Supplementary Material

LC–HRMS and Chemical Derivatization Strategies for the Structure Elucidation of Caribbean Ciguatoxins: Identification of C-CTX-3 and -4

Fedor Kryuchkov¹, Alison Robertson^{2,3}, Christopher O. Miles⁴ and Silvio Uhlig¹

¹ Toxinology Research Group, Norwegian Veterinary Institute, P.O. Box 750 Sentrum, Oslo 0106, Norway

² Department of Marine Sciences, University of South Alabama, 5871 University Drive North, Mobile, AL 36688, USA

³ Dauphin Island Sea Laboratory, 101 Bienville Blvd. Dauphin Island, AL 36528.

⁴ National Research Council, 1411 Oxford Street, Halifax, NS, B3H 3Z1, Canada

Table of contents

Figure S1	Extracted ion chromatograms and HRMS spectra of ciguatoxic fish (<i>S. barracuda</i>) extract before and after treatment with sodium borodeuteride.	S3
Figure S2	HRMS/MS spectrum of deuterated C-CTX-3/-4 (3/4)	S4
Figure S3	Comparison of HRMS/MS spectra of non- deuterated and deuterated C-CTX-3/-4 (3/4 and 5/6)	S5
Figure S4	Extracted ion chromatograms of key C-CTX-1/2 (1/2) fragments together with those of the H ⁺ and NH4 ⁺ adducts ions	S6
Figure S5	LC–HRMS chromatograms of C-CTX-1–4 (1–4) using a Vanquish C18+ UHPLC column and an acidic mobile phase	S7
Figure S6	LC–HRMS chromatograms of C-CTX-1–4 using a Vanquish C18+ UHPLC column and a neutral mobile phase	S 8
Figure S7	XIC for $[M-H_2O+H]^+$ of C-CTX-1/-2 (1 / 2) and HRMS spectra in fish reference material and in a ciguatoxic <i>S. barracuda</i> .	S9
Figure S8	Comparison of the HRMS/MS spectra of C-CTX-1/-2 (1/2) acquired in fish reference material and in a ciguatoxic S. barracuda.	S10

Figure S1. Extracted ion chromatograms (EIC, ± 5 ppm) and HRMS spectra of ciguatoxic fish (*S. barracuda*) extract before (top) and after (bottom) treatment with sodium borodeuteride. The upper trace shows the EIC for [M+H]⁺ of native C-CTX-3/-4 (**3**/**4**, blue line, *m*/*z* 1143.6412) together with its ¹³C isotopomer (*m*/*z* 1144.6535, red line), while the lower trace shows the increase in the EIC for *m*/*z* 1144.6535 (red line) due to [56-D]-C-CTX-3/-4 (**5**/6) from reduction of C-CTX-1/-2 (**1**/**2**) after treatment with sodium borodeuteride. The ¹³C isotopomer of **3**/**4** cannot be resolved from [M+H]⁺ of **5**/6.

Figure S2. LC-HRMS/MS spectrum from HCD of the [M+H]⁺ of the major isomer of [56-D]C-CTX-3/-4 (5/6) produced via reduction of 1/2 with NaBD4.

Figure S3. Comparison of *m*/*z* 510–610 of the HRMS/MS spectra of C-CTX-3/-4 (3/4) (top) and 56-deutero-C-CTX-3/-4 (5/6) (bottom).

Figure S4. Extracted ion chromatograms of key C-CTX-1/2 (1/2) product-ions and [M-H₂O+H]⁺ and [M-NH₄]⁺ of intact (parent) ions.

Figure S5. Extracted ion chromatograms (± 5 ppm, triplicate injections) for [M–H₂O+H]⁺ of C-CTX-1/-2 (**1**/**2**) and [M+H]⁺ of C-CTX-3/4 (**3**/**4**) in a ciguatoxic *S. barracuda* extract using a Vanquish C18+ UHPLC column and an acidic mobile phase. Ciguatoxicity of the fish extract was determined by MTT-N2A assay, data not shown.

Figure S6. Extracted ion chromatograms (± 5 ppm, triplicate injections) for [M–H₂O+H]⁺ of C-CTX-1/-2 (**1**/**2**) and [M+H]⁺ of C-CTX-3/-4 (**3**/**4**) in a ciguatoxic *S. barracuda* using a Vanquish C18+ UHPLC column and a neutral mobile phase. Ciguatoxicity of the fish extract was determined by MTT-N2A assay, data not shown.

Figure S7. Extracted ion chromatograms (± 5 ppm, upper layers) for [M–H₂O+H]⁺ of C-CTX-1/-2 (**1**/**2**) and HRMS spectra (shown in bottom) in fish reference material (shown in blue) and in a ciguatoxic *S. barracuda* (shown in red).

Figure S8. Comparison of the HRMS/MS spectra of C-CTX-1/-2 (1/2) acquired in fish reference material (shown in blue) and in a ciguatoxic *S. barracuda* (shown in red).