisher
Scientific, Milan, Italy), specialized in gene synthesis, designed the synthetic CgiNAP2X1 gene without
the peptide signal and having at the 5 end four base-pair sequences (CACC) necessary for the
directional cloning in the pMK-T vector (subcloning vector, Thermo Fisher Scientific, Milan, Italy).
The CgiNAP2X1 was subsequently cloned into the expression vector pET100/D-TOPO (Invitrogen,
Palo Alto, CA, USA), creating the plasmid pET100D-Topo/CgiNAP2X1. In order to confirm the gene
integrity and that no errors occurred at the ligation sites, the vector containing the fragment was
subjected to bidirectional automated sequencing.

3.2. Protein Expression and Purification

Escherichia coli ArcticExpress (DE3)RIL competent cells were transformed with pET100D-
Topo/CgiNAP2X1, grown at 20 °C, and induced with 1 mM IPTG. ZnSO4 was added after 30 min and
after additional growth for 10 h, cells were harvested and disrupted by sonication at 4 °C in 20 mM
buffer phosphate, pH 8.0. Following sonication, the sample was centrifuged at 1200 g at 4 °C for
30 min. The supernatant was dialyzed at 4 °C against 0.02 M phosphate buffer (pH 8.0) containing
0.01 M imidazole and loaded onto a His-select HF Nickel affinity column (GE Healthcare, dimension:
1.0 x 10 cm). The column was equilibrated with 0.02 M phosphate buffer (pH 8.0) containing 0.01 M
imidazole and 0.5 M KCl at a flow rate of 1.0 mL/min. The recombinant CgiNAP2X1 was eluted from
the column with 0.02 M phosphate buffer (pH 8.0) containing 0.5 M KCl and 0.3 M imidazole at a
flow rate of 1.0 mL/min. Active fractions (0.5 mL) were collected and combined for a total volume of
2.5 mL. Subsequently, they were dialyzed, concentrated, and analyzed by SDS-PAGE. At this stage of
purification the enzyme was at least 95% pure and the obtained recovery was of 2.0 mg.

3.3. SDS-PAGE and Protonography

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (SDS-PAGE) was performed as
described by Laemmli using 12% gels [53]. For the protonography, the samples were mixed in a loading
buffer without 2-mercaptoethanol and they were not boiled, in order to avoid protein denaturation.
The gel was run at 150 V until the dye front ran off the gel. Following the electrophoresis, the gel was
subject to protonography to detect the hydratase activity of the samples as described by Clemente
Capasso and coworkers [45,54,55].

3.4. Amino Acid Sequence and Phylogenetic Analysis

Multialignment of amino acid sequences was performed using the program MUSCLE 3.1
(MUltiple Sequence Comparison by Log-Expectation), a new computer program for creating multiple
alignments of protein sequence [56]. The dendrogram was constructed using the program PhyML 3.0
searching for the tree with the highest probability [57].

3.5. Enzyme Kinetics

An Applied Photophysics stopped-flow instrument has been used for assaying the CA catalyzed
CO; hydration activity [52]. Phenol red (at a concentration of 0.2 mM) has been used as indicator,
working at the absorbance maximum of 557 nm, with 20 mM TRIS (pH 8.3) as buffer, and 20 mM
NaClOy (for maintaining constant the ionic strength), following the initial rates of the CA-catalyzed
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CO; hydration reaction for a period of 10-100 s. The CO, concentrations ranged from 1.7 mM to
17 mM for the determination of the kinetic parameters (by Lineweaver—Burk plots) and inhibition
constants. For each inhibitor at least six traces of the initial 5-10% of the reaction have been used
for determining the initial velocity. The uncatalyzed rates were determined in the same manner and
subtracted from the total observed rates. Stock solutions of inhibitor (10-100 mM) were prepared in
distilled-deionized water and dilutions up to 0.01 mM were done thereafter with the assay buffer.
Inhibitor and enzyme solutions were preincubated together for 15 min at room temperature prior to
assay, in order to allow for the formation of the E-I complex or for the eventual active site mediated
hydrolysis of the inhibitor. The inhibition constants were obtained by non-linear least-squares methods
using PRISM 3 and the Cheng-Prusoff equation, as reported earlier [58—-60], and represent the mean
from at least three different determinations. All CA isoforms were recombinant ones obtained in-house.
All salts/small molecules were of the highest purity available, from Sigma-Aldrich (Milan, Italy).

4. Conclusions

In mollusks, CA activity has been detected in mantle, gill, muscle, and blood, and participates in
the process of acid-base regulation, calcification, and mineralization, providing inorganic carbon at
the site of calcification and/or determining the precipitation of calcium carbonate [61-72]. Recently,
we characterized and determined the kinetic constants of the CA purified from the mantle tissue of the
bivalve Mediterranean mussel, Mytilus galloprovincialis. The SDS-PAGE, protonography, and kinetic
analyses give strength to our hypothesis that the native MgCA is probably a multidomain protein with
a single CA domain at the N-terminus. The present work is the first study on the kinetic constants
and the anion inhibition profile of the recombinant nacrein-like protein from M. gigas. The enzyme is
highly effective at catalysis based on the measured kinetic parameters for the CO, hydration reaction
(keat of 1.0 x 10° s71 and a keat/Ky of 1.2 x 108 M~1 s71). The CgiNAP2X1 amino acid sequence
is characterized by a putative signal peptide at the N-terminus part of the protein, which probably
allows an extracellular localization of the protein. The inhibition data demonstrated that the best
anion inhibitors of CgiNAP2X1 were diethyldithiocarbamate, sulfamide, sulfamate, phenylboronic
acid, and phenylarsonic acid, which showed a micromolar affinity for this enzyme, with Kjs in the
range of 76-87 uM. This study may add new information on metabolic pathways of the biocalcification
processes, which involves CAs, nacreins, and nacrein-like proteins. Moreover, this enzyme could also
be potentially used in the biomimetic capture of the CO, due to its high ke and the low inhibition
towards bicarbonate and carbonate. It is important to note that in many other marine organisms,
such as corals [69-72] and sponges [73,74], CAs are crucial in biomineralization processes [69-74],
and understanding the biochemical mechanisms by which these organisms build their skeletons may
have important environmental and even biotechnological applications. As the mollusk CAs are less
investigated, we consider this article an interesting opportunity for a deeper understanding of these
proteins in this type of marine organism.
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