#### Supplementary data

## Neuroprotective activity of some marine fungal metabolites in the 6-hydroxydopamin- and paraquatinduced Parkinson's disease models

# Ekaterina A. Yurchenko <sup>1,\*</sup>, Ekaterina S. Menchinskaya <sup>1</sup>, Evgeny A. Pislyagin <sup>1</sup>, Phan Thi Hoai Trinh <sup>2,3</sup>, Elena V. Ivanets <sup>4</sup>, Olga F. Smetanina <sup>4</sup> and Anton N. Yurchenko <sup>4</sup>

- <sup>1</sup> Laboratory of bioassays and mechanism of action of biologically active substances, G.B.Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russian Federation; <u>dminae@mail.ru</u> (E.A.Yu.); <u>ekaterinamenchinskaya@gmail.com</u> (E.S.M.); <u>pislyagin@hotmail.com</u> (E.A.P.)
- <sup>2</sup> Department of Marine Biotechnology, Nhatrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong, Nha Trang, Vietnam; <u>phanhoaitrinh@nitra.vast.vn</u> (P.T.H.T.)
- <sup>3</sup> Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Vietnam;
- <sup>4</sup> Laboratory of chemistry of microbial metabolites, G.B. Elyakov Pacific Institute of Bioorganic Chemistry Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690022, Russian Federation; <u>yurchant@ya.ru</u> (A.N.Yu.); <u>ev.ivanets@yandex.ru</u> (E.V.I.); <u>smetof@rambler.ru</u> (O.F.S.);
- \* Correspondence: dminae@mail.ru; Tel.: +7-4232-318832

## Content

| Figure S1. <sup>1</sup> H NMR (700 MHz, DMSO-d <sub>6</sub> ) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)3          |
|----------------------------------------------------------------------------------------------------------------------------|
| Figure S2. <sup>13</sup> C NMR (125 MHz, DMSO-d <sub>6</sub> ) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)4         |
| Figure S3. DEPT-135 (125 MHz, DMSO-d <sub>6</sub> ) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)5                    |
| <b>Figure S4.</b> HSQC (700 MHz, DMSO-d <sub>6</sub> ) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)6                 |
| Figure S5. HMBC (700 MHz, DMSO-d <sub>6</sub> ) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)7                        |
| Figure S6. COSY (700 MHz, DMSO-d <sub>6</sub> ) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)8                        |
| Figure S7. ROESY (700 MHz, DMSO-d6) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)9                                    |
| Figure S8. ESI mass spectra of 6-hydroxy-N-acetyl-β-oxotryptamine (1)10                                                    |
| Figure S9. <sup>1</sup> H NMR (700 MHz, acetone-d <sub>6</sub> ) spectrum of 3-methylorsellinic acid (2)11                 |
| Figure S10. <sup>13</sup> C NMR (125 MHz, acetone-d <sub>6</sub> ) spectrum of 3-methylorsellinic acid (2)12               |
| Figure S11. ESI mass spectra of 3-methylorsellinic acid (2)13                                                              |
| Figure S12. <sup>1</sup> H NMR (700 MHz, DMSO-d <sub>6</sub> ) spectrum of     8-methoxy-3,5-dimethylisochroman-6-ol (3)14 |
| Figure S13. <sup>13</sup> C NMR (176 MHz, DMSO-d <sub>6</sub> ) spectrum of 8-methoxy-3,5-dimethylisochroman-6-ol (3)15    |
| Figure S14. <sup>1</sup> H NMR (500 MHz, acetone-d <sub>6</sub> ) spectrum of mactanamide (6)16                            |
| Figure S15. <sup>13</sup> C NMR (125 MHz, acetone-d <sub>6</sub> ) spectrum of mactanamide (6)17                           |
| Figure S16. ROS formation in 6-OHDA- and PQ-treated Neuro2a cell18                                                         |
|                                                                                                                            |



#### **Figure S1.** <sup>1</sup>H NMR (700 MHz, DMSO-d<sub>6</sub>) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)

| Figure S2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>13</sup> C NMR (                                                                                                                                       | (176 MHz, | DMSO-d <sub>6</sub> ) s                                                                                                                                                                                                                                                           | pectrum of 6-                                                                             | hydroxy-N-acetyl-                                      | $\beta$ -oxotryptamine (1)                                                                                              |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             | 169.26    | 154.01                                                                                                                                                                                                                                                                            |                                                                                           | 121.51<br>— 121.51<br>— 118.32<br>— 114.12<br>— 111.92 | 80.70                                                                                                                   | 45,41<br>39,99<br>39,62<br>39,62<br>39,62<br>39,62<br>39,23<br>39,14 | 22.38                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |           |                                                                                                                                                                                                                                                                                   |                                                                                           |                                                        |                                                                                                                         |                                                                      | Current Data Parameters<br>NAME PS-117h-8<br>EXPNO 11<br>PROCNO 1<br>F2 - Acquisition Parameters<br>Date 20151224<br>Time 11.20<br>INSTRUM spect<br>PROBHD 5 mm PATXO 31P<br>PULPROG zgpg<br>TD 32768<br>SOLVENT DMSO<br>NS 642<br>DS 0<br>SWH 42613.637 Hz<br>FIDRES 1.300465 Hz<br>AQ 0.3845279 sec<br>RG 203<br>DW 11.733 usec<br>DE 6.50 usec<br>TE 308.1 K<br>D1 15.00000000 sec<br>D1 0.03000000 sec<br>D1 0.03000000 sec<br>TD 4996<br> |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |           |                                                                                                                                                                                                                                                                                   |                                                                                           |                                                        |                                                                                                                         |                                                                      | PL12W     1.15988755 W       PL13W     0.46710649 W       SF02     700.0021000 MHz       F2 - Processing parameters     SI       65536     SF       SF 0     EM       SSB     0       LB     1.00 Hz       GB     0       PC     1.20                                                                                                                                                                                                          |
| and a factor of the state of th | Damodikaları balan b<br>Ar yer yer yer yer yer yer yer yer yer ye |           | an alle alle de satilitée de state de s<br>an alle alle de satilitée de state de s<br>an anne alle state de state de state de state de state de state de state<br>an alle alle de state | 4.04.1410.4116.4.(0.1016.0.4.1016.4.4.1016.<br>147.40.0417.147.147.1419.1419.1419.147.4.4 | ייייין איז         | ใกล้ไก่ไร่ เมื่อแม่ได้เป็นการให้ กร้อง กระไม่ ประสาทราช (กระไม่ไป เส<br>พระกำระการการการการการการการการการการการการการก | נג אלא האנייני האנייני איז איז איז איז איז איז איז איז איז אי        | וליה לאלי אין אין אין אין אין אין אין אין אין אי                                                                                                                                                                                                                                                                                                                                                                                               |







#### **Figure S5.** HMBC (700 MHz, DMSO-d<sub>6</sub>) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)



**Current Data Parameters** NAME PS-117h-8 EXPNO PROCNO 23 1 F2 - Acquisition Parameters Date\_ 20151226 Time 21.37 INSTRUM spect PROBHD 5 mm PATXO 31P PULPROG roesyph.2 ppm 1.5 TD 2048 2.0 SOLVENT DMSO NS DS SWH 32 16 2.5 7653.061 Hz 3.736846 Hz 0.1338527 sec FIDRES 3.0 AQ RG DW DE TE D0 D1 8 65.333 usec 6.50 usec . 3.5 ... 308.0 K  $\mathcal{O}^{(1)}$ 0.00005217 sec 4.0 2.00000000 sec D12 0.00002000 sec ..... IN0 L4 0.00013065 sec 4.5 1 659 290000.00 usec 11 P15 5.0 ====== CHANNEL f1 ====== NUC1 1H 
 ===== Cr

 NUC1

 P1
 1

 P25
 2

 PL1
 0 dB
 5.5 14.40 usec 220.00 usec 6.0 17.66 dB 23.41078186 W 0.40125081 W 700.0047610 MHz PL27 . . PL1W PL27W SFO1 6.5 . • 
 F1 - Acquisition parameters

 TD
 256

 SFO1
 700.0048 MHz

 FIDRES
 29.894770 Hz
 7.0 7.5 10.933 ppm TPPI 1 SW FnMODE 8.0 F2 - Processing parameters SI 2048 SF 700.0000079 MHz . 8.5 • ' WDW SINE SSB LB 0 Hz GB 0 PC 2 9.0 1.1 - A - 1 9.5 1.80 
 F1 - Processing parameters
 S1
 512

 MC2
 TPPI
 SF
 700.0000079 MHz

 WDW
 SB
 2
 LB
 0 Hz

 GB
 0
 0
 0
 0
 10.0 . . 10.5 11.0 - 11.5 - 12.0 12.0 11.5 11.0 10.5 10.0 9.5 8.0 7.5 7.0 6.5 5.5 5.0 4.5 4.0 3.5 2.5 2.0 1.5 ppm 9.0 8.5 6.0 3.0

#### **Figure S7**. ROESY (700 MHz, DMSO-d<sub>6</sub>) spectrum of 6-hydroxy-N-acetyl-β-oxotryptamine (1)



### **Figure S8.** ESI mass spectra of 6-hydroxy-N-acetyl-β-oxotryptamine (1)



| Figure S10. | <sup>13</sup> C NMR (125 MHz | z, acetone-d <sub>6</sub> ) spectrur | n of 3-methylorse | llinic acid (2) |                                  |      |
|-------------|------------------------------|--------------------------------------|-------------------|-----------------|----------------------------------|------|
|             |                              | 175.53<br>165.75<br>161.76           | 141.94            |                 | 30.76<br>30.61<br>30.61<br>24.98 | 8.80 |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
|             |                              |                                      |                   |                 |                                  |      |
| <b></b>     |                              |                                      |                   |                 |                                  |      |

230 225 220 215 210 205 200 195 190 185 180 175 170 165 160 155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 ppm







| Figure S13. | <sup>13</sup> C NMR (176 M | Hz, DMSO-d <sub>6</sub> ) s <sub>1</sub> | pectra of 8-meth | noxy-3,5-dimethy | lisochroman-6-ol (3) |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------|----------------------------|------------------------------------------|------------------|------------------|----------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 153.7(                     |                                          | 113.10           | 96.02            |                      | 54.75 | 48.49<br>39.59<br>39.50<br>39.50<br>39.50<br>39.50<br>39.50<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>39.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74<br>30.74 | Image: Second system Second system   K Second system   Current Data Parameters   NAME   PS-109h-10   EXPNO   PROCNO   1                                                                                                                                                                                                                                                                          |
|             |                            |                                          |                  |                  |                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F2 - Acquisition Parameters     Date20151120     Time   12.26     INSTRUM   spect     PROBHD_5_mmPATXO_31P     PULPROG2gpg     TD   65536     SOLVENT   DMSO     NS   242     DS   0     SWH   42613.637 Hz     FIDRES   0.650232 Hz     AQ   0.7690057 sec     RG   203     DW   11.733 usec     DE   6.50 usec     TE   308.5 K     D1   6.00000000 sec     D11   0.0300000 sec     TD0   4096 |
|             |                            |                                          |                  |                  |                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHANNEL f1<br>NUC1 13C<br>P1 9.10 usec<br>PL1 0 dB<br>PL1W 106.75517273 W<br>SFO1 176.0353807 MHz                                                                                                                                                                                                                                                                                                |
|             |                            |                                          |                  |                  |                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CHANNEL 12       CPDPRG2     waltz16       NUC2     1H       PCPD2     71.90 usec       PL2     0 dB       PL13     13.05 dB       PL14     13.05 dB       PL12     23.41078186 W       PL12W     23.41078186 W       PL12W     1.15988755 W       PL13W     0.46710649 W       SFO2     700.0028000 MHz                                                                                         |
|             |                            |                                          |                  |                  | 1 1                  | I     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F2 - Processing parameters<br>SI 65536<br>SF 176.0152396 MHz<br>WDW EM<br>SSB 0<br>LB 1.00 Hz<br>GB 0<br>PC 2.00                                                                                                                                                                                                                                                                                 |
|             |                            |                                          |                  | 1                |                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                            |                                          |                  |                  |                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  |
|             |                            |                                          |                  |                  |                      |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                  |

|     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |     |    |    |    |    |    |    |    |    |    |    |    |    |    |    |    | •  |    |    |   |   |     |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|---|---|-----|
| 175 | 170 | 165 | 160 | 155 | 150 | 145 | 140 | 135 | 130 | 125 | 120 | 115 | 110 | 105 | 100 | 95 | 90 | 85 | 80 | 75 | 70 | 65 | 60 | 55 | 50 | 45 | 40 | 35 | 30 | 25 | 20 | 15 | 10 | 5 | 0 | ppm |





| Figure S15. | $^{13}$ C NMR ( | (125 MHz, | acetone-d <sub>6</sub> ) s | spectrum of | mactanamide ( | ( <b>6</b> ) | ) |
|-------------|-----------------|-----------|----------------------------|-------------|---------------|--------------|---|
|-------------|-----------------|-----------|----------------------------|-------------|---------------|--------------|---|



Figure S16. ROS formation in 6-OHDA- and PQ-treated Neuro2a cells