Discovery of Bioactive Indole-Diketopiperazines from the Marine-Derived Fungus *Penicillium brasilianum* Aided by Genomic Information

Ya-Hui Zhang^{1,2,†}, Ce Geng^{3,†}, Xing-Wang Zhang³, Hua-Jie Zhu², Chang-Lun Shao^{1,4}, Fei Cao^{2*} and Chang-Yun Wang^{1,4,5*}

- ¹Key Laboratory of Marine Drugs, the Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. China; 15689932652@163.com(Y.-H.Z.); shaochanglun@163.com(C.-L.S.); changyun@ouc.edu.cn(C.-Y.W.)
- ²College of Pharmaceutical Sciences, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, P. R. China ;hjzhu2017@163.com(H.-J.Z); caofei542927001@163.com(F.C.)
- ³Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China; gengce@qibebt.ac.cn(C.G.); 735888678@qq.com(X.-W.Z.)
- ⁴Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, People's Republic of China
- ⁵Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, People's Republic of China.

†These authors contributed equally to this work.

*Correspondence : caofei542927001@163.com (F.C.); changyun@ouc.edu.cn(C.-Y.W.)

Supplementary Information

Figure S1. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 1. Figure S2. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 1. Figure S3. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 1. Figure S4. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 1. Figure S5. HSQC (CDCl₃) spectrum of compound 1. Figure S6. ¹H–¹H COSY (CDCl₃) spectrum of compound 1. Figure S7. HMBC (CDCl₃) spectrum of compound 1. Figure S8. NOESY (CDCl₃) spectrum of compound 1. Figure S9. HRESIMS spectrum of compound 1. Figure S10. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 2. Figure S11. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2. Figure S12. Partial ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2. Figure S13. HSQC (CDCl₃) spectrum of compound 2. Figure S14. ¹H–¹H COSY (CDCl₃) spectrum of compound2. Figure S15. HMBC (CDCl₃) spectrum of compound 2. Figure S16. NOESY (CDCl₃) spectrum of compound 2. Figure S17. HRESIMS spectrum of compound 2. Figure S18. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3 Figure S19. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3. Figure S20. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3. Figure S21. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3 Figure S22. Partial ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3. Figure S23. HSQC (CDCl₃) spectrum of compound 3. Figure S24. ¹H–¹H COSY (CDCl₃) spectrum of compound 3. Figure S25. HMBC (CDCl₃) spectrum of compound 3. Figure S26. NOESY (CDCl₃) spectrum of compound 3. Figure S27. HRESIMS spectrum of compound 3. Figure S28. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 4. Figure S29. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 4. Figure S30. ESIMS spectrum of compound 4. Figure S31. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 5. Figure S32. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 5. Figure S33. ESIMS spectrum of compound 5. Figure S34. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 6. Figure S35. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 6. Figure S36. ESIMS spectrum of compound 6.

Figure S37. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 7.

Figure S38. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 7.

Figure S39. ESIMS spectrum of compound 7.

Figure S40. ¹H NMR (600 MHz, DMSO-*d*₆) spectrum of compound **8**.

Figure S41. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of compound 8.

Figure S42. ESIMS spectrum of compound 8.

Figure S43. UV spectra of compounds 1–3.

Figure S44. HPLC at 254 nm of the fermentation extracts from cultures in different media.

Figure S45. Comparison of our compounds BGC with fumitremorgin BGC

Table S1. Proposed NRPS biosynthetic gene clusters (NRPS-BGCs) predicted by fungiSMASH.

Table S2. Proposed functions of genes in *ctp* gene clusters.

Table S3. The coordinate for the lowest-energy conformer [(2S,8S,9R,12R,18S)-1] in ECD calculation.

Table S4. The coordinate for the lowest-energy conformer [(8S,9S,12R,18S)-2] in ECD calculation.

Table S5. Antibacterial activities data of compounds 1–8.

Table S6. Cytotoxic activity data of compounds 1–8.

Figure S1. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 1.

Figure S2. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 1.

Figure S3. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 1

Figure S4. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 1.

Figure S5. HSQC (CDCl₃) spectrum of compound 1.

Figure S6. COSY (CDCl₃) spectrum of compound 1.

Figure S7. HMBC (CDCl₃) spectrum of compound 1.

Figure S8. NOESY (CDCl₃) spectrum of compound 1.

Figure S9. HRESIMS spectrum of compound 1.

Figure S10. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 2.

Figure S12. Partial ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 2.

Figure S13. HSQC (CDCl₃) spectrum of compound 2.

Figure S14. COSY (CDCl₃) spectrum of compound 2.

Figure S15. HMBC (CDCl₃) spectrum of compound 2.

Figure S16. NOESY (CDCl₃) spectrum of compound 2.

Figure S18. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3

Figure S19. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3.

Figure S20. Partial ¹H NMR (500 MHz, CDCl₃) spectrum of compound 3.

Figure S22. Partial ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3.

Figure S23. HSQC (CDCl₃) spectrum of compound 3.

Figure S24. COSY (CDCl₃) spectrum of compound 3.

Figure S25. HMBC (CDCl₃) spectrum of compound 3.

Figure S26. NOESY (CDCl₃) spectrum of compound 3.

Figure S27. HRESIMS spectrum of compound 3.

Figure S28. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 4.

Figure S29. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 4.

Figure S31. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 5.

Figure S32. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 5

Figure S34. ¹H NMR (600 MHz, CDCl₃) spectrum of compound 6.

Figure S35. ¹³C NMR (150 MHz, CDCl₃) spectrum of compound 6.

Figure S37. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 7.

Figure S38. ¹³C NMR (125 MHz, CDCl₃) spectrum of compound 7.

Figure S39. ESIMS spectrum of compound 7.

Figure S40. ¹H NMR (600 MHz, DMSO- d_6) spectrum of compound 8.

Figure S41. ¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of compound 8.

Figure S43. UV spectra of compounds 1–3.

Figure S44. HPLC at 254 nm of the fermentation extracts from cultures in different media (C1-C8 $t_{\rm R}$ 0-5 min: 20% MeOH in H₂O, $t_{\rm R}$ 5-30 min: 20%-100% MeOH in H₂O, $t_{\rm R}$ 30-45 min:100 % MeOH, v = 2 mL/min).

C1: 80 mL water, 80 g rice, and 2.6 g MgCl₂ in 1 L Erlenmeyer flasks.

- C2: 80 mL water and 80 g rice in 1 L Erlenmeyer flasks.
- C3: 300 mL PDB in 1 L Erlenmeyer flasks.
- C4: 300 mL PDB and 10 g sea salt in 1 L Erlenmeyer flasks.

C5: 80 mL water, 80 g rice, and 2.6 g NaCl in 1 L Erlenmeyer flasks.

C6: 80 mL PYG and 80 g rice in 1 L Erlenmeyer flasks.

C7: 80 mL water, 80 g rice, NaNO3 0.3 g, KH2PO4 0.1 g, MgSO4·7H2O 0.5 g, NaCl

0.05 g, FeSO₄ 0.01 g, sucrose 3.0 g in 1 L Erlenmeyer flasks.

C8: 80 mL water, 80 g rice, and 0.8 g MgCl₂ in 1 L Erlenmeyer flasks.

Figure S45. Comparison of our compounds BGC with fumitremorgin BGC

Gene cluster number	Scaffold location	Gene cluster type
cluster4	c00083_11315_2 4775298270	Indole-t1PKS
cluster6	c00085_11318_8 2230379507	NRPS
cluster13	c00112_11377_4 72242612	NRPS
cluster17	c00135_11454_1 346838402852	NRPS
cluster18	c00143_11485_2 129500	NRPS
cluster32	c00267_11710_1 259086306783	NRPS
cluster33	c00267_11710_1 613477672287	NRPS
cluster35	c00268_11712_3 3531381905	NRPS
cluster42	c00304_11766_5 141450	Indole-NRPS
cluster45	c00311_11775_9 235173278264	NRPS
cluster46	c00311_11775_9 405829461882	NRPS
cluster48	c00330_11797_1 163658	Indole-NRPS
cluster50	c00345_11815_5 461680508014	NRPS

Table S1. Proposed NRPS biosynthetic gene clusters (NRPS-BGCs) predicted by

fungiSMASH.

 Table S2. Proposed functions of genes in *ctp* gene clusters.

Gene	Protein	Protein	Identity/C	Function	Accession no.
	size	homolog	overage		
	(aa)		(%)		
ctpNRPS	2234	FtmA	67/99	Nonribosomal peptide	BAH23995.1
				synthetase	
ctpP450-1	316	FtmC	82/99	Cytochrome P450	BAH23996.1
ctpOMT	410	FtmD	81/83	O-methyltransferase	BAH23997.1
ctpPT-1	462	FtmB	77/100	prenyltransferase	BAH23998.1
ctpP450-2	533	FtmE	71/98	Cytochrome P450	BAH23999.1
<i>ctpOx</i>	288	FtmF	77/99	Alpha-ketoglutarate	BAH24000.1
				dioxygenase	
ctpP450-3	503	FtmG	68/98	Cytochrome P450	BAH24001.1
ctpPT-2	393	FtmH	67/100	prenyltransferase	BAH24002.1
ctpPT-MFS	581		100/100	putative MFS toxin efflux	OOQ91430.1
				pump	

Table S3.	The coordinate	for the lowest-energy	gy conformer	[(2S,8S,9R,12R,	18 <i>S</i>)- 1] in
ECD calcu	lation.				

	Coordinates (Angstroms)							
	X	Y	Z					
С	5.24025400	-0.60470700	-0.71747400					
С	5.46623100	0.23255200	0.39856600					
С	4.39484400	0.61339000	1.19870500					
С	3.11072300	0.16928000	0.88323300					
С	2.90216700	-0.68341900	-0.21855900					
С	3.95447100	-1.07478700	-1.03439800					
С	1.82286700	0.42835200	1.52043500					
С	0.75066800	-0.23740000	0.60879800					
Ν	1.56089200	-1.08036300	-0.29206400					
С	-0.14398000	0.78046600	-0.17342800					
Ν	-1.36550500	-0.03644300	-0.40998700					
С	-1.46462300	-1.22014700	0.40601900					
С	-0.26193100	-1.12347800	1.38074900					
С	-2.38821900	0.36463200	-1.23374300					
С	-3.63358800	-0.56551400	-1.17720400					
N	-3.86199600	-0.97745200	0.22106800					
C	-2.85331900	-1.28641800	1.08088100					
C	-4.94042100	0.14986300	-1.56757900					
C	-5.70025200	0.38172400	-0.24775600					
C	-5.25419200	-0.79143000	0.63720900					
0	-2.99966300	-1.5/921100	2.26006900					
0	-2.31536900	1.34462600	-1.95787200					
0	-3.44/41000	-1.65901800	-2.05424500					
0	1.5/258500	1.02109700	2.55427200					
C	-0.46043500	2.04561800	0.58051900					
C	-0.40947000	3.29940100	0.10526800					
C	-0.75444800	4.40184100	1.00521/00					
C	-0.02641400	3.08990400	-1.50005000					
0	-1.26/19600	-2.38379800	-0.42379000					
0	6 22025300	-2.39937800	-1 55689600					
C	7 56084500	-0.60773700	-1.31668000					
н	6 46400800	0.58259800	0.63185400					
Н	4 54370100	1 26239000	2 05682100					
Н	3 82576400	-1 72870700	-1 89064200					
н	1 16524800	-1 28621800	-1 20352600					
Н	0.32113500	1.00971900	-1.13420700					
Н	-0.56533600	-0.63848900	2.31113800					
Н	-5.48865300	-0.53310800	-2.22312800					
Н	-4.72662900	1.06607000	-2.12045500					
Н	-5.39180400	1.32771400	0.21207700					
Н	-6.78479100	0.41402500	-0.38769100					
Н	-5.83823700	-1.69836700	0.43197500					
Н	-5.28744900	-0.59698200	1.71118100					
Н	-2.68889700	-2.17699700	-1.71780600					
Н	-0.75531100	1.89982900	1.61721100					
Н	-0.99668200	4.13780100	2.02156800					
Н	0.08232700	5.17140000	1.06402800					
Н	-1.61143000	5.02203800	0.60666400					
Н	0.08567700	2.84160400	-1.97632200					
Н	-0.80280800	4.33824300	-1.72976400					
Н	0.90478400	4.27021800	-1.29959600					
H	-0.99040500	-3.08023300	0.19778700					
H	1.00271500	-2.51775200	1.05809200					
H	8.15595300	-1.06622800	-2.10773300					
H	7.65948800	0.48323500	-1.37253300					
Н	7.91948800	-0.95835700	-0.34127800					

Table	S4.	The	coordinate	for	the	lowest-energy	conformer	[(8S,9S,12R,18S)-2]	in
ECD c	alcu	latior	1.						

		·	
	Coordinates (Angstr	oms)	7
	X	Ŷ	L
	5 22002200	0.0005.000	0.0(220100
C	5.32903200	-0.90956900	-0.06328100
C	4.62278400	0.26108900	-0.32249500
C	3.22/65/00	0.19832700	-0.22858300
C	2.525/5400	-0.98/36/00	0.10040900
C	3.27592500	-2.14744700	0.35952200
C	4.65519500	-2.102/3900	0.27903800
N	2.28949100	1.19640400	-0.41/09300
C	1.02848900	0.68141500	-0.20758300
C	1.121/6900	-0.65113200	0.09662900
C	-0.21/82400	1.51/81600	-0.26444600
N	-1.3/005/00	0.61399100	0.00/1/000
C	-1.17879100	-0.46407100	0.97583300
C	-0.08/51200	-1.44/88600	0.46331400
C	-2.46535200	0.73610500	-0.80759600
C	-3.45398000	-0.44188800	-0.81346100
N	-3.51812900	-1.11610500	0.48429000
C	-2.49140800	-1.20846000	1.3342/300
C	-4.91144800	-0.055/4400	-1.05626900
C	-5.68545800	-1.24319500	-0.45787300
C	-4.85627000	-1.66635400	0.76947000
C	-0.15527/00	2.71283000	0.6621/300
C	-0.29565300	4.0008/100	0.31923900
C	-0.17783600	5.07820900	1.36965400
C	-0.58924500	4.51509200	-1.06/32600
0	-0.67728400	-2.18/6/600	-0.62/68/00
0	-0.72279100	0.11050500	2.18526600
0	-2.53143000	-1.79170900	2.41459600
0	-2.61967300	1.66621900	-1.58041900
0	-3.06569200	-1.33789900	-1.83983200
0	6.69279600	-1.01144600	-0.11271700
C	7.44554800	0.13817500	-0.45683700
C	0.11466000	-3.26230200	-1.11993900
Н	5.11930500	1.18757300	-0.58291100
Н	2.78731400	-3.07863200	0.62761300
H	5.25515700	-2.98369900	0.47692500
H	2.48977700	2.1738/800	-0.555/6100
H	-0.3/366800	1.85894300	-1.28811800
H	0.12825700	-2.15/10300	1.2/156100
H	-5.09427300	0.10419600	-2.11/01300
H	-5.13396300	0.87400900	-0.52664400
H	-6.70864300	-0.98047200	-0.18417200
H	-5.73153800	-2.05890600	-1.18121000
H	-4.80338200	-2.74761300	0.906/6/00
H	-5.22289000	-1.23191500	1.70340300
H	0.03102300	2.45928900	1./0105200
H	0.05899/00	4.67024600	2.35394800
H	0.6002/100	5.80395600	1.10461100
H	-1.11258200	5.64494600	1.45183500
Н	-0.82334300	3.73364100	-1.78770800
H	-1.449/6500	5.19219900	-1.03933300
Н	0.25217900	5.10588200	-1.44996900
Н	-1.067/7/000	-0.45468600	2.89801200
H	-2.19238800	-1.70259600	-1.60225500
H	8.48910500	-0.1/155300	-0.44232400
Н	7.19053000	0.49942400	-1.45945200
H	7.29947200	0.94603600	0.26898700
Н	1.04559100	-2.90007900	-1.56424300
Н	0.34346300	-3.9/406200	-0.31/97600
Н	-0.47734200	-3.76754000	-1.88304400

Compd. MIC (µM)									
	1	2	3	4	5	6	7	8	CIP
B. megaterium	>25	>25	>25	>25	>25	>25	>25	>25	0.625
B. subtilis	>25	>25	>25	>25	>25	>25	>25	>25	0.039
E. coli	>25	>25	>25	>25	>25	>25	>25	>25	0.156
B. anthraci	>25	>25	>25	>25	>25	>25	>25	>25	0.078
B. cereus	>25	>25	>25	>25	>25	>25	>25	>25	0.313
B. paratyphosum B	>25	>25	>25	>25	>25	>25	>25	>25	0.078
E. aerogenes	>25	>25	>25	>25	>25	>25	>25	>25	0.002
M. lysodeikticus	>25	>25	>25	>25	>25	>25	>25	>25	0.078
M. luteus	>25	>25	>25	>25	>25	>25	>25	>25	0.02
P. vulgaris	>25	>25	>25	>25	>25	>25	>25	>25	0.156
S. dysenteriae	>25	>25	>25	>25	>25	>25	>25	>25	0.039
P. aeruginosa	>25	>25	>25	>25	>25	>25	>25	>25	0.005
S. aureus	>25	>25	>25	>25	>25	>25	>25	>25	0.039
S. typhi	>25	>25	>25	>25	>25	>25	>25	>25	0.078
V. anguillarum	>25	>25	>25	>25	>25	>25	>25	>25	0.039
V. parahemolyticus	>25	>25	>25	>25	>25	>25	>25	>25	0.156

Table S5. Antibacterial activities data of compounds 1–8

Compd. —	IC ₅₀ (µM)					
	HL-60	HCT-116	MCF-7			
1	6.0	>10	>10			
2	>10	>10	7.6			
3	>10	>10	10.8			
4	7.9	>10	>10			
5	>10	>10	5.1			
6	>10	>10	>10			
7	>10	>10	>10			
8	>10	>10	>10			
DDP	1.14	3.36	2.59			

Table S6. Cytotoxic activity data of compounds 1–8