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Abstract: The global rise of infectious disease outbreaks and the progression of microbial resistance
reinforce the importance of researching new biomolecules. Obtained from the hydrolysis of chitosan,
chitooligosaccharides (COSs) have demonstrated several biological properties, including antimicro-
bial, and greater advantage over chitosan due to their higher solubility and lower viscosity. Despite
the evidence of the biotechnological potential of COSs, their effects on trypanosomatids are still
scarce. The objectives of this study were the enzymatic production, characterization, and in vitro
evaluation of the cytotoxic, antibacterial, antifungal, and antiparasitic effects of COSs. NMR and
mass spectrometry analyses indicated the presence of a mixture with 81% deacetylated COS and
acetylated hexamers. COSs demonstrated no evidence of cytotoxicity upon 2 mg/mL. In addition,

COSs showed interesting activity against bacteria and yeasts and a time-dependent parasitic inhibi-
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1. Introduction

The advance of antimicrobial resistance and the climate crisis outline an alarming sce-
nario. Antimicrobial resistance is diminishing the treatment options for microbial diseases,
such as bacteria, yeast, and parasites, leading to a post-antibiotic era [1,2]. In addition,
Attribution (CC BY) license (https://  8lobal warming can directly modify infectious diseases by affecting the pathogen, the host-
creativecommons.org/licenses /by / vector relation, and the transmission environment. Thus, it would lead to a geographical
40/). expansion of vector-borne diseases, as well as a reduction in human immunity [3,4]
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A climatic suitability model study suggests an increased number of leishmaniases
vector species in Europe under future climatic conditions [5]. A rise in temperature would
also prompt a shorter life cycle of Trypanosoma cruzi, which impacts the transmission
of Chagas disease [6]. Cases of Chagas disease have been registered in non-endemic
areas, such as European countries, the United States, and Canada, as a result of migratory
flows [7,8].

Leishmaniasis and Chagas disease are neglected tropical diseases (NTDs) caused by
Trypanosoma cruzi and Leishmania sp., respectively, protozoa from the Trypanosomatidae
family [9]. Currently, T. cruzi is endemic in 21 Latin American countries and infects 6 to
7 million people [10]. Likewise, leishmaniasis is endemic in 18 Pan-American countries [11].
Both conditions are serious health problems leading to substantial morbidity and mor-
tality. However, the available treatments for these parasitic diseases exhibit high rates of
adverse effects and toxicity, thus highlighting the importance and urgency of new therapy
options [12-15].

In this scenario, chitin is a natural polysaccharide commercially obtained from the
shells of sea arthropods. Annually, from the seafood processing industry, 6 to 8 million
tons of shell waste are generated globally; however, most of it is incorrectly discarded in
nature [16]. Chitosan is an N-acetyl-D-glucosamine (GlcNAc) and D-glucosamine (GIcN)
copolymer obtained from the partial deacetylation of chitin. Chitosan is biocompatible, non-
toxic, and also has biodegradable proprieties, hence it is broadly studied in many fields [17].
It has been explored for its antibacterial activity against Gram-positive and Gram-negative
bacteria [18,19]. Different mechanisms have been proposed for the antimicrobial activ-
ity of chitosan, such as the perturbation of ion transport on the microorganisms [19,20].
Additionally, the cationic nature of chitosan leads to an augmented bioadhesion in the
microorganism’s membranes, such as fungal membranes, for example [20]. We believe that
this property of chitosan can also be explored against parasites from the Trypanosomatidae
family. However, a wide range of variables involved with this polysaccharide, such as high
molecular mass, deacetylation degree, the pattern of acetylation, and mainly its solubility
character, remain as the main barriers to its broad use in the biomedical area. Thus, we
hypothesized that it is possible to tailor these limitations by preparing small and soluble
chitooligosaccharides (COSs), which can be designed and have their properties controlled
for this purpose.

Previous studies have shown the antimicrobial [21], anti-inflammatory [22], antitu-
moral [23], and antioxidant [24] activities of COSs, as well their potential use in Alzheimer
disease [25]. More details on the biological properties and applications of COSs are de-
scribed elsewhere [26,27]. Recently, COSs have been exploited in nanotechnology aiming
to tackle microbial resistance [28], and also tumor imaging and therapy [29] and drug-
delivery [30]. The structural characteristic of COSs regarding their action mechanisms,
such as degree of deacetylation (DD), degree of polymerization (DP), the pattern of acetyla-
tion (PA), and molecular weight (MW), are direct outcomes from the type of hydrolysis
performed, such as chemical, physical or enzymatic hydrolysis [24,31]. In our recently
published paper [32], the performance of Bacillus toyonensis chitosanase was greater in COS
production than other commercial enzymes after immobilization, evidencing the stability
of this enzyme, in a prospect to their use at industrial scale.

Hence, the search for new molecules with activity against T. cruzi and Leishmania
sp. that are effective and with fewer adverse events is emphasized. Once, only a few
studies described the effect of COSs against parasites from the Trypanosomatidae fam-
ily [33]; this fact, therefore, stimulated our investigation of the trypanocidal activity of
these oligomers. This study reports the enzymatic hydrolysis of chitosan to produce a COS
mixture using chitosanases obtained from B. toyonensis, identified and isolated earlier by
our research group [34]. Following the evaluation of the broad antimicrobial effects of
COSs on bacteria, yeast, and trypanosomatids T. cruzi and L. amazonensis in vitro, as well
the morphological alterations on these parasites caused by COSs incubation, we aimed
to confirm our hypothesis about the biological potential of these oligomers. The COSs
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produced were characterized by 1D and 2D NMR and mass spectroscopy. Our results
indicate a broad antimicrobial action of COS mixture, with an interesting time-dependent
action upon both parasites. To our knowledge, this is the first time that the effects of COSs
upon trypanomatids with SEM images are described. The possible transformation of a sea-
food processing residue into a molecule of biotechnological interest with pharmacological
activities results in a positive ecological, economic and biomedical impact.

2. Results
2.1. COS Production and Analysis

COSs were generated by the enzymatic hydrolysis of chitosan using B. toyonensis
chitosanase. To elucidate the structural characteristics of COS, the oligosaccharide was
analyzed by NMR and mass spectrometry.

2.1.1. Nuclear Magnetic Resonance Spectroscopy

The structural elucidation of COSs was established by the interpretation of uni- (*H
and '3C-DEPTq) and bidimensional (‘H-'H COSY, 'H-13C HSQC, and 'H-3C HMBC)
NMR analysis. Data demonstrated the presence of a mixture of COSs with the predomi-
nance of GlcN over GIcNAc. A deacetylation degree of 81.14% was determined by applying
the integration values in Equation (1) [35].

The 'H NMR spectrum (Figure 1A) displayed signals between &y 3.2-4.3 assigned to
the Hp ¢ from GlcN and GlcNAc monomers. Furthermore, the duplet on 17 4.99 (J = 6.3 Hz)
was characteristic of the Hj, anomeric hydrogen of COSs with (3-1-4 glycosidic bonds [36].
The DEPTq-'>C NMR spectrum (Figure 1B) showed overlapping spectral lines between
8¢ 99.8 and 101.0, characteristic of anomeric carbons and signals between 6c 71.0 and
79.0 compatible with oxymethine C3, Cy4, and Cs carbons from the 3-GlcN and 3-GlcNAc
units, whereas spectra lines with inverted amplitude at ¢ 59.7-60.0 were assigned to
methylene Cg4 carbons. This spectrum also permitted the identification of C,—N carbons
in 6c 56.0 and 55.4 and the methyl carbon from GlcNAc monomers at 6c 21.9 [36,37]. The
'H-'H-COSY (Figure 2) revealed sequential connectivity of the hydrogens Hj (5y 4.99)
and H; (615 3.25), H, and Hj (81 4.0), and Hs (8 4.10) with the diastereotopic hydrogens
2Hg (0y 4.28 and 4.05) from the GlcN units, the majority monomer. Due to the overlap
of the contour diagram of GIcN on COSY, it was not possible to correlate the data from
the GIcNAc unit. Further analysis of the correlations observed in the HSQC spectrum
(Figure 3) confirmed the attribution of each hydrogen to the respective carbon and ratified
the presence of 3-GlcN and (3-GlcNAc units in the COS mixture [38,39]. The correlation
observed in the HMBC spectrum (Figure 4) of the methyl hydrogens at 555 2.38 to carbonyl
carbon at 8¢ 174.4 (*Jcy) confirmed the presence of an acetyl group of the GIcNAc units.
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Figure 1. Unidimensional NMR spectra of chitooligosaccharides (COSs) (D,0O, 300 MHz). (A) H spectrum; (B) B spec-
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Figure 2. COSY 2D NMR spectrum of COS (D,0, 300 MHz).
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Figure 3. HSQC 2D NMR spectrum of COS (D,0, 300 MHz).
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Figure 4. HMBC 2D NMR spectrum of COS (D0, 300 MHz).

2.1.2. Mass Spectrometry

The oligomers in the COS mixture were identified by HPLC-MS/MS (ESI-QTOF).
The non-hydrolyzed chitosan was removed by gel permeation chromatography (GPC),
and three fractions were collected (COSG1, COSG2, and COSG3) for the HPLC-MS/MS.
This pre-purification process allowed a lower suppression effect noted initially for the
reaction sample, and also decreased the viscosity, which was necessary especially for the
chromatographic system and spray formation. As demonstrated in Figure S1, the oligomers
co-eluted approximately between 2.2 and 2.9 min, and three small peaks were also noted
around 19 min in Figure S2. Besides low yield, it was not possible to separate or isolate
the oligomers. However, all fractions showed a peak near 2.5 min with the presence of
the ion m/z 1133 (Figure 5A). Figure 5B shows the COSG3 mass spectra of the peak at
2.5 min and ions from m/z 1050 to 1250. The ion m/z 1133 was identified as a hexamer
with three acetylation moieties. The MS/MS spectrum for m/z 1133 (Figure 5C) allowed
the presumption that the structure was an acetylated hexamer (Figure 5D). The hexamer in
one extremity was composed of two units of GlcN followed by three GIcNAc units, and,
at the other extremity, GlcN. This sequence was proposed by the loss of GlcN/GlcNAc
units generating ions m/z 971, 771, 566, and 362 ion fragmentation from the m/z 1133, as a
common fragmentation pathway for saccharides [40].
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Figure 5. (A) HPLC-MS/MS chromatogram of the ion m/z 1133 in the fractions COSG1 (dark blue),
COSG2 (blue), and COSG3 (light blue); (B) MS spectrum between 1/z 1050 to 1250 of the peaks of 2.3
to 2.9 min from COSG3; (C) MS/MS from the ion m/z 1133 fragmentation of COSG3; (D) Proposed
structure of hexamer m/z 1133 and fragmentation (A: GlcN and B: GIcNAc).

2.2. Biocompatibility Assay

MTT assay was used to evaluate the cytotoxic effect of COSs and chitosan (CHI) on
kidney epithelial cells of the African green monkey (Vero E6, ATCC CRL-1586) and murine
macrophages cell lines (RAW 267.4, ATCC TIB-71). After 24 h incubation, there was no
indication of chitosan or oligomer toxicity in the tested cell lines (Figure 6). The incubation
of COSs with RAW cells exhibited a rise in the MTT reduction of 64.5% + 2.6, 42% + 10, and
60.7% + 8.9 at the concentrations of 0.25 mg/mL, 0.5 mg/mL, and 1 mg/mL, respectively,
which suggests an increase in the metabolism or in cellular proliferation (Figure 6B).
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Figure 6. MTT reduction after 24h of cell incubation with COS5, COS, and chitosan (CHI) (0.0625-2 mg/mL) or Dulbecco’s
Modified Eagle Medium (DMEM) medium supplemented with 10% FBS (v/v). (A) Vero E6 cells; (B) RAW 264.7 cells. Values
are expressed as mean =+ SD (n = 3). ** p < 0.01, and *** p < 0.001, compared to the control group (100% viability).

2.3. The Antimicrobial Activity of COSs

Minimal inhibitory concentration (MIC) evaluation of COSs was performed employing
ATCC bacteria and yeast in the microdilution method. Figure 7 shows the heat map with
the percentage of growth inhibition of COS concentrations on microorganisms. The heat
map evidenced the concentration-response effect of COSs, with notable inhibition even
below the MIC values (Table 1). COSs exhibited a higher antimicrobial effect upon Gram-
positive bacteria and Candida yeast; MIC for S. epidermidis and C. albicans were <0.25 and
0.5 mg/mL, respectively. Interestingly, 1 mg/mL of COS on C. albicans and 2 mg/mL on
C. tropicalis had a lower inhibition rate than the inferior concentration of the same oligomer

in these yeasts.
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Figure 7. Heat map of different microorganisms’ growth inhibition after COS treatment for 24 h.
Results are expressed as the mean percentage of inhibition compared to the positive group of

each microorganism.
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Table 1. Minimal inhibitory concentration (MIC) values of COSs upon different microorganisms.

Microorganism MIC
K. pneumoniae (ATCC 10031) >2 mg/mL
P. aeruginosa (ATCC 27853) 1 mg/mL
E. coli (ATCC 25922) >2 mg/mL
S. epidermidis (ATCC 12228) <0.25 mg/mL
E. faecalis (ATCC 29212) 2 mg/mL
S. aureus (ATCC 29213) 1 mg/mL
C. albicans (ATCC 90028) 0.5 mg/mL
C. tropicalis (ATCC 13803) 1 mg/mL

2.4. Antiparasitic Activity of COSs

Parasite inhibition was investigated by incubating COSs with epimastigote forms of
T. cruzi and promastigote forms of L. amazonensis, and assessed by resazurin reduction.
COSs demonstrated similar outcomes in both tested trypanosomatids. The groups treated
with COSs showed a greater reduction in resazurin than the control group, suggesting a pro-
liferation of the parasite. However, a shift in parasite response to COSs occurred after 72 h,
with the decrease in resazurin indicating parasite death. Therefore, the chitosan oligomers
displayed a time-dependent effect on the tested parasites. The concentration of 400 pg/mL
exhibited greater inhibition in both parasites: 30.79% =+ 2.51 against L. amazonensis after
72 h (Figure 8A), and 66.18% = 5.27 against T. cruzi after 144 h (Figure 8B).

(A) (B)
Leishmania amazonensis Trypanasoma cruzi
100+ 100+
] 24h [ 24h
754 3 48h 751 3 48h
§ 501 = 72h § 50- = 72h
5 3 '
: * =
N 0 N3 0=
-25 -25
-50 T T T -50 T T T
100 200 400 100 200 400
Concentration (ng/mL) Concentration (ung/mL)

Figure 8. (A) COSs’ effects on promastigotes of L. amazonensis after different incubation times (B) COSs’ effects on
epimastigote forms of T. cruzi after different incubation times. The values are expressed as the mean percentage of inhibition

+SEM (n

=3).

In the SEM images, trypanosomatids are observed as elongated cells with a thin
singular flagellum and a smooth surface (Figures 9A and 10A). After 72 h of incubation
with COSs, morphological alterations such as rough surface and membrane disruption
were seen in the promastigotes of L. amazonensis (Figure 9B,C). Additionally, the presence
of a net that adheres to the parasites, forming aggregates, is noticed in Figure 9D. This
same net is visible in epimastigote forms of T. cruzi treated with COSs (Figure 10B,C).



Mar. Drugs 2021, 19, 110

11 0f 20

Figure 9. SEM images of (A) promastigote forms of L. amazonensis; (B-D) promastigote treated with
400 pg/mL COSs after 72 h of incubation.

Figure 10. SEM images of (A) epimastigote forms of T. cruzi; (B,C) epimastigote treated with
400 png/mL COSs after 144 h of incubation.

To investigate the composition of this particular net, Figure 9B underwent an atomic
composition analysis using the EDS technique (Figure 11). The presence of carbon and
nitrogen concludes that the net is an organic material. Nonetheless, it is not possible to
certify whether the net is either the COS or the extravasate of the internal contents of the
parasites, but it is probably a combination of both oligomer and extravasate.
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Figure 11. Atomic composition map by EDS of Figure 7 of L. amazonensis treated with COSs after
72 h. Blue spots indicate silicon atoms, red spots indicate carbon, and green spots indicate nitrogen.

3. Discussion

Chitosan hydrolysis using chitosanases from B. toyonensis generated a biological
active COS mixture in a very short reaction time. The structural characterization by NMR
determined a deacetylation degree of 81.14% for the COS mixture, and the MS analysis
indicated the presence of an acetylated hexamer within the mixture. This corroborates
earlier studies that suggested that COSs with a DP of 5-6 are closely related to biological
activity [41,42].

Apart from COSs, chitosan hydrolysis also produces GlcN and GIcNAc monomer
units. Glucosamine was previously related to inducing cytotoxicity in a COS mixture [43].
Therefore, in order to investigate if the hydrolysis of chitosan would promote molecules
with cell toxicity, the biocompatibility assay was performed. The resemblance of MTT
reduction in chitosan and oligomers indicates the maintenance of cell viability, suggesting
the absence of alterations in the cytocompatibility. The biocompatibility of chitosan, as
well as its oligomers, has already been demonstrated [43,44]. Additionally, COS induced
cell growth in RAW cells suggests a proliferative and a probable immunostimulant effect.
The immunomodulation potential of COSs has been described as an anti-inflammatory
property to inhibit IL-6, IL1f3, and NO [45,46].

The antimicrobial evaluation of COSs was performed using Gram-positive and Gram-
negative bacteria and Candida species. Between authors, there is no consensus on what
type of bacteria COSs exert a higher effect. Li et al. demonstrated that COSs exert a higher
effect upon Gram-positive than Gram-negative bacteria at the same pH; however, a DP > 5
is essential for antibacterial activity [47]. In more recent work, COSs with an average MW
of 17.2 kDa demonstrated a higher inhibition of Gram-negative bacteria [21]. Therefore,
COSs” MW, DD, and PA play major roles in antimicrobial activity characteristics [48,49].

In our results, the MIC for S. aureus (1 mg/mL) was lower than that defined for COSs
with a MW < 5 kDa [50]. The MIC value found for COSs against P. aeruginosa was also lower
than described for the conjugation of COSs with gold nanoparticles (=4 mg/mL) [51]. It
was not possible to determine the MIC for E. coli in our experiment since it was higher than
2 mg/mL; however, this is in agreement with the MIC value of 5 mg/mL described for
E. coli treated with acetylated COSs with an average MW of 17.2 kDa [21]. Interestingly,
hexamers had a better inhibitory effect upon E. coli among purified COSs, ranging from
monomers to hexamers—once more demonstrating that our COS mixture has suitable
structural characteristics of antimicrobial potential. The MIC value of COSs against S.
epidermidis was also lower than 0.25 mg/mL, and thus not identified. The effect of COSs
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upon these bacteria is poorly investigated, with an MIC value of at least 0.6 mg/mL related
to hetero-COS [52].

The interaction between COSs and the bacterial membrane leads to membrane disrup-
tion and consequent intracellular leakage [53]. This property was explored in the creation of
silver nanoparticles functionalized with COSs to obtain antibacterial synergism [28]. COSs
have greater solubility and a smaller size than chitosan, and they have also demonstrated a
greater interaction capacity and ease of access in DPPC (dipalmitoyl phosphatidylcholine)
and DPPG (dipalmitoyl phosphatidylglycerol) membranes, and the ability to penetrate
the bacteria acting internally [54,55]. The advantage of COSs over chitosan can be seen in
the practical example of the analysis of COS-Streptomycin conjugates against Pseudomonas
aeruginosa biofilm [56].

C. albincans and C. tropicalis are medically important species of Candida regarding their
virulence and current clinical resistance to commonly used antifungals, such as azoles [57].
COSs were active against these yeasts, with an MIC of 0.5 mg/mL for C. albicans, similar to
that described for oligomers with 10 kDa (MIC of 512 pg/mL) [58], and a better activity
against C. albicans and C. tropicalis than chitosan hydrogel [59]. COS activity against other
fungal species is described elsewhere [60,61]. Concerning the lower growth inhibition
of C. albicans and C. tropicalis treated with a higher concentration of COSs, this can be
explained by the presumable COS self-aggregates formation, preventing the interaction of
the carbohydrate with the bacteria [62].

The antifungal mechanism of COSs is similar to the antibacterial membrane disrup-
tion [63]; the SEM images also demonstrated membrane deformation and the suppression
of hyphal formation [58]. The synergistic action of COSs with commercial antifungals used
in human health and agriculture was formerly investigated and underlines the potential of
these molecules in the combat against microbial resistance. Even when COSs did not impair
cell growth when interacting with the yeast membrane, they were able to cause sufficient
perturbations to potentialize the effect of Fluconazole in azole-resistant Candida [64,65].

Previous studies evaluating the antiprotozoal activity of COSs are scarce. Studies with
GIcN and GlcNAc demonstrated that these monomers cause rapid growth on procyclic
forms of T. brucei, followed by a decline in growth due to toxic or inhibitory effects after 5
days of incubation [66]. These results were similar to our observation on parasitic growth,
indicated by the rise in the resazurin reduction after COS incubation, and a later inhibitory
phase. GlcNAc cannot be consumed by this parasite, but it promotes effects such as a
metabolic shift in T. brucei [67]. The probable action of GlcNAc is linked to the interactions
with the membrane surface, such as the lecithin receptor [68], or by electrostatic interactions
with the sialic acid on the parasitical membrane [69]. Chitosan is also used as a drug-carrier
for Chagas disease [70,71].

The leishmanicidal activity was described for chitosan [72,73]. Recently, high molecu-
lar weight chitosan displayed a better inhibitory effect upon promastigote and amastigote
forms of L. major and L. mexicana than medium and low molecular weight chitosan, as
well as its oligomers. The suggested mechanism was the accumulation of chitosan on
the parasitophorous vacuole acting directly on the parasite [33]. Different from the Try-
panosome sp., the genus Leishmania can catabolize GIcNAc, and to a lesser degree GIcN,
in the interior of macrophages. Thus, the accumulation of hexosamine-phosphate could
lead to toxicity in the parasite [74].

Consequently, our research suggests that COSs can form a polymeric net that interacts
with the parasite, either preventing the locomotion and probably the nutrient exchanges
of the parasite through membrane receptors or disturbing the parasitic metabolism. After
72 h of incubation, toxic COS activity occurs upon the promastigote forms of L. amazo-
nensis, leading to morphological alterations, as seen in the SEM images. Even though the
morphological effects of COSs upon epimastigote forms of T. cruzi were not evident in
the SEM images, the oligomers also caused time-dependent inhibition of these parasites.
A similar feature of COSs forming aggregates with bacteria, which could interfere in the
nutrient exchange, was mentioned earlier [47,75]. Even if these interactions did not cause
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parasite death, it could make them more sensible, as it was discussed in the antifungal
mechanism [65].

Therefore, COSs’ characteristics of biocompatibility, higher water solubility, and adher-
ence visualized by a net in the SEM images, together with their broad antimicrobial effect
and demonstrated here for the first time for anti-Trypanosoma cruzi activity, reinforce the
use of COSs as a versatile biomaterial in health. The possibility of enhancing their pharma-
cological activity with a synergistic effect when combined with drugs, or in a drug delivery
system, is a trend to overcome bacterial resistance, and it can be a strategy, as well, in the
treatment of leishmaniasis and Chagas disease. Thus, this study expands the opportunities
of COSs’ application in biomedical science by demonstrating their antiprotozoal activity.

4. Materials and Methods
4.1. Materials

Low molecular weight chitosan (DD 85%) and 3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphen
yltetrazolium bromide (MTT) were obtained from Sigma-Aldrich Co (Saint-Louis, MO,
USA). The bicinchoninic Acid (BCA)Protein Assay kit was purchased from Thermo Fis-
cher Scientific (Waltham, MA, USA). A Hiprep 16/60 Sephacryl S-100 HR column was
purchased from GE Healthcare Bio-science (Uppsala, Sweden), and a LUNA phenyl-hexyl
column 250 x 4.6 x 5 pm was purchased from Phenomenex (Torrance, CA, USA). All other
chemical reagents used in this study were purchased commercially and were of adequate
analytical grade. B. toyonensis were provided by the Biochemistry Engineering Laboratory
from the Federal University of Rio Grande do Norte (UFRN), under the following regis-
tration number at the National System of Genetic Resource Management and Associated
Traditional Knowledge (SisGen): ADSAE98/Nov 2018.

4.2. Chitosanase Production

COSs were produced by enzymatic hydrolysis using chitosanases obtained by the
cultivation of Bacillus toyonensis CCT 7899. This strain was selected due to its production
of a stable chitosanase with optimum conditions at 55 °C and pH 6.0 [32,34]. Bacteria
were grown in liquid media, as previously described [34]. The broth was collected and
centrifugated to obtain the enzymatic extract. Enzymatic activity was measured using the
dinitrosalicylic acid method for quantification of reducing sugar [76], and total protein
was measured using the bicinchoninic acid method, using the BCA Protein Assay kit
(Thermofisher Scientific).

4.3. COS Production

A total of 2.5 mg of enzymatic extract, containing chitosanases, was added to 5 mL of
a solution of chitosan 1% (w/v) at pH 6.0. The hydrolysis was carried out in a water-bath
at 55 °C for 10 min, and it was stopped by placing the reaction tubes in boiling water
for 10 min [34]. The hydrolysate was centrifugated at 3062 x g for 20 min at 24 °C. To
the supernatant, ethanol 99% (v/v) was added and incubated at 4 °C overnight in order
to precipitate the COSs. The precipitate was collected by centrifugation and lyophilized
(COS) [77]. For performance assays, the samples were prepared as follows: COSs were
solubilized in acid water and chitosan (CHI) was solubilized in HCI 0.1N, and the final pH
of all the samples was 6.0 &= 0.5. Acid water was obtained by adjusting the pH of purified
water with a few microliters of an HCI 6N solution. The final pH was adjusted using a
diluted solution of HCI or NaOH.

4.4. COS Characterization

The oligomers were characterized using the Nuclear Magnetic Resonance (NMR)
technique with an NMR spectrometer (AVANCE III HD NMR SPECT 300 MHz, BRUKER,
Billerica, MA, USA). 'H and '3C one-dimensional and COSY, HSQC, and HMBC two-
dimensional spectra were obtained. Samples were dissolved in deuterated water. The
deacetylation degree of COSs was determined according to Equation (1), where Al corre-



Mar. Drugs 2021, 19, 110

15 of 20

sponds to the average area of the protons within the sugar ring C,-C¢ (3—-6 ppm) and A2
corresponds to the average area of the CHj protons from the GlcNAc unit (2 ppm) [35]:

DD(%) = [1 — ((6 x A2)/(3 x Al))] x 100, 1)

Prior to the mass spectrometry analysis, COSs (10 mg/mL) were injected into a Hiprep
16/60 Sephacryl 5-100 HR column in an AKTA system (GE Healthcare Chicago, IL, USA,
with eluent flow consisting of acetate buffer (0.1 M, pH 6.0) at a flowrate of 1 mL/min. The
fractions were analyzed with an HPLC-ESI-QToF-MS/MS. A LUNA phenyl-hexyl column
250 x 4.6 x 5 pm was used with 1 mL/min flow rate, an oven temperature of 30 °C, an
injection volume of 40 puL, and a mobile phase consisting of formic acid 0.1% (v/v) (A) and
formic acid in acetonitrile 0.1% (B). The gradient started at 2% (v/v) B for 10 min, followed
by raising from 2% to 100% B in 20 min, keeping at 100% B for 5 min, returning to the initial
conditions in 5 min, and keeping at 2% B during the last 5 min. The mass spectrometer was
employed using scan mode on ions between m/z 50 and 1500 and capillary 3.5 KV. The
fragmentation was set to automatic mode to the 5 most intense ions by each cycle of 3 s
and the collision energy varied for each ion. The drying gas was nitrogen and was set to
220 °C, 9 L/min, and 4.5 bar. Sodium trifluoroacetate 4 mg/mL was used as an internal
and external calibrator.

4.5. Biocompatibility Assay

Kidney epithelial cells from the African green monkey (Vero E6, ATCC CRL-1586) and
murine macrophages (RAW 264.7, ATCC TIB-71) were kindly supplied by the Laboratory
of Biotechnology of Natural Polymers at UFRN. Cells were grown in Dulbecco’s Modified
Eagle Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS)in 96-
well plates for 24 h at 37 °C and 5% CO2 until confluent. Increasing concentrations
of CHI or COSs (0.625-2 mg/mL) were added to the cells and incubated for 24 h at
37 °C and 5% CO2 [78]. Then, a solution of 2 mg/mL of 3-[4,5-dimethyl-thiazol-2-yl]-2,5-
diphenyltetrazolium bromide was added to the plates and incubated for 4 h [79]. Alcohol
96% was used to solubilize the formazan crystals, and absorbance was measured at 570 nm
in a microplate reader (Epoch—Biotek®, Winooski, VT, USA). Cells incubated in the absence
of the polymers were used as positive controls; cell viability was calculated based on the
positive control (100% cell growth) and expressed as a percentage of MTT reduction.

4.6. In Vitro Antimicrobial Activity of COSs

The microorganisms Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC
27853), Klebsiella pneumoniae (ATCC 10031), Staphylococcus aureus (ATCC 29213), Staphy-
lococcus epidermidis (ATCC 12228), Enterococcus faecalis (ATCC 29212), Candida albicans
(ATCC 90028), and Candida tropicalis (ATCC 13803) were obtained at the Clinical Mi-
crobiology Laboratory at UFRN and maintained in nutrient agar at 4 °C. Antimicrobial
assays were performed using the microdilution method in Mueller Hinton broth (MHB);
inoculums of 10> CFU/mL for bacteria and 10* CFU/mL for yeast were prepared as
mentioned in the Clinical and Laboratory Standards Institute (CLSI) guidelines [80,81].
COSs (0.25-2 mg/mL) were added in 96 well-plates together with the inoculum in MHB.
Then, plates were incubated at 35 &+ 2 °C at 200 rpm for 24 or 48 h. Microbial growth was
measured by the optical density at 595 nm in a microplate reader (Epoch Biotek, Winooski,
VT, USA). Wells containing only microorganism suspensions or sterile saline solution 0.9%
(w/v) were used as a positive and negative control of growth, respectively. The minimal
inhibitory concentration (MIC) was defined as the lowest concentration of the sample
capable of inhibiting the visible growth of the microorganism.
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4.7. In Vitro Antiparasitic Activity of COSs
4.7.1. Leishmania Amazonensis

Promastigote forms of L. amazonensis were cultivated in RPMI 1640 at 27 + 2 °C for
4 days until the log phase. A volume of 200 uL of a parasitic inoculum (107 parasites/mL)
was added to COSs, at concentrations of 25 to 400 pg/mL in a 96 well-plate, and incubated
for 24, 48, or 72 h at 27 £ 2 °C. Parasitic viability was measured by the resazurin reduction
assay. Briefly, 20 uL of 1 mM of resazurin was added to the plates after each incubation
time and then incubated again for 24 h. Absorbance was determined at 570 and 600 nm in
a microplate reader (Epoch Biotek, Winooski, VT, USA). The percentage of inhibition was
calculated using Equation (2):

% Inibition = 100 — ((A570t — (A600t x R0))/(A570c — (A600c x R0))) x 100, (2)

A570t: Absorbance of the treatment at 570 nm; A600t: Absorbance of the treatment at
600 nm; A570c: Absorbance of the control at 570 nm; A600c: Absorbance of the control at
600 nm. RO: Correction factor of the influence of the media on the resazurin reduction, the
product of absorbance of the media at 570 nm to the absorbance of the media at 600 nm [82].

4.7.2. Trypanosoma Cruzi

Epimastigote forms of T. cruzi were cultivated in LIT medium (Liver Infusion Triptose)
at 27 2 °C for 5 to 7 days until the log phase. A volume of 200 uL of a parasitic inoculum
(107 parasites/mL) was added to a 96 well-plate with COSs, at concentrations of 400 to
25 ng/mL, and incubated for 24, 48, 72, or 144 h at 27 + 2 °C. The parasitic viability was
measured by the resazurin reduction assay, as mentioned in 4.7.1.

4.7.3. Morphological Analysis Using Scanning Electron Microscopy

The morphology of epimastigote and promastigote forms of T. cruzi and L. amazonensis,
respectively, was visualized using scanning electron microscopy SEM-FEG ZEISS AURIGA
40 (Zeiss, Oberkochen, Germany). A concentration of 400 pg/mL of COSs was added to the
parasites (1 x 107 parasites/mL) and incubated for 72 or 144 h at 27 °C. After centrifugation
at 194x g, 4 °C for 10 min, the protozoa pellet was washed twice using saline solution 0.9%
(w/v). Cells were fixed with 2.5% glutaraldehyde in saline solution 0.9% (w/v) at 4 °C for
4 h, followed by dehydration using increasing concentrations of ethyl alcohol. Parasite
samples were sent to the Structural Characterization Laboratory of Materials of the Federal
University of Rio Grande do Norte (Natal, Brazil) for imaging [83].

4.8. Statistical Analysis

Data are expressed as mean =+ standard deviation. Statistical analysis was performed
using one-way analysis of variance (ANOVA) followed by Tukey’s test, with GraphPad
Prism software (version 7.00, GraphPad, San Diego, CA, USA). Data were considered
significant when the p-value was less than 0.05 (p < 0.05).

5. Conclusions

The biotechnological process involved in generating biological macromolecules from
seafood waste represents an advance in the green economy. Numerous studies have
been establishing the versatile use of COSs, especially in the biomedical area. In this
scenario, our study places itself by corroborating with previous investigations and adding
a new opportunity to explore the antiprotozoal effect of COSs, mainly against NTDs. The
hydrolysis of chitosan using the enzymatic extract obtained by B. toyonensis produced COSs
with biological activities in a short hydrolysis time. COSs did not produce cytotoxic effects
on normal cells and also exerted broad antimicrobial activity. The antiparasitic effect of
COSs was time-dependent, and they were also able to induce parasite aggregation and
membrane alterations. Additionally, further studies of the effect of COSs on these parasites
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in vitro and in vivo are still needed to better elucidate the action mechanism, enabling their
application in a pharmaceutical formulation as well as the clinical use of these oligomers.

Supplementary Materials: The following are available online at https://www.mdpi.com/1660-3
397/19/2/110/s1. Figure S1: Chromatogram HPLC-MS/MS of COS samples between 1.5 to 4 min
run. Orange: Chitosan; dark green: COSG1; green: COSG2; light green: COSGS3; Figure S2: A.
HPLC-MS/MS chromatogram from 19.2 to 20.1 min of the fractions COSG1 (dark blue), COSG2
(Blue), and COSGS3 (light blue); B. MS spectrum to the peak in 19.4 min from COSG3; C. MS spectrum
to the peak in 19.6 min from COSG3; D. MS spectrum to the peak in 19.8 min from COSG3.
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