

Supplementary materials

Absolute Configuration of Mycosporine-Like Amino Acids, their Wound Healing Properties and In Vitro Anti-Aging Effects

Maria Orfanoudaki ^{1,†}, Anja Hartmann ^{1,†,*}, Mostafa Alilou ¹, Thomas Gelbrich ², Patricia Blanchard ³, Séverine Derbré ³, Andreas Schinkovitz ³, Pascal Richomme ³, Andreas Hensel ⁴ and Markus Ganzera ¹

- ¹ Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, Innsbruck 6020, Austria; Maria.Orfanoudaki@uibk.ac.at (M.O.); mostafa.alilou@student.uibk.ac.at (M.A.); markus.ganzera@uibk.ac.at (M.G.)
- ² Institute of Pharmacy, Pharmaceutical Technology, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria; thomas.gelbrich@uibk.ac.at (T.G.)
- ³ SONAS, EA921, University of Angers, SFR QUASAV, Faculty of Health Sciences, Department of Pharmacy, 16 Bd Daviers, 49045, Angers, France; patricia.planchenault@univ-angers.fr (P.P); severine.derbre@univ-angers.fr (S.D.); and reas.schinkovitz@univ-angers.fr (A.S.); pascal.richomme@univ-angers.fr (P.R.)
- ⁴ Institute of Pharmaceutical Biology and Phytochemistry, University of Münster, Corrensstraße 48, D-48149 Münster, Germany, ahensel@uni-muenster.de (A.H.)
- * Correspondence: Anja.Hartmann@uibk.ac.at; Tel.: +43 512 507-58430
- + These authors contributed equally to this work.

Figure S1 LC	-MS of N	larfey's analysis of co	ompound 1			3
Figure S2 LC	-MS of N	larfey's analysis of co	ompound 2			3
Figure S3 LC	-MS of N	larfey's analysis of co	ompound 3			4
Figure S4 LC	-MS of N	larfey's analysis of co	ompound 4			4
Figure S5 LC	-MS of N	larfey's analysis of co	ompound 5			5
Figure compounds Figure S7 Ov compound 1 .	S6 erlayeree	Experimental d conformers and poj	ECD pulation of B	spectra 5 Soltzmann avera	of aged conf	isolated formers of 6
Figure S8 Ov compound 3 .	erlayere	d conformers and po	pulation of B	oltzmann aver	aged conf	ormers of 7
Figure S9 Ov compounds 7	erlayered 7	d conformers and pop	pulation of B	oltzmann avera	aged conf	ormers of 8
Figure S10 O compounds 9	verlayer 9	ed conformers and po	opulation of	Boltzmann ave	raged cor	nformers of 9
Figure S11 O compounds 1	verlayer 10	ed conformers and po	opulation of	Boltzmann ave	raged cor	formers of 9
Figure S12 O compounds 1	verlayer 11	ed conformers and po	opulation of	Boltzmann ave	raged cor	formers of10
Figure S13 Co MAAs	ollagenas	se inhibitory activity,	concentratio	on response cur	rves of all	tested 11
Figure S14 D various conce compounds.	ose-effec entration	t curves for pentosid s of tested MAAs and	ine-like AGE d rutin and a	es formation in iminoguanidine	the presenter used as a	nce of reference 12
Table S1. Cry	stallogra	phic data for the hyd	lrate of the s	hinorine hydra	te 1 H	13
Table S 2 Ato	omic cooi	dinates (× 104) and ed	quivalent iso	tropic displace	ment para	ameters 13
Table S 3 Bor	nd length	s [Å] and angles [°]				14
Table S 4 Ani factor expone	isotropic ent takes	displacement param the form: $-2\pi^2$ [h ² a ^{*2}	eters (Å ² × 10 U^{11} + + 2 h	D^{3}). The anisot $h k a^{*} b^{*} U^{12}$]	tropic dis _]	placement 20
Table S 5 Hyo	drogen c	oordinates (× 104) and	d isotropic di	isplacement pa	rameters	(Ų × 10³). 22
Table S 6 Hyd	drogen b	onds [Å and °]				23

Figure S2 LC-MS of Marfey's analysis of compound 2

Figure S3 LC-MS of Marfey's analysis of compound 3

Figure S5 LC-MS of Marfey's analysis of compound 5

Figure S6. Experimental ECD spectra of isolated compounds.

Compound 1 conformers e (population Δ KJ/mol $\Delta G/RT$ mol $\Delta G/RT$) % 0.423 Conformer 0 0 0 1 42.29573 1218.210529 0 1 0.00101 2.66225 Conformer _ 0.33526 0.1411.092846 14.1801 1218.209515 7 2 1 8 4 Conformer 0.00104 2.73577 0.32529 0.137 1.123023 13.75858 3 1218.209487 2 1 5 6 Conformer 0.00119 3.14797 0.27465 0.116 -1218.20933 1.292231 11.61683 9 5 7 2 4 0.00183 4.81516 Conformer 0.13853 0.058 _ 1.976607 5.859584 1218.208695 5 7 8 6 4 Conformer 0.00215 5.66320 0.09781 0.041 2.324723 4.136967 1218.208372 6 7 3 1 4 Conformer 0.00240 0.07511 0.031 6.30645 2.588774 3.17692 1218.208127 7 2 1 2 8 Conformer 0.00244 6.42197 0.07163 0.030 _ 2.636195 3.029783 8 1218.208083 3 3 6 3 Conformer 0.00285 7.50105 0.04599 0.019 3.079154 1.945526 9 1218.207672 7 3 8 5 2.36430 1 100 5

Figure S7. Overlayered conformers and population of Boltzmann averaged conformers of compound **1**.

Compound 3 Conformers							
	Δ	KJ/mol	∆G/RT	e (- ∆G/RT)	mol		population %
Conformer 1	- 1029.687871	0	0	0	1	0.377 9	37.79439
Conformer 2	- 1029.687618	0.00025 3	0.66425 2	0.272673	0.76134 2	0.287 7	28.77446
Conformer 3	- 1029.686828	0.00104 3	2.73839 6	1.124101	0.32494 4	0.122 8	12.28108
Conformer 4	- 1029.686279	0.00159 2	4.17979 6	1.71579	0.17982 2	0.068 0	6.796248
Conformer 5	- 1029.686037	0.00183 4	4.81516 7	1.976607	0.13853 8	0.052 4	5.235976
Conformer 6	- 1029.685999	0.00187 2	4.91493 6	2.017562	0.13297 9	0.050 3	5.02587
Conformer 7	-1029.68535	0.00252 1	6.61888 6	2.717027	0.06607 1	0.025 0	2.497109
Conformer 8	- 1029.684934	0.00293 7	7.71109 3	3.165374	0.04219 8	0.015 9	1.594861
					2.64589 5	1	100

Figure S8. Overlayered conformers and population of Boltzmann averaged conformers of compound 3.

Compound 7 conformers

	Δ	KJ/mol	∆G/RT	e (-∆G/RT)	mol		population%
Conformer		0	0	0	1	0.5066	50.656
I	875.938525						
Conformer	-	0.001284	2 (22(02	1 401617	0.225000	0 1140	11 20204
2	875.937141	0.001364	3.033092	1.491017	0.223009	0.1140	11.39804
Conformer	-	0.001427	2 746590	1 52706	0 21/010	0 1000	10 00106
3	875.937098	0.001427	3.746389	1.53796	0.214819	0.1088	10.88186
Conformer	-	0 001 4 2 9	2 740214	1 520028	0.214597	0 1097	10 97014
4	875.937097	0.001428	5.749214	1.559056	0.214507	0.1007	10.07014
Conformer	-	0.002274	E 070297	2 450921	0.086777	0.0427	4 267701
5	875.936251	0.002274	5.970387	2.430621	0.080223	0.0437	4.307701
Conformer		0.000075	E 072012	0 451000	0.00(12	0.0426	4.262006
6	-875.93625	0.002275	5.973013	2.451899 0.08613		0.0436	4.362996
Conformer	-	0.00040	()5071	0 (00170	0.072((0	0.0272	0.001000
7	875.936105	0.00242	6.35371	2.608173	0.073669	0.0373	3.731776
Conformer	-	0.00242	()5271	2 (09172	0.072((0	0.0272	2 721776
8	875.936105	0.00242	6.35371	2.608173	0.073069	0.0373	3./31//6
					1.974106	1.000	100

Figure S9. Overlayered conformers and population of Boltzmann averaged conformers of compounds 7.

Compound 9 conformers

	Δ	KJ/mol	∆G/RT	e (- ΔG/RT)	mol		population %
Conformer	-	0	0	0	1	0.917	01 75152684
1	1143.028128	0	0	0	1	5	71.75155004
Conformer	-	0.00258	6.78429	2 784026	0.06173367	0.056	E ((41E074
2	1143.025544	4	2	2.764926	7	6	5.00415974
Conformer	-	0.00331	8.69565	2 5(0522	0.02816899	0.025	2 594549074
3	1143.024816	2	6	3.369333	9	8	2.384348974
					1.08990	1.000	100

Figure S10. Overlayered conformers and population of Boltzmann averaged conformers of compounds 9.

		Δ	KJ/mol	$\Delta G/RT$	e (-∆G/RT)	mol	
Conformer 1	-1524.428038	0	0	0	1	0.4028	40.27776
Conformer 2	-1524.427026	0.001012	2.657006	1.090691	0.335984	0.1353	13.5327
Conformer 3	-1524.426966	0.001072	2.814536	1.155356	0.314945	0.1269	12.68529
Conformer 4	-1524.426915	0.001123	2.948437	1.210322	0.298101	0.1201	12.00685
Conformer 5	-1524.426667	0.001371	3.599561	1.477606	0.228183	0.0919	9.190714
Conformer 6	-1524.426578	0.00146	3.83323	1.573526	0.207313	0.0835	8.350098
Conformer 7	-1524.425885	0.002153	5.652701	2.320412	0.098233	0.0396	3.956608
					2.48276	1	100

Figure S11. Overlayered conformers and population of Boltzmann averaged conformers of compounds 10.

c

Compound 11 conformers							
	Δ	KJ/mol	∆G/RT	e (- ΔG/RT)	mol		population %
conformar 1	-	0	0	0	1.00000	0.296	29 6735905
comormer 1	1319.937126	0	0	0	0	7	29.0733903
conformer 2	-	0.00041	1.08958	0 447269	0.63937	0.189	18 972/15198
comormer 2	1319.936711	5	2	0.447207	2	7	10.77243170
conformer 3	-	0.00056	1.48078	0 607855	0.54451	0.161	16 15778774
comornier 5	1319.936562	4	2	0.007055	7	6	10.13770774
conformer 4	-	0.00063	1.66719	0 684376	0.50440	0.149	14 96750257
comornier 4	1319.936491	5	3	0.004570	5	7	14.70730237
conformer 5	1210 02526	0.00186	4.89918	2.011096	0.13384	0.039	3 971570986
comornier 5	-1317.73320	6	3		2	7	5.771570780
conformer 6	-	0.00199	5.24312	2 152282	0.11621	0.034	3 448624594
	1319.935129	7	4	2.102202	9	5	3.440024374
conformer 7	-	0.00200	5.26412	2 160904	0.11522	0.034	3.419018161
	1319.935121	5	8	2.100704	1	2	
conformer 8	-	0.00212	5.57918	2 290235	0.10124	0.030	3 004233644
comornier o	1319.935001	5	7	2.270233	3	0	5.004255044
conformer 9	-	0.00216	5 67108	2 327956	0.09749	0.028	2 893020153
	1319.934966	0.00210	5.07 100	2.527 750	5	9	2.075020155
conformer	-	0.00261	6.85780	2 815103	0.05989	0.017	1 777405203
10	1319.934514	2	6	2.010100	9	8	1.77403203
conformer	-	0.00264	6.93657	2 847436	0.05799	0.017	1 720855965
11	1319.934484	2	1	2.047450	3	2	1.720033703
					3.37020	1 000	100
					4	1.000	100

Figure S12. Overlayered conformers and population of Boltzmann averaged conformers of compounds 11.

80

Aplysiapalythine A

100-

Figure S13. Collagenase inhibitory activity, concentration response curves of all tested MAAs. All data shown as means \pm SD (n = 3).

Figure S14. Dose-effect curves for pentosidine-like AGEs formation in the presence of various concentrations of tested MAAs and rutin and aminoguanidine used as reference compounds.

Moiety Formula	C13H20N2O8 · 1.72 (H2O)
Empirical formula	C13H23.44N2O9.72
Formula weight	363.30
Temperature (K)	193(2)
Crystal system	Triclinic
Space group	<i>P</i> 1
a (Å)	5.4387(3)
<i>b</i> (Å)	11.7023(6)
c (Å)	13.6335(7)
α (°)	105.844(4)
β (°)	99.478(4)
γ (°)	94.044(4)
Unit cell volume (ų)	817.23(8)
Z / Z'	2/2
Reflections collected / Rint	14277 / 0.0640
Data / restraints / parameters	5597 / 21 / 550
Goodness-of-fit on F ²	1.082
Final <i>R</i> indices $[I > 2 \sigma(I)]$	R1 = 0.0439, wR2 = 0.1115
R indices (all data)	R1 = 0.0490, wR2 = 0.1199
Absolute structure parameter	0.09(14)
Largest diff. peak and hole (e \cdot Å ⁻³)	0.329 and -0.226
CCDC no.	1968399

Table S1. Crystallographic data for the hydrate of the shinorine hydrate 1H.

Table S 2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters.

	x	у	Z	Ueq
C(1A)	5844(7)	1280(4)	9230(3)	23(1)
C(2A)	5520(8)	1993(3)	8442(3)	24(1)
C(3A)	4329(7)	1251(4)	7365(3)	20(1)
C(4A)	4014(7)	11(3)	7112(3)	20(1)
C(5A)	5159(7)	-614(4)	7765(3)	22(1)
C(6A)	6809(8)	99(4)	8781(3)	25(1)
O(7A)	3529(6)	951(3)	9500(3)	30(1)
C(8A)	7613(8)	2036(4)	10224(3)	29(1)
O(9A)	9990(6)	2395(3)	10039(3)	36(1)
N(10A)	3591(6)	1805(3)	6662(3)	22(1)
C(11A)	3832(7)	3092(3)	6855(3)	22(1)
C(12A)	4078(8)	3411(4)	5856(3)	28(1)
O(13A)	1810(7)	3035(3)	5115(2)	34(1)
O(14A)	2592(5)	-627(2)	6152(2)	23(1)
C(15A)	6(8)	-915(4)	6216(4)	32(1)
N(16A)	4921(7)	-1795(3)	7462(3)	24(1)
C(17A)	5820(9)	-2572(4)	8091(3)	28(1)
C(18A)	7357(8)	-3499(4)	7552(4)	28(1)
O(19A)	7579(8)	-3582(3)	6659(3)	45(1)
C(20A)	1595(8)	3617(4)	7282(3)	25(1)
O(21A)	1807(6)	4772(3)	7461(3)	37(1)
O(22A)	8245(7)	-4146(3)	8104(3)	39(1)
O(23A)	-109(7)	3018(4)	7420(4)	53(1)

(Å² × 10³). U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

$\begin{array}{c ccccc} C(2B) & 2974(8) & 8167(4) & 2038(3) & 25(1) \\ \hline C(3B) & 2528(7) & 8761(4) & 3113(3) & 23(1) \\ \hline C(4B) & 2006(8) & 9929(4) & 3367(3) & 24(1) \\ \hline C(5B) & 2171(7) & 10652(4) & 2710(3) & 23(1) \\ \hline C(6B) & 2660(8) & 10113(4) & 1638(3) & 29(1) \\ \hline O(7B) & -821(5) & 8609(3) & 1084(2) & 29(1) \\ \hline C(8B) & 2726(8) & 8240(4) & 223(3) & 30(1) \\ \hline O(9B) & 1558(7) & 8657(4) & -602(3) & 32(1) \\ \hline O(9') & 2300(30) & 6979(9) & -142(10) & 28(3) \\ \hline N(10B) & 2749(7) & 8165(3) & 3822(3) & 25(1) \\ \hline C(11B) & 2623(7) & 6867(3) & 3580(3) & 23(1) \\ \hline C(12B) & 3753(8) & 6509(4) & 4532(4) & 28(1) \\ \hline O(13B) & 2344(6) & 6836(3) & 5336(2) & 32(1) \\ \hline O(14B) & 1437(5) & 10436(2) & 4342(2) & 24(1) \\ \hline C(15B) & -1246(9) & 10444(5) & 4277(4) & 35(1) \\ \hline N(16B) & 1917(7) & 11796(3) & 3045(3) & 25(1) \\ \hline C(17B) & 2252(8) & 12692(4) & 2502(3) & 27(1) \\ \hline C(18B) & 4874(8) & 13371(4) & 2821(3) & 27(1) \\ \hline O(19B) & 5247(6) & 14142(3) & 2337(3) & 36(1) \\ \hline C(20B) & -111(8) & 6314(4) & 3148(3) & 25(1) \\ \hline O(21B) & -365(6) & 5163(3) & 2856(3) & 39(1) \\ \hline O(22B) & 6405(7) & 13182(4) & 3508(3) & 51(1) \\ \hline O(22B) & -1804(7) & 6909(3) & 3080(4) & 58(1) \\ \hline O(1C) & -2140(20) & 6059(7) & 176(6) & 89(3) \\ \hline O(1D) & -3500(30) & 6186(17) & 755(18) & 82(6) \\ \hline O(2C) & 11800(30) & 4697(7) & 10658(7) & 89(4) \\ \hline O(2D) & 4310(30) & 14822(18) & 547(13) & 108(6) \\ \hline \end{array}$	C(1B)	1868(7)	8775(4)	1246(3)	23(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(2B)	2974(8)	8167(4)	2038(3)	25(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(3B)	2528(7)	8761(4)	3113(3)	23(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(4B)	2006(8)	9929(4)	3367(3)	24(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(5B)	2171(7)	10652(4)	2710(3)	23(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(6B)	2660(8)	10113(4)	1638(3)	29(1)
$\begin{array}{c cccccc} C(8B) & 2726(8) & 8240(4) & 223(3) & 30(1) \\ \hline O(9B) & 1558(7) & 8657(4) & -602(3) & 32(1) \\ \hline O(9') & 2300(30) & 6979(9) & -142(10) & 28(3) \\ \hline N(10B) & 2749(7) & 8165(3) & 3822(3) & 25(1) \\ \hline C(11B) & 2623(7) & 6867(3) & 3580(3) & 23(1) \\ \hline C(12B) & 3753(8) & 6509(4) & 4532(4) & 28(1) \\ \hline O(13B) & 2344(6) & 6836(3) & 5336(2) & 32(1) \\ \hline O(14B) & 1437(5) & 10436(2) & 4342(2) & 24(1) \\ \hline C(15B) & -1246(9) & 10444(5) & 4277(4) & 35(1) \\ \hline N(16B) & 1917(7) & 11796(3) & 3045(3) & 25(1) \\ \hline C(17B) & 2252(8) & 12692(4) & 2502(3) & 27(1) \\ \hline C(18B) & 4874(8) & 13371(4) & 2821(3) & 27(1) \\ \hline O(19B) & 5247(6) & 14142(3) & 2337(3) & 36(1) \\ \hline C(20B) & -111(8) & 6314(4) & 3148(3) & 25(1) \\ \hline O(21B) & -365(6) & 5163(3) & 2856(3) & 39(1) \\ \hline O(22B) & 6405(7) & 13182(4) & 3508(3) & 51(1) \\ \hline O(23B) & -1804(7) & 6909(3) & 3080(4) & 58(1) \\ \hline O(1W) & -779(6) & 4875(3) & 5168(3) & 31(1) \\ \hline O(1D) & -3500(30) & 6186(17) & 755(18) & 82(6) \\ \hline O(2C) & 11800(30) & 4697(7) & 10658(7) & 89(4) \\ \hline O(2D) & 4310(30) & 14822(18) & 547(13) & 108(6) \\ \end{array}$	O(7B)	-821(5)	8609(3)	1084(2)	29(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(8B)	2726(8)	8240(4)	223(3)	30(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O(9B)	1558(7)	8657(4)	-602(3)	32(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O(9')	2300(30)	6979(9)	-142(10)	28(3)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	N(10B)	2749(7)	8165(3)	3822(3)	25(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(11B)	2623(7)	6867(3)	3580(3)	23(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(12B)	3753(8)	6509(4)	4532(4)	28(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	O(13B)	2344(6)	6836(3)	5336(2)	32(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(14B)	1437(5)	10436(2)	4342(2)	24(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(15B)	-1246(9)	10444(5)	4277(4)	35(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	N(16B)	1917(7)	11796(3)	3045(3)	25(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(17B)	2252(8)	12692(4)	2502(3)	27(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C(18B)	4874(8)	13371(4)	2821(3)	27(1)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(19B)	5247(6)	14142(3)	2337(3)	36(1)
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	C(20B)	-111(8)	6314(4)	3148(3)	25(1)
O(22B) 6405(7) 13182(4) 3508(3) 51(1) O(23B) -1804(7) 6909(3) 3080(4) 58(1) O(1W) -779(6) 4875(3) 5168(3) 31(1) O(1C) -2140(20) 6059(7) 176(6) 89(3) O(1D) -3500(30) 6186(17) 755(18) 82(6) O(2C) 11800(30) 4697(7) 10658(7) 89(4) O(2D) 4310(30) 14822(18) 547(13) 108(6)	O(21B)	-365(6)	5163(3)	2856(3)	39(1)
O(23B) -1804(7) 6909(3) 3080(4) 58(1) O(1W) -779(6) 4875(3) 5168(3) 31(1) O(1C) -2140(20) 6059(7) 176(6) 89(3) O(1D) -3500(30) 6186(17) 755(18) 82(6) O(2C) 11800(30) 4697(7) 10658(7) 89(4) O(2D) 4310(30) 14822(18) 547(13) 108(6)	O(22B)	6405(7)	13182(4)	3508(3)	51(1)
O(1W) -779(6) 4875(3) 5168(3) 31(1) O(1C) -2140(20) 6059(7) 176(6) 89(3) O(1D) -3500(30) 6186(17) 755(18) 82(6) O(2C) 11800(30) 4697(7) 10658(7) 89(4) O(2D) 4310(30) 14822(18) 547(13) 108(6)	O(23B)	-1804(7)	6909(3)	3080(4)	58(1)
O(1C) -2140(20) 6059(7) 176(6) 89(3) O(1D) -3500(30) 6186(17) 755(18) 82(6) O(2C) 11800(30) 4697(7) 10658(7) 89(4) O(2D) 4310(30) 14822(18) 547(13) 108(6)	O(1W)	-779(6)	4875(3)	5168(3)	31(1)
O(1D) -3500(30) 6186(17) 755(18) 82(6) O(2C) 11800(30) 4697(7) 10658(7) 89(4) O(2D) 4310(30) 14822(18) 547(13) 108(6)	O(1C)	-2140(20)	6059(7)	176(6)	89(3)
O(2C)11800(30)4697(7)10658(7)89(4)O(2D)4310(30)14822(18)547(13)108(6)	O(1D)	-3500(30)	6186(17)	755(18)	82(6)
O(2D) 4310(30) 14822(18) 547(13) 108(6)	O(2C)	11800(30)	4697(7)	10658(7)	89(4)
	O(2D)	4310(30)	14822(18)	547(13)	108(6)
O(3D) -830(30) 4631(11) 9687(9) 72(3)	O(3D)	-830(30)	4631(11)	9687(9)	72(3)

Table S3. Bond lengths $[{\rm \AA}]$ and angles [°].

C(1A)-O(7A)	1.425(5)
C(1A)-C(6A)	1.519(6)
C(1A)-C(2A)	1.526(6)
C(1A)-C(8A)	1.530(6)
C(2A)-C(3A)	1.497(6)
C(2A)-H(2A1)	0.9900
C(2A)-H(2A2)	0.9900
C(3A)-N(10A)	1.323(5)
C(3A)-C(4A)	1.387(6)
C(4A)-O(14A)	1.386(5)
C(4A)-C(5A)	1.397(6)
C(5A)-N(16A)	1.320(5)
C(5A)-C(6A)	1.508(6)
C(6A)-H(6A1)	0.9900
C(6A)-H(6A2)	0.9900

O(7A)-H(7A)	0.840(15)
C(8A)-O(9A)	1.414(5)
C(8A)-H(8A1)	0.9900
C(8A)-H(8A2)	0.9900
O(9A)-H(9A)	0.847(15)
N(10A)-C(11A)	1.450(5)
N(10A)-H(10A)	0.867(15)
C(11A)-C(20A)	1.530(6)
C(11A)-C(12A)	1.531(6)
C(11A)-H(11A)	10.000
C(12A)-O(13A)	1.416(6)
C(12A)-H(12A)	0.9900
C(12A)-H(12B)	0.9900
O(13A)-H(13A)	0.8400
O(14A)-C(15A)	1.445(5)
C(15A)-H(15A)	0.9800
C(15A)-H(15B)	0.9800
C(15A)-H(15C)	0.9800
N(16A)-C(17A)	1.467(6)
N(16A)-H(16A)	0.882(15)
C(17A)-C(18A)	1.521(6)
C(17A)-H(17A)	0.9900
C(17A)-H(17B)	0.9900
C(18A)-O(19A)	1.221(6)
C(18A)-O(22A)	1.271(6)
C(20A)-O(23A)	1.193(6)
C(20A)-O(21A)	1.300(6)
O(21A)-H(21A)	0.838(15)
C(1B)-O(7B)	1.434(5)
C(1B)-C(6B)	1.514(6)
C(1B)-C(2B)	1.517(6)
C(1B)-C(8B)	1.527(6)
C(2B)-C(3B)	1.508(5)
C(2B)-H(2B1)	0.9900
C(2B)-H(2B2)	0.9900
C(3B)-N(10B)	1.333(6)
C(3B)-C(4B)	1.377(6)
C(4B)-O(14B)	1.394(5)
C(4B)-C(5B)	1.400(6)
C(5B)-N(16B)	1.316(5)
C(5B)-C(6B)	1.501(6)
C(6B)-H(6B1)	0.9900

C(6B)-H(6B2)	0.9900
O(7B)-H(7B)	0.843(15)
C(8B)-O(9')	1.412(10)
C(8B)-O(9B)	1.420(6)
C(8B)-H(8B1)	0.9900
C(8B)-H(8B2)	0.9900
C(8B)-H(8B3)	0.9900
C(8B)-H(8B4)	0.9900
O(9B)-H(9B)	0.8400
O(9')-H(9')	0.8400
N(10B)-C(11B)	1.458(5)
N(10B)-H(10B)	0.875(15)
C(11B)-C(12B)	1.520(6)
C(11B)-C(20B)	1.531(6)
C(11B)-H(11B)	10.000
C(12B)-O(13B)	1.422(5)
C(12B)-H(12C)	0.9900
C(12B)-H(12D)	0.9900
O(13B)-H(13B)	0.8400
O(14B)-C(15B)	1.448(5)
C(15B)-H(15D)	0.9800
C(15B)-H(15E)	0.9800
C(15B)-H(15F)	0.9800
N(16B)-C(17B)	1.456(5)
N(16B)-H(16B)	0.882(15)
C(17B)-C(18B)	1.518(6)
C(17B)-H(17C)	0.9900
C(17B)-H(17D)	0.9900
C(18B)-O(22B)	1.226(6)
C(18B)-O(19B)	1.278(5)
C(20B)-O(23B)	1.200(6)
C(20B)-O(21B)	1.286(6)
O(21B)-H(21B)	0.839(15)
O(1W)-H(1W1)	0.842(15)
O(1W)-H(1W2)	0.846(15)
O(7A)-C(1A)-C(6A)	104.7(3)
O(7A)-C(1A)-C(2A)	112.5(3)
C(6A)-C(1A)-C(2A)	110.9(3)
O(7A)-C(1A)-C(8A)	108.0(3)
C(6A)-C(1A)-C(8A)	111.4(3)
C(2A)-C(1A)-C(8A)	109.3(3)
C(3A)-C(2A)-C(1A)	113.6(3)

C(3A)-C(2A)-H(2A1)	108.8
C(1A)-C(2A)-H(2A1)	108.8
C(3A)-C(2A)-H(2A2)	108.8
C(1A)-C(2A)-H(2A2)	108.8
H(2A1)-C(2A)-H(2A2)	107.7
N(10A)-C(3A)-C(4A)	120.9(4)
N(10A)-C(3A)-C(2A)	118.4(4)
C(4A)-C(3A)-C(2A)	120.7(3)
O(14A)-C(4A)-C(3A)	118.3(3)
O(14A)-C(4A)-C(5A)	119.0(3)
C(3A)-C(4A)-C(5A)	122.7(4)
N(16A)-C(5A)-C(4A)	120.3(4)
N(16A)-C(5A)-C(6A)	121.5(4)
C(4A)-C(5A)-C(6A)	118.1(3)
C(5A)-C(6A)-C(1A)	111.5(3)
C(5A)-C(6A)-H(6A1)	109.3
C(1A)-C(6A)-H(6A1)	109.3
C(5A)-C(6A)-H(6A2)	109.3
C(1A)-C(6A)-H(6A2)	109.3
H(6A1)-C(6A)-H(6A2)	108.0
C(1A)-O(7A)-H(7A)	112(7)
O(9A)-C(8A)-C(1A)	112.3(3)
O(9A)-C(8A)-H(8A1)	109.1
C(1A)-C(8A)-H(8A1)	109.1
O(9A)-C(8A)-H(8A2)	109.1
C(1A)-C(8A)-H(8A2)	109.1
H(8A1)-C(8A)-H(8A2)	107.9
C(8A)-O(9A)-H(9A)	108(5)
C(3A)-N(10A)-C(11A)	124.8(3)
C(3A)-N(10A)-H(10A)	120(3)
C(11A)-N(10A)-H(10A)	116(3)
N(10A)-C(11A)-C(20A)	111.1(3)
N(10A)-C(11A)-C(12A)	110.1(3)
C(20A)-C(11A)-C(12A)	110.4(3)
N(10A)-C(11A)-H(11A)	108.4
C(20A)-C(11A)-H(11A)	108.4
C(12A)-C(11A)-H(11A)	108.4
O(13A)-C(12A)-C(11A)	110.7(3)
O(13A)-C(12A)-H(12A)	109.5
C(11A)-C(12A)-H(12A)	109.5
O(13A)-C(12A)-H(12B)	109.5
C(11A)-C(12A)-H(12B)	109.5

H(12A)-C(12A)-H(12B)	108.1
C(12A)-O(13A)-H(13A)	109.5
C(4A)-O(14A)-C(15A)	111.6(3)
O(14A)-C(15A)-H(15A)	109.5
O(14A)-C(15A)-H(15B)	109.5
H(15A)-C(15A)-H(15B)	109.5
O(14A)-C(15A)-H(15C)	109.5
H(15A)-C(15A)-H(15C)	109.5
H(15B)-C(15A)-H(15C)	109.5
C(5A)-N(16A)-C(17A)	126.5(4)
C(5A)-N(16A)-H(16A)	120(4)
C(17A)-N(16A)-H(16A)	114(4)
N(16A)-C(17A)-C(18A)	112.9(3)
N(16A)-C(17A)-H(17A)	109.0
C(18A)-C(17A)-H(17A)	109.0
N(16A)-C(17A)-H(17B)	109.0
C(18A)-C(17A)-H(17B)	109.0
H(17A)-C(17A)-H(17B)	107.8
O(19A)-C(18A)-O(22A)	126.6(4)
O(19A)-C(18A)-C(17A)	119.6(4)
O(22A)-C(18A)-C(17A)	113.8(4)
O(23A)-C(20A)-O(21A)	125.6(4)
O(23A)-C(20A)-C(11A)	123.0(4)
O(21A)-C(20A)-C(11A)	111.4(3)
C(20A)-O(21A)-H(21A)	103(6)
O(7B)-C(1B)-C(6B)	106.5(3)
O(7B)-C(1B)-C(2B)	110.2(3)
C(6B)-C(1B)-C(2B)	110.7(4)
O(7B)-C(1B)-C(8B)	109.7(3)
C(6B)-C(1B)-C(8B)	110.5(3)
C(2B)-C(1B)-C(8B)	109.2(3)
C(3B)-C(2B)-C(1B)	112.6(3)
C(3B)-C(2B)-H(2B1)	109.1
C(1B)-C(2B)-H(2B1)	109.1
C(3B)-C(2B)-H(2B2)	109.1
C(1B)-C(2B)-H(2B2)	109.1
H(2B1)-C(2B)-H(2B2)	107.8
N(10B)-C(3B)-C(4B)	120.6(4)
N(10B)-C(3B)-C(2B)	119.5(4)
C(4B)-C(3B)-C(2B)	119.8(4)
C(3B)-C(4B)-O(14B)	118.9(4)
C(3B)-C(4B)-C(5B)	122.5(4)

O(14B)-C(4B)-C(5B)	118.4(3)
N(16B)-C(5B)-C(4B)	119.5(4)
N(16B)-C(5B)-C(6B)	121.1(4)
C(4B)-C(5B)-C(6B)	119.4(4)
C(5B)-C(6B)-C(1B)	112.4(3)
C(5B)-C(6B)-H(6B1)	109.1
C(1B)-C(6B)-H(6B1)	109.1
C(5B)-C(6B)-H(6B2)	109.1
C(1B)-C(6B)-H(6B2)	109.1
H(6B1)-C(6B)-H(6B2)	107.8
C(1B)-O(7B)-H(7B)	98(7)
O(9')-C(8B)-C(1B)	114.3(6)
O(9B)-C(8B)-C(1B)	113.3(3)
O(9B)-C(8B)-H(8B1)	108.9
C(1B)-C(8B)-H(8B1)	108.9
O(9B)-C(8B)-H(8B2)	108.9
C(1B)-C(8B)-H(8B2)	108.9
H(8B1)-C(8B)-H(8B2)	107.7
O(9')-C(8B)-H(8B3)	108.7
C(1B)-C(8B)-H(8B3)	108.7
O(9')-C(8B)-H(8B4)	108.7
C(1B)-C(8B)-H(8B4)	108.7
H(8B3)-C(8B)-H(8B4)	107.6
C(8B)-O(9B)-H(9B)	109.5
C(8B)-O(9')-H(9')	109.5
C(3B)-N(10B)-C(11B)	124.4(3)
C(3B)-N(10B)-H(10B)	113(3)
C(11B)-N(10B)-H(10B)	118(3)
N(10B)-C(11B)-C(12B)	110.6(3)
N(10B)-C(11B)-C(20B)	109.0(3)
C(12B)-C(11B)-C(20B)	112.3(3)
N(10B)-C(11B)-H(11B)	108.3
C(12B)-C(11B)-H(11B)	108.3
C(20B)-C(11B)-H(11B)	108.3
O(13B)-C(12B)-C(11B)	111.5(4)
O(13B)-C(12B)-H(12C)	109.3
C(11B)-C(12B)-H(12C)	109.3
O(13B)-C(12B)-H(12D)	109.3
C(11B)-C(12B)-H(12D)	109.3
H(12C)-C(12B)-H(12D)	108.0
C(12B)-O(13B)-H(13B)	109.5
C(4B)-O(14B)-C(15B)	111.1(3)

O(14B)-C(15B)-H(15D)	109.5
O(14B)-C(15B)-H(15E)	109.5
H(15D)-C(15B)-H(15E)	109.5
O(14B)-C(15B)-H(15F)	109.5
H(15D)-C(15B)-H(15F)	109.5
H(15E)-C(15B)-H(15F)	109.5
C(5B)-N(16B)-C(17B)	126.6(4)
C(5B)-N(16B)-H(16B)	117(3)
C(17B)-N(16B)-H(16B)	115(3)
N(16B)-C(17B)-C(18B)	112.7(3)
N(16B)-C(17B)-H(17C)	109.1
C(18B)-C(17B)-H(17C)	109.1
N(16B)-C(17B)-H(17D)	109.1
C(18B)-C(17B)-H(17D)	109.1
H(17C)-C(17B)-H(17D)	107.8
O(22B)-C(18B)-O(19B)	125.5(4)
O(22B)-C(18B)-C(17B)	120.3(4)
O(19B)-C(18B)-C(17B)	114.2(4)
O(23B)-C(20B)-O(21B)	124.6(4)
O(23B)-C(20B)-C(11B)	122.5(4)
O(21B)-C(20B)-C(11B)	112.9(4)
C(20B)-O(21B)-H(21B)	118(5)
H(1W1)-O(1W)-H(1W2)	105(4)

Symmetry transformations used to generate equivalent atoms:

Table S4. Anisotropic displacement parameters (Å² × 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2} U¹¹ + ... + 2 h k a^{*} b^{*} U¹²].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1A)	21(2)	31(2)	19(2)	9(2)	3(2)	5(2)
C(2A)	26(2)	21(2)	23(2)	5(2)	6(2)	2(1)
C(3A)	16(2)	29(2)	17(2)	9(2)	3(2)	5(1)
C(4A)	21(2)	24(2)	16(2)	6(2)	4(2)	2(1)
C(5A)	20(2)	27(2)	21(2)	10(2)	10(2)	4(2)
C(6A)	23(2)	30(2)	24(2)	12(2)	3(2)	6(2)
O(7A)	28(2)	38(2)	32(2)	17(1)	11(1)	7(1)
C(8A)	32(2)	32(2)	22(2)	7(2)	3(2)	8(2)
O(9A)	29(2)	34(2)	39(2)	5(1)	2(1)	0(1)
N(10A)	25(2)	20(2)	18(2)	5(1)	0(1)	1(1)
C(11A)	23(2)	21(2)	23(2)	8(2)	2(2)	2(1)

C(12A)	34(2)	29(2)	26(2)	13(2)	11(2)	6(2)
O(13A)	51(2)	32(2)	22(2)	10(1)	3(1)	15(1)
O(14A)	26(1)	24(1)	20(1)	8(1)	5(1)	-2(1)
C(15A)	26(2)	38(2)	30(2)	10(2)	2(2)	-1(2)
N(16A)	32(2)	19(2)	24(2)	9(1)	7(2)	4(1)
C(17A)	39(2)	23(2)	29(2)	13(2)	13(2)	9(2)
C(18A)	31(2)	24(2)	32(2)	10(2)	10(2)	5(2)
O(19A)	67(2)	47(2)	32(2)	17(2)	23(2)	29(2)
C(20A)	28(2)	31(2)	17(2)	11(2)	5(2)	3(2)
O(21A)	36(2)	26(2)	52(2)	8(1)	15(2)	8(1)
O(22A)	47(2)	37(2)	41(2)	20(2)	15(2)	21(1)
O(23A)	42(2)	45(2)	95(3)	38(2)	42(2)	16(2)
C(1B)	21(2)	28(2)	20(2)	10(2)	3(2)	3(2)
C(2B)	27(2)	30(2)	22(2)	12(2)	7(2)	6(2)
C(3B)	20(2)	25(2)	23(2)	10(2)	3(2)	-4(1)
C(4B)	26(2)	25(2)	20(2)	7(2)	6(2)	-2(2)
C(5B)	24(2)	22(2)	21(2)	7(2)	2(2)	-4(1)
C(6B)	35(2)	32(2)	25(2)	15(2)	9(2)	4(2)
O(7B)	25(1)	32(2)	29(2)	8(1)	5(1)	4(1)
C(8B)	32(2)	36(2)	23(2)	12(2)	7(2)	10(2)
O(9B)	39(2)	35(2)	23(2)	11(2)	5(2)	8(2)
N(10B)	31(2)	25(2)	22(2)	11(1)	9(2)	3(1)
C(11B)	24(2)	22(2)	24(2)	10(2)	8(2)	0(2)
C(12B)	31(2)	28(2)	29(2)	14(2)	5(2)	0(2)
O(13B)	45(2)	25(2)	26(2)	10(1)	10(1)	-5(1)
O(14B)	29(1)	27(1)	19(1)	8(1)	7(1)	2(1)
C(15B)	30(2)	45(3)	32(2)	12(2)	10(2)	2(2)
N(16B)	34(2)	24(2)	19(2)	11(1)	2(2)	1(1)
C(17B)	33(2)	21(2)	28(2)	13(2)	1(2)	0(2)
C(18B)	32(2)	27(2)	20(2)	9(2)	-1(2)	-1(2)
O(19B)	37(2)	34(2)	39(2)	18(1)	2(2)	-6(1)
C(20B)	28(2)	28(2)	24(2)	14(2)	7(2)	2(2)
O(21B)	33(2)	25(2)	54(2)	7(1)	0(2)	1(1)
O(22B)	46(2)	56(2)	53(2)	33(2)	-11(2)	-13(2)
O(23B)	26(2)	33(2)	114(4)	25(2)	5(2)	4(1)
O(1W)	33(2)	30(2)	29(2)	7(1)	7(1)	5(1)
O(1C)	160(9)	55(4)	53(4)	8(3)	33(5)	22(5)
O(1D)	69(10)	74(11)	86(14)	9(9)	-21(10)	34(9)
O(2C)	172(11)	34(4)	39(4)	12(3)	-34(6)	-1(5)
O(2D)	67(8)	170(16)	106(12)	97(12)	-7(8)	-34(9)
O(3D)	89(8)	70(7)	58(6)	24(5)	13(6)	-4(6)

	x	у	Z	\mathbf{U}^{eq}
H(2A1)	4474	2636	8675	14(10)
H(2A2)	7187	2378	8426	20(11)
H(6A1)	8539	258	8669	23(11)
H(6A2)	6870	-374	9283	25(12)
H(7A)	2590(140)	1500(60)	9550(80)	90(30)
H(8A1)	6840	2756	10535	51(17)
H(8A2)	7838	1568	10730	49(16)
H(9A)	10150(150)	3150(16)	10160(60)	70(20)
H(10A)	2980(70)	1390(30)	6026(16)	10(9)
H(11A)	5394	3449	7384	25(12)
H(12A)	4500	4288	6016	33(13)
H(12B)	5458	3020	5563	26(12)
H(13A)	1025	3626	5106	32(14)
H(15A)	-63	-1381	6711	44(16)
H(15R)	-932	-1385	5530	44(16)
H(15C)	-741	_174	6451	33(13)
$H(16\Delta)$	4050(80)	_2190(40)	6840(20)	30(13)
$H(17\Delta)$	4050(00)	-2988	8254	46(16)
H(17R)	6862	-2071	8756	60(20)
$H(21\Delta)$	560(100)	4960(70)	7730(60)	70(20)
H(2R1)	2220	4900(70)	1817	18(10)
	4804	9170	2060	42(15)
II(2D2)	4004	10274	1644	42(15)
LI(6D1)	1725	10274	1044	$\frac{43(13)}{24(12)}$
11(0D2)	1020(190)	7856(14)	870(70)	24(12)
LI(0D1)	-1020(180)	200(14)	220	90(30)
	4368	0430 7259	329	35
П(8D2)	2352	/358	24	35
H(8D3)	1838	8571	-312	35
H(8D4)	4545	8495	316	35
H(9B)	1894	9404	-444	47
H(9 [°])	752	6754	-239	42
H(10B)	2340(90)	8560(40)	4410(20)	19(11)
H(11B)	3627	6580	3028	33(13)
H(12C)	3800	5633	4336	24(12)
H(12D)	5501	6903	4793	27(12)
H(13B)	1362	6241	5319	29(13)
H(15D)	-1896	10854	3769	56(18)
H(15E)	-1586	10864	4959	41(15)
H(15F)	-2072	9619	4060	41(15)
H(16B)	1800(100)	12080(40)	3702(16)	25(12)
H(17C)	1014	13267	2646	33(13)
H(17D)	1912	12293	1745	28(12)
H(21B)	-1820(60)	4790(60)	2670(60)	70(20)
H(1W1)	-1600(110)	5220(60)	5610(40)	70(20)
H(1W2)	-1840(90)	4600(60)	4610(30)	56(19)

Table S5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters ($Å^2 \times 10^3$).

D-H···A	$d_{\mathrm{D-H}}$	d _{H···A}	<i>d</i> D···A	<(DHA)
O(7A)-H(7A)O(9A)#1	0.840(15)	1.92(4)	2.710(4)	156(9)
O(9A)-H(9A)O(2C)	0.847(15)	1.86(4)	2.655(9)	156(8)
O(9A)-H(9A)O(3D)#2	0.847(15)	2.08(5)	2.838(14)	148(8)
N(10A)-H(10A)O(14B)#3	0.867(15)	2.248(16)	3.113(4)	176(4)
O(13A)-H(13A)O(1W)	0.84	1.81	2.646(4)	175.5
N(16A)-H(16A)O(13B)#3	0.882(15)	2.078(17)	2.957(5)	174(5)
O(21A)-H(21A)O(22A)#4	0.838(15)	1.74(4)	2.534(4)	157(8)
O(7B)-H(7B)O(1C)	0.843(15)	2.06(3)	2.889(8)	169(10)
O(7B)-H(7B)O(1D)	0.843(15)	2.25(6)	2.98(2)	145(9)
N(10B)-H(10B)O(14A)#5	0.875(15)	2.29(2)	3.123(4)	159(4)
N(10B)-H(10B)O(14B)	0.875(15)	2.30(5)	2.734(5)	110(4)
O(13B)-H(13B)O(1W)	0.84	1.85	2.691(4)	175.3
N(16B)-H(16B)O(13A)#5	0.882(15)	1.943(19)	2.812(5)	168(5)
O(21B)-H(21B)O(19B)#6	0.839(15)	1.652(16)	2.491(4)	177(8)
O(1W)-H(1W1)O(19A)#4	0.842(15)	1.85(3)	2.648(4)	159(7)
O(1W)-H(1W2)O(22B)#6	0.846(15)	1.97(4)	2.716(5)	147(6)

Table S6. Hydrogen bonds [Å and °].