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Abstract: Carotenoids are natural pigments found in plants and microorganisms. These important
nutrients play significant roles in animal health. In contrast to plant production, the advantages of
microbial fermentation of carotenoids are the lower media costs, fast growth rate of microorganisms,
and the ease of culture condition control. In this study, a colony of red pigment-producing yeast,
Rhodotorula sp. RY1801, was isolated from the sediment of marine environment with the potential
to produce carotenoids. Optimization of carotenoid production in Rhodotorula sp. RY1801 was also
discussed. The optimum conditions found for carotenoid production were as follows: temperature,
28 ◦C; pH 5.0; carbon source, 10 g/L glucose, nitrogen source, 10 g/L yeast extract, maximum
concentration of 987 µg/L of total carotenoids was obtained. The results of this study show that
the isolated yeast strain Rhodotorula sp. RY1801 can potentially be used in future as a promising
microorganism for the commercial production of carotenoids.
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1. Introduction

Carotenoids are pigments that exist in a wide variety of plants and microorganisms. They are
characterized by yellow, orange, red or purple coloration [1]. Carotenoids have been proven to play
important roles in animal health as precursors of vitamin A, scavengers of active oxygen, and enhancers
of in vitro antibody production. Therefore, they are widely applied in animal feed additives as
nutrient supplements, food, pharmaceutical, and cosmetic industries as dyes/colorants and functional
ingredients [2]. Carotenoids are in high demand throughout the world, so a suitable method for
an industrial production of carotenoids producing is needed. Most of the carotenoids are extracted
from plants like annatto, tomato, grapes, carrot, paprika, etc. Carotenoids can also be produced from
microorganisms [3].

Carotenoids can be produced by numerous microorganisms. Filamentous fungi, yeasts,
bacteria and algae, such as Streptomyces chrestomyceticus, Blakeslea trispora, Phycomyces blakesleeanus,
Flavobacterium sp., Phaffia sp., and Rhodotorula sp., Actinomycetes have been described as
carotenoid-producing microorganisms [4,5]. The production of carotenoids from microorganisms
have advantages over plants, such as higher yields, less batch-to-batch variations, easily manipulated,
and no seasonal or geographic variations [6,7]. Carotenoid producing microorganisms, such as
bacteria and archaea, algae and fungi; are abundant in the natural environment. Microalgae are
currently the main sources of industrial carotenoid production [8], but other microorganisms could
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be valid alternatives [9]. With the rising demand of carotenoids, there has been renewed interest
in identifying novel carotenoid-producing microorganisms. Yeast is the most suitable candidate
for carotenoid production because of its fast growth rate, and the ease of cultivation. Yeast has the
potential to produce large amounts of carotenoids such as lycopene, β-carotene, astaxanthin, torulene
and torularhodin, etc. Carotenoid-producing yeasts are mainly represented by the genera Rhodotorula
sp., Rhodosporidium sp., Sporobolomyces sp., Xanthophylomyces sp. [10,11]. Microorganisms that inhabit
marine environments have been considered useful natural sources for new biomolecules production.
Marine microorganisms possess unique metabolic and physiological features. They have evolved
protective mechanisms compared to terrestrial microorganisms, which include the accumulation of
bioactive compounds. It is also considered that the production of these bioactive compounds may
be relatively easy by marine microorganisms [12,13]. The aim of the current study was carried out
to isolate, identify carotenoid-producing strains from the marine environment, and optimize the
nutritional and environmental parameters for their carotenoid production.

2. Results and Discussion

2.1. The Isolation and Identification of Carotenoids Producing Yeasts

A total of six morphologically distinct yeasts with red pigment were isolated from marine sediment
samples as pure cultures (designated as RY1801–RY1806). Among the isolates, only the strain RY1801
had rapid growth and high pigment producing abilities, which was subsequently used for further
study. The isolate RY1801 developed mucous, smooth surface and red-colored colonies on YPD agar
plate (Figure 1A), and the growth was frequently observed in the microscopic examination (Figure 1B).
Cells of the isolated strain RY1801 had an oval shape, the RY1801 cells size was 4–6.5 µm × 2–3.5 µm
and had a colony diameter of 1.5 mm after 24 h cultivation (Figure 1B). The liquid medium changed
to red after 24 h cultivation (Figure 1C). It has assimilated sugars such as glucose, galactose, sucrose,
maltose, melezitose, and raffinose. The nitrate assimilation was positive. Further biochemical tests
were carried out and are listed in Table 1. These biochemical results were not sufficient for classification
to the genus, so the Internal Transcribed Spacers (ITS) of the ribosomal DNA sequence was amplified.

Mar. Drugs 2019, 17 FOR PEER REVIEW  2 

 

could be valid alternatives [9]. With the rising demand of carotenoids, there has been renewed 
interest in identifying novel carotenoid-producing microorganisms. Yeast is the most suitable 
candidate for carotenoid production because of its fast growth rate, and the ease of cultivation. Yeast 
has the potential to produce large amounts of carotenoids such as lycopene, β-carotene, astaxanthin, 
torulene and torularhodin, etc. Carotenoid-producing yeasts are mainly represented by the genera 
Rhodotorula sp., Rhodosporidium sp., Sporobolomyces sp., Xanthophylomyces sp. [10,11]. Microorganisms 
that inhabit marine environments have been considered useful natural sources for new biomolecules 
production. Marine microorganisms possess unique metabolic and physiological features. They 
have evolved protective mechanisms compared to terrestrial microorganisms, which include the 
accumulation of bioactive compounds. It is also considered that the production of these bioactive 
compounds may be relatively easy by marine microorganisms [12,13]. The aim of the current study 
was carried out to isolate, identify carotenoid-producing strains from the marine environment, and 
optimize the nutritional and environmental parameters for their carotenoid production. 

2. Results and Discussion 

2.1. The Isolation and Identification of Carotenoids Producing Yeasts 

A total of six morphologically distinct yeasts with red pigment were isolated from marine 
sediment samples as pure cultures (designated as RY1801–RY1806). Among the isolates, only the 
strain RY1801 had rapid growth and high pigment producing abilities, which was subsequently 
used for further study. The isolate RY1801 developed mucous, smooth surface and red-colored 
colonies on YPD agar plate (Figure 1A), and the growth was frequently observed in the microscopic 
examination (Figure 1B). Cells of the isolated strain RY1801 had an oval shape, the RY1801 cells size 
was 4–6.5 µm × 2–3.5 µm and had a colony diameter of 1.5 mm after 24 h cultivation (Figure 1B). The 
liquid medium changed to red after 24 h cultivation (Figure 1C). It has assimilated sugars such as 
glucose, galactose, sucrose, maltose, melezitose, and raffinose. The nitrate assimilation was positive. 
Further biochemical tests were carried out and are listed in Table 1. These biochemical results were 
not sufficient for classification to the genus, so the Internal Transcribed Spacers (ITS) of the 
ribosomal DNA sequence was amplified. 

 

Figure 1. (A), Pure culture of the potential marine yeast strain Rhodotorula sp. RY1801 on YPD agar. 
(B), Micro-morphology of RY1801 observed under 40× with methylene blue staining. (C), Liquid 
culture of RY1801. 

Table 1. Morphological, physiological and biochemical characteristics of isolated yeast strain 
RY1801. 

Assimilation reactions 
Rhodotorula 
sp. RY1801 

Assimilation 
reactions 

Rhodotorula 
sp. RY1801 

Assimilation 
reactions 

Rhodotorula 
sp. RY1801 

Glucose + Ethanol - 2-keto-D-gluconate - 

Figure 1. (A), Pure culture of the potential marine yeast strain Rhodotorula sp. RY1801 on YPD agar. (B),
Micro-morphology of RY1801 observed under 40× with methylene blue staining. (C), Liquid culture
of RY1801.

The ITS sequence obtained from strain Rhodotorula sp. RY1801 (GeneBank MH760806) was
compared with the sequences in the GeneBank database and revealed that the strain RY1801 had 99%
homology to Rhodotorula babjevae. The nucleotide sequence of the ITS region from RY1801 strain was
identical to two other R. babjevae sequences included in the phylogenetic tree (Figure 2). Based on
morphological, physiological characteristics, and ITS sequence, the isolated red yeast RY1801was
tentatively named R. babjevae RY1801 and deposited at the China General Microbiological Culture
Collection Center (CGMCC, Beijing) as CGMCC No. 15980.
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Table 1. Morphological, physiological and biochemical characteristics of isolated yeast strain RY1801.

Assimilation Reactions Rhodotorula
sp. RY1801

Assimilation
Reactions

Rhodotorula
sp. RY1801 Assimilation Reactions Rhodotorula

sp. RY1801

Glucose + Ethanol - 2-keto-D-gluconate -
Galactose + Glycerol + Xylitol -
Sucrose + Erythritol - 50% glucose -
Maltose + Ribitol + 10% NaCl/5% Glucose -
Cellobiose - Galactitol + Starch formation -
Trehalose + D-Mannitol + Urease +
Lactose - D-Glucitol - Gelatin liquefaction -

Melibiose - α-Methyl
D-glucose + Growth at 19 ◦C +

Raffinose + Salicin - Growth at 25 ◦C +
Melezitose + D-Gluconate + Growth at 37 ◦C +
Inulin - DL-Lactate + Growth at 40 ◦C -
Soluble starch + Succinate + Pellicle -
D-Xylose + Citrate + Sedimentation +
L-Arabinose + Inositol - True hyphae -
D–Glucosamine - Hexadecane + Acid production -
N-acetyl-D-glucosamine - Nitrate +
Methanol Vitamin-free
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Figure 2. Phylogenetic tree of RY1801 obtained by neighbor-joining analysis of ITS region of rDNA.

Several yeast species can synthesize carotenoids, in particular, the genera Xanthophyllomyces,
Rhodotorula, Sporobolomyces, and Phaffia have been used to produce carotenoids [14,15]. The production
of carotenoid pigments in numerous natural isolates of the genera Rhodotorula has been studied by
others, such as Rhodotorula glutinis, Rhodotorula minuta, Rhodotorula mucilaginosa, Rhodotorula acheniorum
and Rhodotorula graminis [16]. El-Banna et al. isolated 46 yeast isolates from natural environments,
all the strains belonged to Rhodotorula glutinis [17]. Muthezhilan et al. isolated a marine yeast
Rhodotorula Sp. (Amby109) which can produce carotenoid pigments [18]. In this study, we isolated and
identified the marine yeast which can produce red pigment, based on morphological, physiological
characteristics and ITS sequence, and our results showed that the isolated red yeast RY1801 belonged
to Rhodotorula sp.

The carotenoid pigments extracted from Rhodotorula sp. RY1801 have shown no inhibitory activity
against all the detected strains. Muthezhilan et al. results showed that the pigment derived from
marine yeast Rhodotorula Sp. (Amby109) have strong antimicrobial activity [18].

2.2. Effects of Various Parameters on Biomass Growth and Carotenoids Production

2.2.1. The Incubation Temperature

Incubation temperature ranging from 20 to 37 ◦C were checked for the biomass and carotenoids
production in Rhodotorula sp. RY1801. As shown in Figure 3, the optimal temperature for biomass
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and carotenoids production was 28 ◦C, although reduced biomass and carotenoid production was
seen and tested at other temperatures. Our results were similar to the results provided by others.
Other studies revealed the optimal temperature for maximum Rhodotorula glutinis growth and
carotenoids production was 29 and 30 ◦C, respectively [19] in monoculture and 30 ◦C in co-culture
with lactic acid bacteria [20]. The temperature also has an effect on the regulation of enzymes involved
in carotenoids production [21].
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Figure 3. Effect of temperature on biomass and carotenoids production by Rhodotorula sp. RY1801.

2.2.2. Culture Medium pH

The influence of culture medium pH on biomass growth and carotenoids production in Rhodotorula
sp. RY1801 was evaluated in YPD medium at 28 ◦C. As seen in Figure 4, the optimal initial pH under
our culture conditions was pH 5 and similar biomass and carotenoids concentrations were seen at pH
6.0 and 7.0. Our results were similar to those by other workers. A study by Latha et al. indicated that
the R. glutinis biomass increased as the initial culture pH increased from 5.5 to 7.5, although optimal
carotenoids production was pH 5.5 [22]. A similar optimal pH 5.5 was observed for β-Carotene
production in a related species, Rhodotorula acheniorum [23].
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Figure 4. Effect of initial pHs on production of biomass and carotenoids by Rhodotorula sp. RY1801.

2.2.3. Carbon Sources

Carbon has been considered an important source for the energy supply and growth of
microorganisms and is widely studied in the context of microbial fermentations. We investigated the
influence of several carbon sources on biomass, and carotenoid production under culture conditions
with initial pH 5.0 at 28 ◦C. Among the several carbon sources tested, glucose proved to be the most
suitable carbon source for carotenoid production, with 962 µg/L of carotenoid (Figure 5). This may
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be due to the fact that glucose can easily be assimilated in the metabolic pathway for biosynthesis of
carotenoids. The type of carbon source has a significant influence on carotenoids production, and their
effects may differ depending on the yeast strains [24].
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Figure 5. Effect of different carbon sources on production of biomass and carotenoids by Rhodotorula
sp. RY1801.

2.2.4. Inorganic Nitrogen and Organic Nitrogen Sources

The influence of different nitrogen sources on biomass and carotenoids production was
investigated with culture media containing 2% (w/v) glucose, initial pH 5.0, at 28 ◦C. Among the tested
nitrogen sources, yeast extract was proved to be the most suitable nitrogen source for carotenoids
production, with 987 µg/L of carotenoid (Figure 6). The influence of nitrogen sources on carotenoids
production in Rhodotorula sp., also depend on the different strains.
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Figure 6. Effect of nitrogen sources on production of biomass and carotenoids by Rhodotorula
sp. RY1801.

Optimization of cultural conditions is necessary in microbial fermentations for carotenoids to
fully exploit the potential of selected microbial strain. The fermentation conditions for the production
of carotenoids by the new isolated Rhodotorula sp. strain was optimized in shake flasks. With different
culture conditions, the amount of biomass varied widely from 3.21 to 5.63 g/L and the total carotenoids
content varied from 589 to 987 µg/L. The biomass yield in our study is lower than others, which could
be attributed to the short time of culture (3 days). El-Banna et al. found that Rhodotorula glutinis strain
NO. 0 produced 7 g/L dry biomass and 266 µg/g cellular carotenoids, 1.6 µg/L volumetric carotenoids
after growing at 30 ◦C for 4 days [16]. Hamidid et al. have also reported that the production biomass
was ranged from 0.04 to 0.84 g/L and the total carotenoid from 0.15 to 10.78 mg/L when optimizing
culture conditions for Halorubrum sp. [25].
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3. Materials and Methods

3.1. Sample Collection and Yeast Isolation

Different sediment samples were collected from the exposed intertidal zone along the South
Yellow Sea in Dongtai City, Jiangsu Province, China. Each sediment sample (approximately 100 g) was
placed in a sterile plastic bag with an ice bag and transported to the laboratory within 10 h and then
processed immediately to isolate yeast. Ten grams of each sample (wet mass) were homogenized in
90 mL sterile 0.9% saline solution then individual yeast colonies were obtained by serial dilution and
plating on yeast extract–peptone–dextrose (YPD) agar plates. All the plates were incubated at 28 ◦C
for 24–48 h to determine the morphology of the colony.

3.2. Identification of the Red Yeast RY1801 Strain

The pure culture of strain RY1801 was used to investigate its physiological and morphological
characteristics according to the methods described by Kurtzman et al. [26]. Genomic DNA of RY1801
was extracted using QIAamp DNA Mini Kit (QIAGEN) following the manufacturer’s instructions.
DNA amounts and purity contained in each extract were evaluated by measuring the absorbances at
230, 260 and 280 nm (Nanodrop 2000, Thermo Scientific, Waltham, MA, USA) and calculating the ratio
A260/A280 and A260/A230. DNAs were stored at −20 ◦C prior to use for amplification studies [27].
The ITS region was sequenced using the forward primer ITS1 (5′-TCCGTAGGTGAACCTGCGG-3′)
and the reverse primer ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) [28]. The PCR conditions were as
follows: 94 ◦C for 10 min, followed by 30 cycles, 92 ◦C for 1 min, 52 ◦C for 1 min, 72 ◦C for 1 min, and
final synthesis at 72 ◦C for 5 min. The PCR products were separated by agarose gel electrophoresis
and purified for sequencing. The sequences obtained were compared to rDNA sequences from
the GeneBank (http://www.ncbi.nlm.nih.gov/BLAST/). ITS fragments obtained from GeneBank
database were aligned with ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html) and the
phylogenetic tree was computed with Jalview 2.4.0.b2 using the neighbor-joining method.

3.3. Determination of Biomass and Total Carotenoids

The cells were harvested by centrifugation 8000 rpm and 4 ◦C for 10 min, later washed with
distilled water and centrifuged. The biomass of RY1801 was quantified through drying at 60 ◦C until a
constant mass was obtained.

The carotenoids were extracted using techniques as described by Lopes et al. [29] with slight
modification. The 0.1 g dry weight biomass was mixed with 2 mL DMSO and 5 mL acetone in a 10 mL
tube. The mixture was subjected to 5 ultrasonic cycles at 40 kHz (Ningbo Scientz Biotechnology Co.,
Ltd., Ningbo, China) for 10 min, with 5 ml acetone added. The tube was vortexed vigorously and kept
standing for 10 min. Centrifugation was performed (5000 × g for 10 min) to remove the biomass from
the extracted carotenoids. The biomass was then resuspended in DMSO and acetone for additional
extractions. The carotenoids-containing supernatant was pooled and analyzed by spectrophotometry.
Initial spectrophotometry scan between 300 and 600 nm revealed the maximum absorption to occur at
490 nm. Carotenoids concentration was determined using the following equation [30–32].

Total carotenoids (µg/g of yeast) = Amax × D × V/(E ×W)

Amax: the absorbencies of total extract carotenoid at 490 nm
D: sample dilution ratio
V: volume of extraction solvent (mL)
E: extinction coefficient of total carotenoid (0.16)
W: dry weight of yeast (g)

http://www.ncbi.nlm.nih.gov/BLAST/
http://www.ebi.ac.uk/Tools/clustalw2/index.html
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3.4. Antimicrobial Activity of Carotenoid Pigments

The carotenoid pigments were extracted and dissolved in methanol. The antimicrobial activity was
obtained using an agar well diffusion method [33]. Escherichia coli ATCC 29522, Staphylococcus aureus
ATCC 25923 and Pseudomonas aeruginosa ATCC27853 were used as indicator strains. After incubation
at 37 ◦C for 24 h, the antimicrobial activity of carotenoid pigments was determined by measuring the
diameter of the zone of inhibition.

3.5. Optimization of Carotenoid Production in Shake-Flasks Experiments

In order to determine the initial pH values, incubation temperature, carbon source and nitrogen
sources on carotenoids production and biomass growth, the experiment was conducted using a series
of 250-mL flasks. Each flask contained 100 ml YPD media with 5% inoculum of Rhodotorula sp. RY1801.
The initial media pH values, incubated temperatures, different carbon sources, and nitrogen sources
were adjusted according to the experimental design. The flasks were shaken at 120 rpm for 72 h.
The yeast biomass was harvested using refrigerated centrifugation (8000 rpm, 10 min). After washing
the cellular pellet with distilled water twice, the biomass was used for further carotenoids extraction
and carotenoids production analysis.

4. Statistical Analysis

All data were analyzed using One-way Analysis of Variance (ANOVA), and multiple comparison
tests (Duncan’s and Tukey’s-tests) were performed using SPSS Statistic 2.0 software. Data were
presented as Mean ± Standard. p < 0.05 was considered statistically significant.

5. Conclusions

Red yeast strain Rhodotorula sp. RY1801 was isolated from the exposed intertidal zone along
the South Yellow Sea in Dongtai City, Jiangsu Province, China. The optimum conditions found for
carotenoids production for Rhodotorula sp. RY1801 were as follows: temperature, 28 ◦C; pH 5.0; carbon
source, 10 g/L glucose; and nitrogen source, 10 g/L yeast extract, maximum concentration of 987 µg/L
of total carotenoids was obtained. The results of this study showed that the isolated yeast strain
Rhodotorula sp. RY1801 potentially can be used in the future as promising microorganism for the
commercial production of carotenoids.
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