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Abstract: Five undescribed harziane-type diterpene derivatives, namely harzianol K (1), harzianol L
(4), harzianol M (5), harzianol N (6), harzianol O (7), along with two known compounds, hazianol
J (2) and harzianol A (3) were isolated from the deep-sea sediment-derived fungus Trichoderma sp.
SCSIOW21. The relative configurations were determined by meticulous spectroscopic methods
including 1D, 2D NMR spectroscopy, and HR-ESI-MS. The absolute configurations were established
by the ECD curve calculations and the X-ray crystallographic analysis. These compounds (1, and 4–7)
contributed to increasing the diversity of the caged harziane type diterpenes with highly congested
skeleton characteristics. Harzianol J (2) exhibited a weak anti-inflammatory effect with 81.8% NO
inhibition at 100 µM.

Keywords: Trichoderma; harziane diterpenes; NO inhibition

1. Introduction

The Trichoderma fungus, widely distributed in terrestrial and marine habitats, is a
kind of important renewable natural resource with high economic value and application
prospects. Among them, the species in the marine environment, together with Penicillium
and Aspergillus, contributed to the discovery of more than half of the new terpenoids from
marine fungi [1,2]. However, Trichoderma was rarely reported from deep marine ecosystems.
During 2013 to 2019, a total of 151 novel compounds were reported from deep marine
derived-fungi, of which 41.2% were from Penicillium, 28.1% were from Aspergillus, while
only 1 Trichoderma was reported from the deep marine system [1].

Harziane-type diterpenes, containing unique tetracyclic 6-5-4-7 carbon skeleton with
5–6 contiguous stereocenters, are rarely encountered in other organisms. The unprece-
dented skeleton was initially discovered in 1992 from Trichoderma harzianum Rifai [3]. To
date, only 44 harziane diterpenes have been reported, almost all of which were discov-
ered solely from Trichoderma sp., except for heteroscyphsic acid A from Chinese liverwort
Heteroscyphus coalitus [4]. These compounds exhibited extensive bioactivities, including
anti-bacterial [5–10], cytotoxic [8,11–13], anti-inflammatory [13,14], anti-HIV [14], phyto-
toxic [15], algicidal [5,7,16,17], and marine zooplankton toxic activities [6,16] (Table S1 and
Figure S1).

During our ongoing investigations on inhibitors from deep-sea fungi [18–23] against
nitric oxide (NO) production induced by lipopolysaccharide (LPS), Trichoderma sp. SC-
SIOW21, which was isolated from sea sediment at a depth of over 1000 m, was found
to be active. The subsequent cultivation of this strain resulted in the isolation of seven
harziane diterpenes, including five new compounds. Herein, we report the isolation and
identification procedures, as well as the anti-inflammatory, anti-fungal, and anti-bacterial
activities of these compounds.
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2. Results and Discussion

The fungus Trichoderma sp. SCSIOW21 was cultured at room temperature under static
conditions. The BuOH extraction was fractioned and purified by silica gel, medium pres-
sure ODS column chromatography, and semi-preparative HPLC to obtain seven harziane
diterpenes (Figure 1).
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Figure 1. Compounds 1–7 and harziandione.

Compound 1 was isolated as colorless crystal, with molecular formula as C20H28O3
using HRESIMS data. The IR spectrum showed strong absorption bands for two carbonyl
groups at 1734 and 1695 cm−1, which was consistent with those reported for harzian-
dione [3]. The 1H NMR and 13C NMR spectroscopy spectra along with HSQC data
suggested five methyls, four methylenes, four methines, and seven quaternary carbon
atoms (Tables 1 and 2). The above NMR spectroscopy signal pattern was similar to the
prior report for harziandione [3], except for 3 major differences: an additional hydroxy
group at δ 5.31, an absent methylene group, and an extra hydroxy group at δ 4.24 compared
with harziandione. The up-field shifts of H-8 to δ 4.24 and C-8 to δ 72.4 suggested this
group connected to C-8 (Tables 1 and 2). 1H-1H COSY correlations between 8-OH and H-8,
H-8 and H-7, as well as HMBC correlations from 8-OH to C-8 and C-7 also confirmed the
elucidation (Figure 2). This conclusion was further secured by careful analysis of 1D, 2D
NMR spectroscopy data, and compound 1 was named as harzianol K, with the molecular
framework shown in Figure 2.
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Table 1. 1H NMR spectroscopy (600 MHz) a of compounds 1, 4–7.

1 4 5 6 7

No. δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz) δH (J in Hz)

1
2 2.06, d (8.0) 2.26, dd (11.0, 8.0)

2-OH 4.17, s 4.14, s
3α 1.81, m b 1.77, m 1.78, m 1.80, m
3β 1.32, dd (12.0, 7.0) 1.30, dd (12.0, 7.0) 1.23, m 1.31, m b

4α 2.92, dd (17.0, 11.0) 1.80, m 1.85, m 1.89, m 1.85, m
4β 1.84, d (17.0) 1.64, d (12.0) 1.60, m 1.48, dd (14.0, 6.0) 1.34, m
5 3.38, m 2.13, t (8.0) 2.71, t (8.0) 2.75, t (8.0) 2.32, m b

6
7α 2.16, dd (15.0, 5.0) 1.76, m b 2.11, dd (15.0, 5.0) 2.14, dd (15.0, 5.0) 2.35, m b

7β 1.36, dd (15.0, 2.0) 1.28, m 1.36, dd (15.0, 2.0) 1.30, dd (15.0, 2.0) 1.90, ddd (13.0, 7.0,
2.0)

8α 4.24, d (5.0, 2.0) 2.52, m 4.21, dd (5.0, 2.0) 4.22, dd (5.0, 2.0) 1.98, dd (13.0, 7.0)

8β 1.88, ddd (16.0, 6.0,
2.0) 1.29, m b

8-OH 5.31, brs 5.45, brs
9

10
11

12α 2.77, d (16.0) 2.60, d (16.0) 2.65, d (16.0) 2.71, d (16.0) 2.98, d (16.0)
12β 2.33, d (16.0) 2.26, d (16.0) 2.29, d (16.0) 2.33, d (16.0) 2.34, d (16.0)
13
14 2.57, dd (11.0, 9.0) 2.21, dd (12.0, 9.0) 2.33, dd (12.0, 9.0) 1.56, m 2.07, d (6.0)

15α 1.98, m 1.58, dd (13.0.0, 9.0) 1.65, m 1.84, m 3.65, d (6.0)
15β 1.49, dd (14.0, 9.0) 1.69, dd (13.0,12.0) 1.57, m 1.35, m
16 0.93, s 0.81, s 0.82, s 0.80, s 0.84, s
17 0.91, s 0.66, s 0.70, s 0.84, s 0.89, s

18α 1.18, d (7.0) 3.41, m 3.85, d (10.0) 3.89, d (10.0) 0.99, d (7.0)
18β 3.28, m 3.23, m 3.26, m

18-OH 4.39, t (6.0)
19 1.53, s 1.39, s 1.46, s 1.51, s 1.43, s
20 2.04, s 2.01, s 2.03, s 2.03, s 2.02, s

a Recorded in DMSO-d6; b overlapped signals.

Table 2. 13C NMR spectroscopy (150 MHz) a data of Compounds 1, 4–7.

1 4 5 6 7

No. δC, Type δC, Type δC, Type δC, Type δC, Type

1 50.5, C 48.5, C 49.2, C 51.1, C 48.2, C
2 58.9, CH 77.9, C 77.4, C 51.8, CH 75.9, C
3 213.6, C 33.2, CH2 33.5, CH2 25.5, CH2 30.4, CH2
4 43.2, CH2 22.6, CH2 23.9, CH2 22.0, CH2 25.2, CH2
5 31.4, CH 40.1, CH 41.7, CH 42.4, CH 27.5, CH
6 51.7, C 52.7, C 53.1, C 45.7, C 50.7, C
7 33.0, CH2 30.2, CH2 34.3, CH2 33.7, CH2 29.3, CH2
8 72.4, CH 29.3, CH2 73.5, CH 73.1, CH 31.5, CH2
9 144.4, C 145.5, C 143.0, C 143.1, C 145.8, C

10 150.4, C 149.7, C 150.0, C 150.6, C 149.6, C
11 199.6, C 198.2, C 200.0, C 200.1, C 198.2, C
12 58.8, CH2 59.2, CH2 58.9, CH2 58.9, CH2 59.1, CH2
13 40.1, C 40.0, C 40.7, C 40.9, C 40.0, C
14 52.2, CH2 50.6, CH 50.5, CH 42.4, CH 60.1, CH
15 26.1, CH 35.6, CH2 35.7, CH2 27.1, CH2 73.5, CH
16 25.6, CH3 19.7, CH3 20.1, CH3 25.8, CH3 20.5, CH3
17 23.4, CH3 18.9, CH3 19.0, CH3 21.9, CH3 19.7, CH3
18 22.8, CH3 63.9, CH2 65.6, CH2 65.9, CH2 19.9, CH3
19 20.2, CH3 21.6, CH3 21.0, CH3 21.0, CH3 22.3, CH3
20 20.1, CH3 22.0, CH3 20.2, CH3 20.2, CH3 21.9, CH3

a Recorded in DMSO-d6.
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Figure 2. Key 2D NMR spectroscopy correlations of compounds 1 and 4–7.

The relative configuration of 1 was determined by 1H-1H ROESY spectrum. The 1H-1H
correlations—H-14 and H-2, H-14 and Me-16, H-5 and Me-19, Me-18 and 8-OH—indicated
that H-2, H-14, Me-16, Me-17, and Me-18 were located on one side of the molecule, whereas
Me-19 and H-5 were located on the opposite side (Figure 3).
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The experimental CD spectrum of 1 was in accordance with the theoretically calculated
ECD curve of the 2S, 5R, 6R, 8S, 13S, and 14S configuration. A total of 3 cotton effects were
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observed at 245 nm (negative), 292 nm (positive), and 351 nm (positive) (Figure 4a). Eventu-
ally, the stereocenters of 1 were determined as 2S, 5R, 6R, 8S, 13S, and 14S unambiguously
through analysis of X-ray single-crystallography (Figure 5).

Figure 4. Experimental and calculated (for 2S, 5R, 6R, 8S, 13S, 14S) ECD spectra of 1 (a), experimental and calculated (for
2S, 5R, 6R, 13S, 14S) ECD spectra of 4 (b), experimental and calculated (for 2S, 5R, 6R, 8S, 13S, 14S) ECD spectra of 5 (c),
experimental and calculated (for 2S, 5R, 6R, 8S, 13S, 14S) ECD spectra of 6 (d), Experimental and calculated (for 2S, 5R, 6R,
13S, 14S, 15S) ECD spectra of 7 (e).

Mar. Drugs 2021, 19, x  6 of 12 
 

 

 
Figure 5. X-ray single-crystallography structures of 1 and 2. The ellipsoids of non-hydrogen atoms 
are shown at 30% probability levels for crystal structures. 

Compounds 2 and 3 were confirmed as known compounds, namely harzianol J [8] 
and harzianol A [13], by comparing their NMR spectroscopy data with those reported in 
the literature (Tables S2 and S3) [8]. Nevertheless, the absolute configuration of 2 was not 
determined previously. Herein we report it as 2S, 5R, 6R, 13S, and 14S by X-ray diffraction 
(Figure 5). 

Compounds 4–7 were all purified as colorless gum or amorphous solids. The molec-
ular formulas of 4–7 were established as C20H30O3, C20H30O4, C20H30O3, and C20H30O3 based 
on HRESIMS data, respectively. 

The IR spectrum of 4 showed strong absorption band for carbonyl group at 1716 cm−1. 
The 1H and 13C NMR spectra of 4 (Tables 1 and 2) were similar to those of harzianol A (3) 
[13] except for two major differences: the lack of a methyl group and the presence of an 
extra hydroxy methylene group. The δH signals at 3.41, 3.28, 4.39 (OH) and the δC signal at 
63.9 suggested that one methyl group was hydroxylated. The 1H-1H COSY cross-peaks 
between the hydroxy proton and methylene proton, methylene proton and H-5 (δH 2.13), 
along with the HMBC correlations from the hydroxy proton to C-5 (δC 40.1) and C-18 (δC 

63.9), proved the hydroxy group connected to C-18 unambiguously. The molecular frame-
work of 4 was consequently elucidated as harzianol L (Figures 1 and 2). The relative con-
figuration of 4 was determined by ROESY spectra which showed the same correlation 
patterns as those of 1 (Figure 3). The absolute configuration of 4 was determined as 2R, 
5S, 6R, 13S, and 14S by comparison of experimental CD spectrum with its calculated ECD 
data (Figure 4b). 

The IR spectrum of 5 showed strong absorption band for carbonyl group at 1732 cm−1. 
The NMR spectroscopy data of 5 was almost consistent with those of 4, except that a meth-
ylene group was missing, whereas an extra oxygenated methine group (δH 4.21 and δC 

73.5) was detected. The signals suggested that one methylene group was oxygenated (Ta-
bles 1 and 2). 1H-1H COSY correlations between the hydroxy proton and H-8, between H-
8 and H-7, confirmed the connection of the hydroxy group to C-8. The structure was then 
determined as harzianol M by a detailed analysis of 2D NMR data (Figures 1 and 2). In 
the ROESY spectra, H-8 showed correlations with Me-19, indicating the β configuration 
of the 8-hydroxy group (Figure 3). The absolute configurations of 5 were established as 
2R, 5S, 6R, 8S, 13S, and 14S based on ECD calculation (Figure 4c). 

The IR spectrum of 6 showed a strong absorption band for carbonyl group at 1734 
cm−1. The NMR spectroscopy spectra of 6 matched well with those of 5, with just 1 more 
extra methine group (δH 2.26 and δC 51.8) and 1 less oxygenated quaternary carbon signal 
(Tables 1 and 2). 1H-1H COSY correlations between the methine proton and H-3, H-15 
suggested the methine group was located at C-3. The molecular framework of 6 was con-
sequently established as harzianol N through a detailed analysis of 2D NMR spectroscopy 
spectra (Figures 1 and 2). The absolute configurations of 6 were determined as 2S, 5S, 6R, 
8S, 13S, and 14S through detailed analysis of ROESY spectra and ECD calculation (Figures 
3 and 4d). 

Figure 5. X-ray single-crystallography structures of 1 and 2. The ellipsoids of non-hydrogen atoms are shown at 30%
probability levels for crystal structures.

Compounds 2 and 3 were confirmed as known compounds, namely harzianol J [8]
and harzianol A [13], by comparing their NMR spectroscopy data with those reported in
the literature (Tables S2 and S3) [8]. Nevertheless, the absolute configuration of 2 was not
determined previously. Herein we report it as 2S, 5R, 6R, 13S, and 14S by X-ray diffraction
(Figure 5).

Compounds 4–7 were all purified as colorless gum or amorphous solids. The molec-
ular formulas of 4–7 were established as C20H30O3, C20H30O4, C20H30O3, and C20H30O3
based on HRESIMS data, respectively.

The IR spectrum of 4 showed strong absorption band for carbonyl group at 1716 cm−1.
The 1H and 13C NMR spectra of 4 (Tables 1 and 2) were similar to those of harzianol A
(3) [13] except for two major differences: the lack of a methyl group and the presence of an
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extra hydroxy methylene group. The δH signals at 3.41, 3.28, 4.39 (OH) and the δC signal at
63.9 suggested that one methyl group was hydroxylated. The 1H-1H COSY cross-peaks
between the hydroxy proton and methylene proton, methylene proton and H-5 (δH 2.13),
along with the HMBC correlations from the hydroxy proton to C-5 (δC 40.1) and C-18
(δC 63.9), proved the hydroxy group connected to C-18 unambiguously. The molecular
framework of 4 was consequently elucidated as harzianol L (Figures 1 and 2). The relative
configuration of 4 was determined by ROESY spectra which showed the same correlation
patterns as those of 1 (Figure 3). The absolute configuration of 4 was determined as 2R, 5S,
6R, 13S, and 14S by comparison of experimental CD spectrum with its calculated ECD data
(Figure 4b).

The IR spectrum of 5 showed strong absorption band for carbonyl group at 1732 cm−1.
The NMR spectroscopy data of 5 was almost consistent with those of 4, except that a
methylene group was missing, whereas an extra oxygenated methine group (δH 4.21 and
δC 73.5) was detected. The signals suggested that one methylene group was oxygenated
(Tables 1 and 2). 1H-1H COSY correlations between the hydroxy proton and H-8, between
H-8 and H-7, confirmed the connection of the hydroxy group to C-8. The structure was
then determined as harzianol M by a detailed analysis of 2D NMR data (Figures 1 and 2).
In the ROESY spectra, H-8 showed correlations with Me-19, indicating the β configuration
of the 8-hydroxy group (Figure 3). The absolute configurations of 5 were established as 2R,
5S, 6R, 8S, 13S, and 14S based on ECD calculation (Figure 4c).

The IR spectrum of 6 showed a strong absorption band for carbonyl group at 1734 cm−1.
The NMR spectroscopy spectra of 6 matched well with those of 5, with just 1 more ex-
tra methine group (δH 2.26 and δC 51.8) and 1 less oxygenated quaternary carbon signal
(Tables 1 and 2). 1H-1H COSY correlations between the methine proton and H-3, H-15
suggested the methine group was located at C-3. The molecular framework of 6 was conse-
quently established as harzianol N through a detailed analysis of 2D NMR spectroscopy
spectra (Figures 1 and 2). The absolute configurations of 6 were determined as 2S, 5S,
6R, 8S, 13S, and 14S through detailed analysis of ROESY spectra and ECD calculation
(Figures 3 and 4d).

The IR spectrum of 7 showed strong absorption band for carbonyl group at 1718 cm−1.
The 1H and 13C NMR spectroscopy data of 7 were similar to those reported for harzianol A
(3) (Table S3) [13], with an extra oxygenated methine group (δH 3.65 and δC 73.5) and
a disappeared methylene group, indicating the oxygenation of the methylene group
(Tables 1 and 2). The molecular framework was confirmed as harzianol O (Figures 1 and 2)
through a detailed analysis of 2D NMR spectroscopy data, including the key COSY cor-
relation between the methine proton and H-14 (δH 2.07), which suggested the hydroxy
group connected to C-15. The ROESY correlations between H-15 and Me-19 suggested the
β configuration of the 15-hydroxy group (Figure 3). The absolute configurations of 7 were
determined as 2S, 5R, 6R, 13S, 14S, and 15R by ECD calculation.

The anti-inflammatory activity of compounds 1–7 was measured by NO production
inhibitory assay [20]. The cytotoxicity of these compounds was tested to avoid false-positive
results due to cell death, and none of them showed cytotoxicity at the concentrations of
25–100 µM (Figure 6). Hazianol J (2), harzianol A (3) and harzianol O (7) exhibited the
strongest NO production inhibitory activity at 100 µM with inhibitory rates at 81.8%,
46.8%, and 50.5%, respectively. The IC50 of Hazianol J (2) was 66.7 µM, while harzianol
L (4) and harzianol K (1) only showed weak inhibition at the highest concentration of
100 µM (Figure 6). Compounds without “top” hydroxy groups at C-8 and C-18 (2,3, and 7)
exhibited higher NO production inhibitory activities compared to the compounds with
more hydroxy groups (1, 4, 5, and 6). These hydroxy groups may reduce the membrane
permeability and reduced the activities.



Mar. Drugs 2021, 19, 689 7 of 11

Mar. Drugs 2021, 19, x  7 of 12 
 

 

The IR spectrum of 7 showed strong absorption band for carbonyl group at 1718 cm−1. 
The 1H and 13C NMR spectroscopy data of 7 were similar to those reported for harzianol 
A (3) (Table S3) [13], with an extra oxygenated methine group (δH 3.65 and δC 73.5) and a 
disappeared methylene group, indicating the oxygenation of the methylene group (Tables 
1 and 2). The molecular framework was confirmed as harzianol O (Figures 1 and 2) 
through a detailed analysis of 2D NMR spectroscopy data, including the key COSY corre-
lation between the methine proton and H-14 (δH 2.07), which suggested the hydroxy 
group connected to C-15. The ROESY correlations between H-15 and Me-19 suggested the 
β configuration of the 15-hydroxy group (Figure 3). The absolute configurations of 7 were 
determined as 2S, 5R, 6R, 13S, 14S, and 15R by ECD calculation. 

The anti-inflammatory activity of compounds 1–7 was measured by NO production 
inhibitory assay [20]. The cytotoxicity of these compounds was tested to avoid false-posi-
tive results due to cell death, and none of them showed cytotoxicity at the concentrations 
of 25–100 µM (Figure 6). Hazianol J (2), harzianol A (3) and harzianol O (7) exhibited the 
strongest NO production inhibitory activity at 100 µM with inhibitory rates at 81.8%, 
46.8%, and 50.5%, respectively. The IC50 of Hazianol J (2) was 66.7 µM, while harzianol L 
(4) and harzianol K (1) only showed weak inhibition at the highest concentration of 100 
µM (Figure 6). Compounds without “top” hydroxy groups at C-8 and C-18 (2,3, and 7) 
exhibited higher NO production inhibitory activities compared to the compounds with 
more hydroxy groups (1, 4, 5, and 6). These hydroxy groups may reduce the membrane 
permeability and reduced the activities. 

 
Figure 6. LPS-induced NO production (a), and viability (b) of RAW 264.7 macrophages by 1–7 
treatment. The values represent the mean ± SEM of three independent experiments. *, p < 0.05; **, p 
< 0.01; ***, p < 0.001 vs control. 

All of the compounds were examined for their activities against plant pathogenic 
fungi (Helminthosporium maydis, Gibberella sanbinetti, Botrytis cinerea Pers, Fusarium ox-
ysporum f. sp. cucumerinum, Penicillium digitatum). None of the compounds exhibited ob-
vious activities at the test concentration of 100 µg/mL. Since fungi from Trichoderma sp. 
are widely used as bio-control agents, many harziane diterpenes were investigated 

Figure 6. LPS-induced NO production (a), and viability (b) of RAW 264.7 macrophages by 1–7
treatment. The values represent the mean ± SEM of three independent experiments. *, p < 0.05;
**, p < 0.01; ***, p < 0.001 vs. control.

All of the compounds were examined for their activities against plant pathogenic fungi
(Helminthosporium maydis, Gibberella sanbinetti, Botrytis cinerea Pers, Fusarium oxysporum f. sp.
cucumerinum, Penicillium digitatum). None of the compounds exhibited obvious activities at
the test concentration of 100 µg/mL. Since fungi from Trichoderma sp. are widely used as
bio-control agents, many harziane diterpenes were investigated against plant pathogenic
fungi [3,9,10,16,24]. However, the results were controversial. Although harziandione and
isoharziandione, the structure of which was latterly revised as harziandione [10], were
mentioned as antifungal agents, the activities of the pure compounds were not clarified in
the original literature [3,24]. Harzianone was found to be inactive against Colletotrichum
lagenarium and Fusarium oxysporum at 30 µg/disk using a disk diffusion assay [10]. De-
oxytrichodermaerin and harzianol A were not active against Botrytis cinerea, Fusarium
oxysporum, Glomerella cingulata, and Phomopsis asparagi at 40 µg/disk [16]. Harzianone E
was not active against Candida albicans by traditional broth dilution assay [9]. According to
the previous studies and our results, harziane diterpenes did not show anti-fungal activity.

3. Materials and Methods
3.1. General Experimental Procedures

The NMR spectroscopy spectra were obtained on the Bruker ASCEND 600 MHz
NMR spectrometer equipped with CryoProbe (Bruker Biospin GmbH, Rheinstetten, Ger-
many). Optical rotations were recorded on an Anton Paar MCP-100 polarimeter (Anton
Paar GmbH, Austria), with MeOH as solvent. UV spectra were recorded on a UV-1800
spectrometer (Shimadzu Co., Kyoto, Japan). IR spectra were measured on the Nicolet
6700 spectrometer (Thermo, Madison, WI, USA). CD spectra were measured on a J-815
spectropolarimeter (Jasco Co., Japan). Crystallographic data was collected on an XtaLAB
Pro: Kappa single four-circle diffractometer using Cu Kα radiation (Rigaku Co., Tokyo,
Japan). HRESIMS spectra data were recorded on a MaXis quadrupole-time-of-flight mass
spectrometer (Bruker Biospin GmbH, Rheinstetten, Germany). Normal and reverse phase
column chromatography (C. C.) was performed using silica gel (200–300 mesh, Qingdao
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Haiyang Chemical, Qingdao, China) and ODS (YMC Co., Ltd., Kyoto, Japan), respectively.
Normal and reverse phase thin-layer chromatography (TLC) was conducted using silica
gel 60 F254 and RP-18 F254 (Merck Millipore Co., Darmstadt, Germany). HPLC was per-
formed using Shimadzu LC-16P system (Shimadzu Co., Kyoto, Japan) with YMC-ODS-A
C18 Column (20 × 250 mm, 5 µm) for separation. Analytical and HPLC grade reagents
(Macklin Co., Shanghai, China) were used for isolation procedures.

3.2. Fungal Strain and Fermentation

The fungal strain, which was isolated from the South China deep-sea sediment sample
(2134 m depth), was identified as Trichoderma sp. SCSIOW21 by ITS sequencing and
morphology analysis. Its sequence data was deposited at GenBank (accession number:
KC569351.1) and the strain was deposited at the Laboratory of Microbial Natural Products,
Shenzhen University, China. The fungal strain was activated on potato dextrose agar
dishes containing 3% sea salt at 28 ◦C for 3 days and cultured in modified rice broth (rice
50.0 g sprayed with 3% sea salt water 60.0 mL for each 500 mL flask) statically at room
temperature for 30 days.

3.3. Extraction and Isolation

A total of 100 mL of water saturated BuOH were added in each of the Erlenmeyer
flasks which contained fermentation broth. The BuOH extract was collected after 12 h and
evaporated under vacuum. The extraction was repeated three times and the total yield was
12.9 g.

The BuOH extract was subjected to a silica gel chromatography with a gradient of
CH2Cl2-MeOH-Water (100:0:0, 50:1:0, 20:1:0, 10:1:0, 5:1:0.1, 3:1:0.1, 1:1:0.1, and 0:0:100, v/v/v,
2.0 L each) to give 8 fractions (A–H). Fraction B and C were combined and subjected to a
medium pressure ODS column with a gradient of MeOH-Water (5:5, 6:4, 7:3, 8:2, and 9:1)
to give 5 subfractions. Subfraction 2 was separated by a semi-preparative HPLC column
(Acetonitrile (ACN)-Water, 40:60) to give compound 1 (tR 52.1 min, 9.0 mg). Subfraction
3 was purified by a semi-preparative HPLC (ACN-Water, 47:53) to give compounds 2
(tR 49.2 min, 3.0 mg), 7 (tR 32.8 min, 0.8 mg), and 6 (tR 34.1 min, 0.8 mg). Subfraction 5
was separated by a semi-preparative HPLC (ACN-Water, 70:30) to give compound 3 (tR
15.9 min, 1.0 mg). Fraction D was subjected to a medium pressure liquid chromatography
YMC-ODS-A C18 Column with a gradient of MeOH-Water (1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2,
and 9:1) to give 14 subfractions. Subfraction 7 was purified by a semi-preparative HPLC
(ACN-Water, 18:82) to give compound 5 (tR 29.6 min, 1.6 mg). Subfraction 9 was purified
by a semi-preparative HPLC (ACN-Water, 23:77) to give compound 4 (tR 41.5 min, 1.0 mg).

3.4. Spectral Data of the Compounds

Harzianol K (1): colorless crystal; [α]25
D +64.1 (c 0.36, MeOH); UV (MeOH) λmax (log ε)

252 (3.77) nm; ECD (0.12 mg/mL, MeOH) λmax (∆ε) 245 (−36.7), 292 (+7.4), 351 (+10.6) nm;
IR (KBr) vmax 3402 (s), 2927 (m), 1734 (s), 1695 (s), 1190 (m), 1043 (m) cm−1; 1H NMR and
13C NMR spectroscopy data (DMSO-d6, 600 and 150 MHz), see Tables 1 and 2; HREIMS
m/z: 317.2115 [M + H]+ (calcd for C20H29O3, 317.2117).

Harzianol L (4): colorless gum; [α]25
D +15.3 (c 0.28, MeOH); UV (MeOH) λmax (log ε)

256 (3.89) nm; ECD (0.14 mg/mL, MeOH) λmax (∆ε) 247 (−36.7), 349 (+2.7) nm; IR (KBr)
vmax 3371(s), 2922 (m), 1716 (s), 1653 (m), 1149 (m), 1056 (m) cm−1; 1H NMR and 13C NMR
spectroscopy data (DMSO-d6, 600 and 150 MHz), see Tables 1 and 2; HREIMS m/z: 319.2278
[M + H]+ (calcd for C20H31O3, 319.2273).

Harzianol M (5): colorless gum; [α]25
D +14.1 (c 0.15, MeOH); UV (MeOH) λmax (log ε)

251 (4.07) nm; ECD (0.15 mg/mL, MeOH) λmax (∆ε) 245 (−8.2), 358 (+4.8) nm; IR (KBr)
vmax 3360 (s), 2922 (m), 1732 (s), 1668 (m), 1122 (m), 1024 (m) cm−1; 1H NMR and 13C NMR
spectroscopy data (DMSO-d6, 600 and 150 MHz), see Tables 1 and 2; HREIMS m/z: 335.2229
[M + H]+ (calcd for C20H31O4, 335.2222).
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Harzianol N (6): amorphous solid; [α]25
D +10.1 (c 0.18, MeOH); UV (MeOH) λmax

(log ε) 252 (4.19) nm; ECD (0.18 mg/mL, MeOH) λmax (∆ε) 220 (+1.7), 245 (−4.9), 353 (+2.4)
nm; IR (KBr): vmax 3379 (s), 2924 (m), 1734 (s), 1647 (m), 1153 (m), 1049 (m) cm−1; 1H
NMR and 13C NMR spectroscopy data (DMSO-d6, 600 and 150 MHz), see Tables 1 and 2;
HREIMS m/z: 341.2089 [M + Na]+ (calcd for C20H30NaO3, 341.2093).

Harzianol O (7): amorphous solid; [α]25
D +12.0 (c 0.14, MeOH); UV (MeOH) λmax

(log ε) 256 (4.11) nm; ECD (0.14 mg/mL, MeOH) λmax (∆ε) 255 (−1.8), 340 (+1.1) nm; IR
(KBr) vmax 3360 (s), 2922 (m), 1718 (s), 1660 (m), 1147 (m), 1058 (m) cm−1; 1H NMR and 13C
NMR spectroscopy data (DMSO-d6, 600 and 150 MHz), see Tables 1 and 2; HREIMS m/z:
319.2269 [M + H]+ (calcd for C20H31O3, 319.2273).

3.5. X-ray Crystal Analysis of Compounds 1 and 2

The crystals of compounds 1 and 2 were obtained from concentrated MeOH solutions
and 1 suitable crystal for each compound was selected. The crystals were scanned using
Cu Kα radiation (λ = 1.54184 Å) on the XtaLAB AFC12 (RINC) Kappa single diffraction in-
strument, the structures of which were solved by the Olex2 software, the SHELXT [25], and
the SHELXL [26] package with the parameters corrected by the least-squares minimization
method.

The single-crystal data has been submitted to the Cambridge Crystallographic Data
Centre database, with CCDC 2093540 for 1 and CCDC 2093541 for 2. The data can be down-
loaded for free from the website http://www.ccdc.cam.ac.uk/ (accessed on 7 November
2021).

X-ray crystal data of 1: C20H28O3 (M = 316.42 g/mol): monoclinic, space group P21 (no. 4),
a = 8.73030 (10) Å, b = 11.43810 (10) Å, c = 8.99520 (10) Å, β = 110.2970 (10)◦, V = 842.468 (16)
Å3, Z = 2, T = 100.01 (10) K, µ (Cu Kα) = 0.648 mm−1, Dcalc = 1.247 g/cm3, 8392 reflections
measured (10.486◦ ≤ 2θ ≤ 148.666◦), 3306 unique (Rint = 0.0193, Rsigma = 0.0222) which were
used in all calculations. The final R1 was 0.0273 [I > 2σ(I)] and wR2 was 0.0705 (all data),
Flack parameter 0.04 (5).

X-ray crystal data of 2: C40H60O4 (M = 604.88 g/mol): monoclinic, space group P21 (no.
4), a = 7.84120 (10) Å, b = 9.31180 (10) Å, c = 23.1108 (2) Å, β = 93.9960 (10)◦, V = 1683.35
(3) Å3, Z = 2, T = 100.01(10) K, µ(Cu Kα) = 0.576 mm−1, Dcalc = 1.193 g/cm3, 19,167
reflections measured (7.67◦ ≤ 2 θ ≤ 148.826◦), 6578 unique (Rint = 0.0295, Rsigma = 0.0304)
which were used in all calculations. The final R1 was 0.0343 [I > 2σ(I)] and wR2 was 0.0890
(all data), Flack parameter 0.03 (9).

3.6. ECD Computational Methods

The conformations of compounds 1 and 4–7 were searched by Marvin Sketch software
(optimization limit = normal, diversity limit = 0.1) ignoring the rotation of methyl and
hydroxy groups. Geometric optimization of the molecules in MeOH (Figures S49–S53)
was carried out at 6-31G (d, p) level using DFT/B3LYP through Gaussian 09 software [27],
within the 3 kcal/mol energy threshold from the global minimum [28]. The ECD curve was
simulated based on TD-DFT calculations and drawn with sigma = 0.3 by SpecDis software
(version 1.71, Berlin, Germany). The calculated data was also produced by Boltzmann’s
weighting and magnetization based on experimental values.

3.7. MTT and NO Production Inhibitory Assay

The cytotoxicity and NO production inhibitory activity were examined using RAW
264.7 macrophages, and the detailed methods were reported previously [20].

3.8. Anti-Fungal Activities

The anti-fungal activities were tested on a 96-well plate by mycelial growth inhibitory
assay [29], using actidione as the positive control. Five plant pathogenic fungal species
(Helminthosporium maydis, Gibberella sanbinetti, Botrytis cinerea Pers, Fusarium Oxysporum f.

http://www.ccdc.cam.ac.uk/
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sp. cucumerinum, Penicillium digitatum) were donated by CAS Key Laboratory of Tropical
Marine Bio-resources and Ecology, Chinese Academy of Sciences.

4. Conclusions

Herein, we reported the isolation, structure elucidation, and biological activities of
seven harziane diterpenes, including five new compounds from a deep-sea derived fungus,
Trichoderma sp. SCSIOW21. The stereo configurations of the new compounds, harzianol K
(1), harzianol L (4), harzianol M (5), harzianol N (6), and harzianol O (7) were characterized
by ECD calculations. Hazianol K (1) and harzianol J (2) were unambiguously determined
by X-ray single crystallographic analysis. Hazianol J (2), harzianol A (3), and harzianol O
(7) exhibited weak NO production inhibitory activity. All of the compounds did not show
any anti-fungal activities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md19120689/s1, including detailed 1D and 2D NMR data, ECD calculations, HRESIMS
spectra for compounds 1–7, as well as a brief summary of reported literatures about harziane type
diterpenes from 1992 to 2021.
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