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Abstract: Sargassum horneri (S. horneri) is a well-known brown seaweed widely distributed world-
wide. Several biological activities of S. horneri have been reported. However, its effects on lipid
metabolism and the underlying mechanisms remain elusive. In the present study, we examined
the inhibitory effect of the active compound “(−)-loliolide ((6S,7aR)-6-hydroxy-4,4,7a-trimethyl-
5,6,7,7a-tetrahydro-1-benzofuran-2(4H)-one (HTT))” from S. horneri extract on lipid accumulation
in differentiated adipocytes. MTT assays demonstrated that (−)-loliolide is not toxic to 3T3-L1
adipocytes in a range of concentrations. (−)-loliolide significantly reduced intracellular lipid accumu-
lation in the differentiated phase of 3T3-L1 adipocytes as shown by Oil Red O staining. Western blot
analysis revealed that (−)-loliolide increased the expression of lipolytic protein phospho-hormone-
sensitive lipase (p-HSL) and thermogenic protein peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1). Additionally, (−)-loliolide decreased expression of adipogenic and
lipogenic proteins, including sterol regulatory element-binding protein-1 (SREBP-1), peroxisome
proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding protein-α (C/EBP-α), and
fatty acid-binding protein 4 (FABP4) in 3T3-L1 adipocytes. These results indicate that (−)-loliolide
from S. horneri could suppress lipid accumulation via regulation of antiadipogenic and prolipolytic
mechanisms in 3T3-L1 cells. Considering the multifunctional effect of (−)-loliolide, it can be useful
as a lipid-lowering agent in the management of patients who suffer from obesity.

Keywords: Sargassum horneri; (−)-loliolide; lipid metabolism; 3T3-L1 adipocytes

1. Introduction

Due to its steadily increasing rates, obesity is regarded as a global epidemic and public
health concern [1]. Based on statistics, more than 2.1 billion people are either overweight
or suffer from obesity, and approximately 3.4 million obese patients die annually [2]. Pedi-
atric and childhood obesity have increased in the last few decades, with obese children
and adolescents accounting for approximately 21–24% of obesity patients [3]. Childhood
obesity is closely related to adult obesity, develops more easily into adult obesity, and is
accompanied by an increased risk of obesity-related diseases such as cancer and cardiovas-
cular disease [4–6]. Indeed, childhood obesity and obesity-related comorbidities increase
the incidence of cardiovascular disease and nonalcoholic fatty liver disease in children
and adolescents [7]. Therefore, several guidelines and programs have been reported for
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the treatment of childhood obesity [8]. The World Health Organization (WHO) defines
overweight and obesity as abnormal or excessive fat accumulation in the body, with a body
mass index (BMI) over 30. The imbalance of energy expenditure and calorie intake in the
human body can induce overweight or obesity. A number of complex interactions between
genetics, behavior, and environmental factors affects the development of obesity [9]. Obese
patients have high levels of triglyceride (TG), total cholesterol (TC), decreased high-density
lipoprotein (HDL), and abnormal low-density lipoprotein (LDL) composition [10]. High
TG and cholesterol levels can induce severe metabolic disorders [11]. Moreover, abnor-
mally elevated TG and cholesterol levels increase the risk of several comorbidities such as
diabetes mellitus, cardiovascular disease, and cancer [12]. Accordingly, obesity increases
the risk of metabolic diseases. Han and Mike (2016) reported that the clinical perspective
of obesity, metabolic syndrome, cardiovascular disease (CVD), and coronary heart diseases
(CHD) and their symptoms can be improved by decreasing TG, TC, and HDL levels [13].
Long-lasting overweight conditions exacerbate adverse effects, such as cardiometabolic
risk factors that induce cardiovascular diseases, including CHD, stroke, and diabetes mel-
litus [14]. Thus, commercial anti-obesity agents have been developed in the medicinal
industry to treat patients who suffer from obesity. Currently, several kinds of commercial
anti-obesity drugs have been developed worldwide [15]. Among these, orlistat (Xenical)
and sibutramine (Meridia) are the most commonly used anti-obesity agents to treat obe-
sity. Orlistat was approved by the U.S. Food and Drug Administration (FDA). In general,
Xenical reduces fat absorption from the intestine via suppression of gastric and pancreatic
lipase activity. This breaks down the TG and reduces fat accumulation in the body [16].
However, orlistat has some undesirable side effects such as oily bowel steatorrhea [17].
In addition, prolonged use of orlistat was also found to induce toxicity in the human
pancreas and kidney [18]. Sibutramine deactivates neurotransmitters, which are chemical
messengers between neurons and target cells. In turn, this blocks the reuptake of serotonin
and norepinephrine and may increase serotonin levels that induce satiety and decrease
appetite [19]. However, sibutramine also has various adverse effects, including headaches,
insomnia, and amnesia [20]. Therefore, the development of new natural anti-obesity agents
is an urgent requirement to treat obese patients without inducing side effects. Most studies
on obesity have focused on the potential beneficial effects of natural products from land
plants [21]. Furthermore, several publications have reported the excellent anti-obesity
activities of marine-derived active compounds [22,23].

Sargassum horneri (S. horneri) belongs to the Sargassum genus, which is abundant in
Korea and Japan. S. horneri extract has been used for medicinal purposes in traditional
medicine [24]. In addition, the active component of S. horneri showed various biological
properties, such as antioxidant, anti-inflammatory, anti-wrinkle, and immunomodulatory
activities [25]. (−)-loliolide ((6S,7aR)-6-hydroxy-4,4,7a-trimethyl-5,6,7,7a-tetrahydro-1-
benzofuran-2(4H)-one (HTT)) is composed of a series of pigment compounds and exhibits
antioxidant, anti-apoptotic, and antiviral activity [26–28]. However, the inhibitory effects of
(−)-loliolide from S. horneri on lipid accumulation have rarely been investigated. Kwon et al.
(2019) investigated the lipid inhibitory effect of an ethanol extract separated from S. horneri
on 3T3-L1 adipocytes [29]. In the present study, the inhibitory effects of (−)-loliolide on
lipid accumulation were determined in differentiated 3T3-L1 adipocytes [30]. Furthermore,
adipose-specific protein expression was determined to investigate the intracellular lipid
inhibitory mechanisms in vitro.

2. Results
2.1. (−)-loliolide Is not Cytotoxic and Inhibits Lipid Accumulation in Differentiated 3T3-L1 Cells

The cytotoxicity of different concentrations of (−)-loliolide (0.125, 0.25, 0.5, and 1 mM)
was investigated in 3T3-L1 cells (Figure 1A). At the tested range, (−)-loliolide did not show
cytotoxicity in 3T3-L1 cells. Thus, these nontoxic concentrations were selected for further
experiments. Next, differentiation of 3T3-L1 cells was induced to promote adipogenesis
and lipid accumulation. Figure 1B shows the accumulation of lipids in 3T3-L1 cells. High
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lipid accumulation was observed in the control group (untreated samples). However,
treatment with (−)-loliolide significantly decreased intracellular lipid accumulation in
differentiated 3T3-L1 cells. A significant reduction in lipid accumulation was detected in
the (−)-loliolide -treated group. The isolation and purification procedure of (−)-loliolide
from S. horneri were kindly described by Kim et al. (2020) [31] and the structure of (−)-
loliolide is represented in Figure 1D. These results indicate that supplementation with
(−)-loliolide significantly suppressed lipid accumulation in 3T3-L1 adipocytes.
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Figure 1. (−)-loliolide contrasts lipid accumulation in 3T3-L1 cells. (A) Cytotoxic effect of (−)-loliolide on cell viability in
3T3-L1 measured for 24 and 48 h. (B) Microscopic images of 3T3-L1 cells stained with Oil Red O (ORO) and (C) relative
lipid accumulation. (D) The structure of (−)-loliolide. All data are presented as mean ± SD (n = 3). Significant differences
were identified at **** p < 0.0001 compared to the control group.

2.2. (−)-loliolide Suppresses Adipogenic and Lipogenic Pathways in 3T3-L1 Cells

Next, Western blot analysis was performed to elucidate the potential inhibitory effect
of (−)-loliolide on expression of adipogenic and lipogenic proteins. The levels of adipogenic
proteins peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding
protein-α (C/EBP-α), and fatty acid-binding protein 4 (FABP4) were increased in control
cells, which were only treated to induce adipocyte differentiation [32]. However, adi-
pogenic protein expression was lower in the presence of (−)-loliolide. In particular, the
highest concentration of (−)-loliolide (1 mM) dramatically decreased the expression of the
adipogenic proteins (Figure 2). In addition, the levels of lipogenic protein sterol regulatory
element-binding protein-1 (SREBP-1) were significantly reduced following (−)-loliolide
treatment. Taken together, these results suggest that (−)-loliolide strongly suppressed
adipogenesis and lipogenesis by reducing expression of adipogenic and lipogenic proteins
in 3T3-L1 cells.
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Figure 2. (−)-loliolide regulates adipogenesis and lipogenesis pathway enzyme expression in 3T3-L1 cells. (A) Western
blot analysis of lipogenic SREBP-1 and adipogenic PPAR-γ, C/EBP-α, and FABP4. (B) Quantification graph for expression
of SREBP-1, PPAR-γ, C/EBP-α, and FABP4. All data are presented as mean ± SD (n = 3). Significant differences were
identified at **** p < 0.0001 compared to the control group.

2.3. (−)-loliolide Regulates Thermogenesis and Lipolysis in 3T3-L1 Cells

Next, we assessed whether (−)-loliolide stimulates the expression of thermogenic per-
oxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) and lipolytic phospho-
hormone sensitive lipase (p-HSL) in 3T3-L1 cells by Western blot analysis. As shown
in Figure 3, the expression of PGC-1α and p-HSL, which was low in the control group,
was considerably increased in (−)-loliolide-treated groups. These results suggest that
(−)-loliolide from S. horneri could regulate lipolysis in vitro in 3T3-L1 cells.
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3. Discussion

Obesity is regarded as a public health problem, and the overweight and obese pop-
ulations are steadily increasing [33]. Most importantly, the prevalence of obesity-related
complications has also grown in the past few decades [34–36]. Epidemiological obesity
studies have revealed that overweight and obese individuals worldwide account for 33%
of the total population [37]. Numerous anti-obesity mechanisms regulate lipid metabolism
in obese patients. Among these, the inhibition of lipid accumulation is one of the best
strategies to improve and treat obesity. According to in vitro and in vivo studies, inhibition
of adipogenic and lipolytic protein expression is one of the possible approaches to suppress
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lipid metabolism [38]. However, relatively low inhibitory effects of marine natural products
on lipid metabolism were reported compared to those from land plants. Hypolipidemic
effects of marine-derived polysaccharides have been reported [39–42]. Nevertheless, few
anti-obesity studies have been published on marine peptides, polyphenolic compounds,
and pigments [23,43–45]. Therefore, to fill this knowledge gap, we investigated the po-
tential inhibitory effect of the phenolic compound (−)-loliolide isolated from S. horneri on
lipid accumulation in 3T3-L1 cells.

Intracellular lipid accumulation is a normal process in the human body. However,
high-calorie food intake or overnutrition can cause excessive lipid accumulation in the
adipocytes, resulting in obesity and excess weight. Normally, intracellular lipid accu-
mulation in adipocytes is controlled by adipose-specific proteins, including lipogenic
protein SREBP-1 and adipogenic proteins PPAR-γ, C/EBP-α, and FABP4. Adipogenic and
lipogenic proteins play a crucial role in lipid metabolism, including lipid storage and syn-
thesis in 3T3-L1 cells [46]. Sterol regulatory element-binding proteins (SREBPs), including
SREBP-1a, SREBP-1c, and SREBP-2, are transcription factors. SREBP-1c regulates lipid
synthesis and sterol levels and acts in concert with carbohydrate response element-binding
protein (ChREBP) to stimulate de novo lipogenesis (DNL), which induces lipid synthesis
in the adipose and liver tissues [47]. PPAR-γ is regarded as the major adipogenic protein
that regulates lipid and glucose metabolism. Adipogenesis starts with the expression
of pro-adipogenic genes, including C/EBP-α, C/EBP-β, and C/EBP-γ, which stimulate
the expression of the key adipogenic protein PPAR-γ [48,49]. FABP4 is a lipid-trafficking
protein controlled by PPAR-γ that plays a pivotal role in the transport of lipids from the ex-
tracellular to the intracellular matrix in adipocytes [50]. According to Kim et al. (1998), the
expression of SREBP-1 specifically increases PPAR-γ activation by increasing endogenous
ligands; moreover, adipose differentiation is controlled by interactions of transcriptional
activation of PPAR-γ, C/EBPs, and SREBP-1 [51]. In addition, Horton et al. (2003) also
reported that SREBP-1 expression affects the gene expression of PPAR-γ and C/EBP-α [52].
It has been suggested that adipogenesis is a mechanism that sustains adipocyte functions.
p-HSL, known as TG lipase in adipose tissues, plays a critical role in maintaining energy
homeostasis and mobilization of stored fat in the body [53]. PGC-1α is a transcriptional
coactivator that regulates mitochondrial biogenesis by increasing the transcriptional acti-
vation of nuclear hormone receptors [54]. AMP-activated protein kinase (AMPK) plays
an important role in sensing intracellular ATP levels and energy balance within the cells.
According to Wan et al. (2014), AMPK regulates PGC-1α expression and mitochondrial
enzymes in adipose tissues [55]. In addition, phosphorylation of AMPK activates lipolytic
enzymes such as adipose TG lipase (ATGL) and HSL in white adipose tissues [56,57].

In this study, we evaluated the inhibitory effect of (−)-loliolide on lipid accumulation
in differentiated 3T3-L1 cells and further investigated the effect of this compound on li-
pogenic, adipogenic, lipolytic, and thermogenic proteins in 3T3-L1 cells. We demonstrated
the potential of (−)-loliolide to reduce expression of lipogenic protein SREBP-1 and adi-
pogenic proteins PPAR-γ, C/EBP-α, and FABP4. These results are consistent with previous
publications reporting hypolipidemic and anti-obesity activity of (−)-loliolide [58]. Fur-
thermore, we found that the lipolytic p-HSL and thermogenic PGC-1α protein expressions
were higher in 3T3-L1 cells treated with a low concentration of (−)-loliolide suggesting
that the range of 0.125 to 0.25 µg/mL is a critical concentration.

Our findings indicate that (−)-loliolide significantly reduced lipid accumulation via
regulation of adipogenic, lipolytic, and thermogenic proteins in 3T3-L1 cells.

4. Materials and Methods
4.1. Material and Reagents

The lipid staining dye Oil Red O (ORO, catalog: O0625), thiazolyl blue tetrazolium
bromide (MTT), cell differentiation reagents 3-isobutyl-1-methylxanthine (IBMX, cata-
log: I7018), dexamethasone (DM, catalog: D8893), and insulin (catalog: I5500) were pur-
chased from Sigma-Aldrich Co. (St. Louis, MO, USA). Dulbecco’s Modified Eagle’s
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Medium (DMEM, catalog: 12430-054) and supplements including bovine serum (BS,
catalog: 26170-043), fetal bovine serum (FBS, catalog: 16000-044), penicillin/streptomycin
(P/S, catalog: 15140-122), and trypsin-ethylenediaminetetraacetic acid (Trypsin-EDTA,
catalog: 15400-054) were purchased from GIBCO-BRL (Grand Island, NY, USA). Iso-
propanol (2-propanol, catalog: 5035-44) was purchased from Daejung Chemicals & Mate-
rials (Siheung-si, Korea). Formalin (catalog: 6936050380) for cell fixation was purchased
from Junsei (Tyoko, Japan). Primary antibodies against adipogenesis-related proteins,
including PPAR-γ (catalog: #2443), C/EBP-α (catalog: #2295) and FABP4 (catalog: #2120),
and against thermogenic proteins such as PGC-1α (catalog: #2178) and p-HSL (catalog:
#4139), were purchased from Cell Signaling Technology (Bedford, MA, USA). Secondary
antibody, anti-glyceraldehyde 3-phosphate dehydrogenase (GAPDH, catalog: sc-66163),
and anti-SREBP-1 (catalog: sc-365513) were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA, USA).

4.2. Isolation and Purification of (−)-loliolide from S. horneri

The S. horneri was collected from the coastline of Jeju Island, Korea. The collected S.
horneri was carefully washed using tap water and placed in a deep freezer for 24 h. Frozen
S. horneri was lyophilized and ground using a grinder. A detailed purification method
of (−)-loliolide was followed as previously described by Kim et al. (2020) [31]. Briefly,
100 g of the S. horneri powder samples was extracted under the optimal ethanol extraction
conditions (37 ◦C, 24 h) in the shaking incubator. After 24 h of incubation, S. horneri 70%
ethanol extracts (SHE) were filtered through Whatman No. 4 filter paper and dried under
the vacuumed rotary evaporator using the volume flask. The dried samples were collected
from the flask and lyophilized by freeze dryer (SFDSM06, SAMWON, Busan, Korea).
The dried SHE was stored in the −80 ◦C freezer before use. The solvent fractionation
was conducted on SHE. The dried SHE dissolved and fractionated with solvents (hexane,
HX; chloroform, CHCl3; ethyl acetate, EA; and butanol, BtOH) sequentially. Among the
solvent fractions, the CHCl3 fractions were collected from SHE and concentrated under
the vacuum rotary evaporator. The partitioned CHCl3 was stored in the freezer at −80 ◦C
for centrifugal partition chromatography (CPC). The CPC was adopted for isolate active
compounds from SHE. The CPC column was equilibrated with the stationary phase and
rotated at 1000 rpm. After the equilibration, the target sample was injected to the CPC
device, and the mobile phase was eluted into the column in the descending mode at a
flow rate of 2 mL/min. The CPC eluent was collected through fraction collector (FC 203B,
Gilson, Villiers Le Bel, France). Then, high-performance liquid chromatography (HPLC)
was conducted to further purify the active compound using a Prep HPLC system (Waters,
Milford, MA, USA) equipped with a C18 (YMC-Pack, 5 µm, 10 × 250 mm), octadecyl-silica
(ODS) column. The HPLC separation conditions were as follows: The gradient elution was
carried out using acetonitrile and distilled water at 0–60 min, 5:95–100:0 v/v; and 60–70 min,
100:0–100:0 v/v at a flow rate of 3 mL/min. The UV absorbance was observed at 230 nm by
a Waters 2998 photodiode array detector (Waters, Milford, MA, USA).

4.3. Cell Culture and Differentiation

The 3T3-L1 preadipocytes were purchased from the Korean cell line bank (KCLB). The
cells were cultured in DMEM supplemented with 10% BS and 1% P/S under humidified
conditions (5% CO2, 37 ◦C). The cells were subcultured every 2 days. To induce adipocyte
differentiation, 3T3-L1 cells were plated in 12-well plates. Two days later, the cell confluence
reached 100%, and the cell culture medium was changed to DMEM medium (containing
10% FBS and 1% P/S) with differentiation solutions (MDI) consisting of 0.5 mM IBMX,
0.25 µM DM, and 5 µg/mL insulin at day 2. Subsequently, the cell culture medium was
switched to DMEM containing 10% FBS and 1 µg/mL insulin and maintained for 4 days
to induce additional adipocyte differentiation. After day 4, the cell culture medium was
replaced with fresh DMEM medium every 2 days. On day 8, 3T3-L1 cells were fixed and
stained with 0.6% ORO solution to determine the accumulation of lipids in 3T3-L1 cells.
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4.4. Cytotoxicity

The cytotoxic effect of (−)-loliolide was evaluated via MTT assay, as previously de-
scribed by Lee et al. (2020) [59]. The 3T3-L1 cells treated with various concentrations of
(−)-loliolide (0.125, 0.25, 0.5, and 1 mM) were incubated for 48 h in 48-well plates. After
incubation, 75 µL of MTT solution (2 mg/mL) was added to each well and incubated in
the dark for another 4 h. Subsequently, the well plates were centrifuged. After centrifuga-
tion, the supernatant was removed, and the precipitated formazan crystals, which were
produced in the mitochondrial matrix of live cells, were dissolved in dimethyl sulfoxide
(DMSO). To assess the cytotoxicity of (−)-loliolide, the formazan crystals were quanti-
fied and calculated using a microplate reader (Synergy™ HT Multi-Detection Microplate
Reader, Bio-Tek, Winooski, VT, USA).

4.5. Oil Red O Staining

The specific lipid staining protocol was adopted to evaluate lipid accumulation in
3T3-L1 as previously described [60]. The 3T3-L1 cells were plated in 12-well plates, and
adipocyte differentiation was induced with MDI solution for 8 days. During the adipocyte
differentiation, the different concentrations of (−)-loliolide (0.062, 0.125, 0.25, 0.5, and 1 mM)
were treated on days 0, 2, 4, and 6 except for the control group. On day 8, differentiated
3T3-L1 cells were fixed with 10% formalin for 1 h. Then, the fixed cells were washed twice
with 60% 2-propanol and dried at 27 ◦C. The dried cell lipids were stained with 0.6% ORO
solution for 2 h and again washed with distilled water (DW). After drying, ORO stain was
eluted with 100% 2-propanol for 1 h in a shaking incubator. The relative ORO content
was measured by SynergyTM HT Multi-Detection Microplate Reader (Bio-Tek, Winooski,
VT, USA). The images of the intracellular lipids from 3T3-L1 cells were captured using a
microscope (Lionheart™ FX Automated Microscope, BioTek Instruments Inc., Winooski,
VT, USA).

4.6. Western Blot Analysis

The effects of (−)-loliolide on the expression of adipose-specific proteins were investi-
gated by Western blotting [61]. On day 8, differentiated 3T3-L1 cells were lysed in lysis
buffer consisting of 5 mM EDTA, 10 mM Na4P2O7, 10 mg/mL leupeptin, 100 mM NaF,
1 mM PMSF, 20 mM Tris, 2 mM Na3VO4, 10 mg/mL aprotinin, and 1% NP-40. Protein
concentration in lysates was determined by bicinchoninic acid assay (BCA protein assay
kit, Thermo Fisher Scientific, Rockford, IL, USA). Equal amounts of proteins were loaded
on 10–12% of sodium dodecyl sulfate (SDS) acrylamide gel and separated by electrophore-
sis. The electrophoresed samples were transferred onto nitrocellulose membranes. The
transferred membranes were blocked in 5% skim milk for 2 h at room temperature. Then,
the membranes were incubated with primary antibodies (1:1000) overnight at 4 ◦C. After
incubation, the membranes were washed with 1 × tris-buffered saline (TBST) three times,
followed by incubation with secondary antibodies (1:1000) for 2–3 h at room temperature.
Finally, the protein bands were imaged by Fusion Solo imaging system (Vilber Lourmat,
Paris, France) using the enhanced chemiluminescence (ECL) Western blot detection kit.

4.7. Statistical Analysis

All data are presented as mean ± standard deviation (SD), and experiments were
performed at least three times. Statistical analysis was conducted using one-way ANOVA
and Dunnett’s multiple comparisons test in Graph Pad Prism 6 software. The significant
differences were expressed as follows: **** p < 0.0001.

5. Conclusions

In conclusion, the purified (−)-loliolide isolated from 70% ethanolic extract of S.
horneri is a potential candidate for the development of a drug to inhibit lipid metabolism.
(−)-loliolide may inhibit lipid metabolism by suppressing expression of adipogenic pro-
teins and stimulating that of lipolytic and thermogenic proteins. However, large-scale
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observations are necessary to fully elucidate the inhibitory effect on lipid accumulation
in detail. In conclusion, (−)-loliolide can be used as a valuable medicinal agent for the
management of obesity.
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