
marine drugs 

Article

Carotenoid Nostoxanthin Production by Sphingomonas sp.
SG73 Isolated from Deep Sea Sediment

Hiroshi Kikukawa 1,2 , Takuma Okaya 1, Takashi Maoka 3, Masayuki Miyazaki 4 , Keita Murofushi 2,5,
Takanari Kato 6, Yoko Hirono-Hara 1, Masahiro Katsumata 6, Shoichi Miyahara 5 and Kiyotaka Y. Hara 1,2,*

����������
�������

Citation: Kikukawa, H.; Okaya, T.;

Maoka, T.; Miyazaki, M.; Murofushi,

K.; Kato, T.; Hirono-Hara, Y.;

Katsumata, M.; Miyahara, S.; Hara,

K.Y. Carotenoid Nostoxanthin

Production by Sphingomonas sp. SG73

Isolated from Deep Sea Sediment.

Mar. Drugs 2021, 19, 274. https://

doi.org/10.3390/md19050274

Academic Editor: Bill J. Baker

Received: 8 April 2021

Accepted: 11 May 2021

Published: 14 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Environmental and Life Sciences, School of Food and Nutritional Sciences,
University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan;
kikukawa@u-shizuoka-ken.ac.jp (H.K.); t.okaya007@gmail.com (T.O.);
y-hirono@u-shizuoka-ken.ac.jp (Y.H.-H.)

2 Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku,
Shizuoka 422-8526, Japan; keita1_murofushi@pref.shizuoka.lg.jp

3 Research Institute for Production Development, 15 Shimogamo-Morimotocho, Sakyo-ku,
Kyoto 606-0805, Japan; maoka@mbox.kyoto-inet.or.jp

4 Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for
Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka,
Kanagawa 237-0061, Japan; miyazakim@jamstec.go.jp

5 Industrial Research Institute of Shizuoka Prefecture, 2078 Makigaya, Aoi-ku, Shizuoka 421-1298, Japan;
shoichi1_miyahara@pref.shizuoka.lg.jp

6 Hagoromo Foods Corporation, 151 Shimazaki-cho, Shimizu-ku, Shizuoka 424-0823, Japan;
hfc13103@hagoromofoods.co.jp (T.K.); hfc84113@hagoromofoods.co.jp (M.K.)

* Correspondence: k-hara@u-shizuoka-ken.ac.jp

Abstract: Carotenoids are used commercially for dietary supplements, cosmetics, and pharmaceu-
ticals because of their antioxidant activity. In this study, colored microorganisms were isolated
from deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. One strain was
found to be a pure yellow carotenoid producer, and the strain was identified as Sphingomonas sp.
(Proteobacteria) by 16S rRNA gene sequence analysis; members of this genus are commonly isolated
from air, the human body, and marine environments. The carotenoid was identified as nostoxanthin
((2,3,2′,3′)-β,β-carotene-2,3,2′,3′-tetrol) by mass spectrometry (MS), MS/MS, and ultraviolet-visible
absorption spectroscopy (UV-Vis). Nostoxanthin is a poly-hydroxy yellow carotenoid isolated from
some photosynthetic bacteria, including some species of Cyanobacteria. The strain Sphingomonas sp.
SG73 produced highly pure nostoxanthin of approximately 97% (area%) of the total carotenoid pro-
duction, and the strain was halophilic and tolerant to 1.5-fold higher salt concentration as compared
with seawater. When grown in 1.8% artificial sea salt, nostoxanthin production increased by 2.5-fold
as compared with production without artificial sea salt. These results indicate that Sphingomonas sp.
SG73 is an efficient producer of nostoxanthin, and the strain is ideal for carotenoid production using
marine water because of its compatibility with sea salt.

Keywords: carotenoid; nostoxanthin; Sphingomonas; deep sea microorganism

1. Introduction

Carotenoids are isoprenoids, and these yellow to orange-red pigments are widely
distributed in nature [1]. They are predominantly synthesized by phototrophic organisms
and by some non-phototrophic fungi, bacteria, and archaea [1,2]. Carotenoids are used
commercially, especially astaxanthin, as a color enhancer for marine aquaculture resources
such as salmon, and for dietary supplements, cosmetics, and pharmaceuticals because of
its high antioxidant activity [3,4]. Industrial demand for carotenoids has recently increased,
which has resulted in an increase in studies of carotenoid production, especially using
marine organisms [5–8].

Mar. Drugs 2021, 19, 274. https://doi.org/10.3390/md19050274 https://www.mdpi.com/journal/marinedrugs

https://www.mdpi.com/journal/marinedrugs
https://www.mdpi.com
https://orcid.org/0000-0002-1869-4827
https://orcid.org/0000-0001-5883-0275
https://www.mdpi.com/article/10.3390/md19050274?type=check_update&version=1
https://doi.org/10.3390/md19050274
https://doi.org/10.3390/md19050274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/md19050274
https://www.mdpi.com/journal/marinedrugs


Mar. Drugs 2021, 19, 274 2 of 10

The yellow carotenoid nostoxanthin ((2,3,2′,3′)-β,β-carotene-2,3,2′,3′-tetrol) (Figure 1)
is biosynthesized from zeaxanthin by the addition of two hydroxyl groups [9]. On the
basis of the chemical structure of nostoxanthin, it is expected to have a similar high antiox-
idative activity as that of zeaxanthin, but no study revealing the antioxidative activity of
nostoxanthin has been reported. This carotenoid has been isolated from some prokaryotes
including some species of Cyanobacteria: the bacteriochlorophyll-a containing bacterium
Sandarakinorhabdus limnophila, photosynthetic bacteria, the non-marine Brevundimonas sp.,
and most Sphingomonas species [9–16]. However, the concentration of nostoxanthin in
known nostoxanthin-producing bacteria is low [9].
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2. Results and Discussion 
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Firstly, colored microorganisms were isolated from deep sea sediment. One isolate, 
strain SG73, from the sampling Spot 2 in Table 1, showed accumulation of highly pure 
carotenoid at a retention time of approximately 3.8 min and three minor peaks at a reten-
tion time of 4 to 5 min (Figure 2A). The three minor peaks were detected in the chroma-
tography for HPLC and LC/MS (Supplemental Figure S1). The purity of the main carote-
noid was 97% (area%). These carotenoids did not correspond to the peaks of authentic 
standards of astaxanthin, α-carotene, or β-carotene (Figure 2B). The major carotenoid 
from strain SG73 was expected to have higher hydrophilicity than astaxanthin because of 
its faster retention time. 

Figure 1. The structure of nostoxanthin.

In this study, we isolated a microorganism from deep sea sediment that had been
collected from Suruga Bay, Shizuoka, Japan (Table 1) and we identified the chemical
structure of the main carotenoid produced by the isolated microorganism. This organism
showed high nostoxanthin composition in total carotenoids, and we identified the bacterial
strain. Furthermore, we characterized the salt tolerance and nostoxanthin productivity by
supplementation with artificial sea salt.

Table 1. Sampling spots in the Suruga Bay.

Location Water Depth

Spot 1 34◦8482′ N, 138◦3589′ E 376 m
Spot 2 34◦8526′ N, 138◦3994′ E 691 m
Spot 3 34◦9149′ N, 138◦6507′ E 1548 m
Spot 4 34◦9152′ N, 138◦6534′ E 1523 m
Spot 5 34◦1872′ N, 138◦4220′ E 3595 m
Spot 6 34◦2736′ N, 138◦4813′ E 3233 m
Spot 7 34◦7847′ N, 138◦6345′ E 1652 m
Spot 8 34◦9867′ N, 138◦6967′ E 1299 m
Spot 9 34◦2409′ N, 138◦4803′ E 3372 m

Spot 10 34◦7835′ N, 138◦6171′ E 1730 m

2. Results and Discussion
2.1. Isolation of a Yellow Microorganism from Deep Sea Sediment

Firstly, colored microorganisms were isolated from deep sea sediment. One isolate,
strain SG73, from the sampling Spot 2 in Table 1, showed accumulation of highly pure
carotenoid at a retention time of approximately 3.8 min and three minor peaks at a retention
time of 4 to 5 min (Figure 2A). The three minor peaks were detected in the chromatography
for HPLC and LC/MS (Supplemental Figure S1). The purity of the main carotenoid was
97% (area%). These carotenoids did not correspond to the peaks of authentic standards
of astaxanthin, α-carotene, or β-carotene (Figure 2B). The major carotenoid from strain
SG73 was expected to have higher hydrophilicity than astaxanthin because of its faster
retention time.
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Figure 2. Chromatograph of carotenoids. (A) Carotenoids extracted from strain SG73; (B) authentic standards: astaxanthin,
α-carotene, and β-carotene; (C) yellow wet colonies of strain SG73. The colonies were grown on YM agar medium at 22 ◦C
for 3 days. The separation was performed at 35 ◦C, with methanol/tetrahydrofuran = 8/2 (v/v) as the mobile phase at a
flow rate of 1.0 mL/min, and the detection was performed at 470 nm with an SPD-20AV detector.

2.2. Identification of the Hydrophilic Carotenoid-Producing Strain SG73

The colony of strain SG73 exhibited a strong yellow color and a smooth surface
(Figure 2C). The 16S rRNA gene sequence (1412 bp, accession no. LC618681) amplified
from strain SG73 had 99.8% homology to that of Sphingomonas sanguinis NBRC 13937.
Strain SG73 was clustered with S. sanguinis NBRC 13937 in the phylogenetic tree, but the
bootstrap value was low (76%) (Figure 3). However, these results indicate that there may be
only a small genetic distance between these strains. Therefore, strain SG73 was identified
as Sphingomonas sp. SG73.

Sphingomonas is a group of Gram-negative, rod-shaped, chemoheterotrophic, aerobic
bacteria. Sphingomonas species are known to contain glycosphingolipids [17], and are
widely distributed in nature, having been isolated from many different air, land, and water
habitats, including seawater and marine soils. Furthermore, Sphingomonas species have
been reported to produce the carotenoids lycopene, β-carotene, zeaxanthin, caloxanthin,
and nostoxanthin [9,13,17].

2.3. Identification of the Main Carotenoid Produced by Sphingomonas sp. SG73

Identification of the main carotenoid produced by Sphingomonas sp. SG73 was con-
ducted by high-performance liquid chromatography (HPLC) equipped with an ultraviolet-
visible absorption spectrometer (UV-Vis), an electro-spray ionization (ESI) a time-of-flight
(TOF) mass spectrometer (MS), and MS/MS systems. The molecular formula of this
carotenoid was determined to be C40H56O4 by ESI MS spectra data of m/z 601.4243
[M + H]+ and m/z 623.4085 [M + Na]+ (Figure 4A). The MS/MS spectra that used pre-
cursor ion at m/z 600.41 [M+] showed characteristic product ion patterns of tetrahydroxy
carotenoid (Figure 4B). These product ion patterns were identical with nostaoxanthin [18],
and major product ions from carotenoids [19], m/z 508.3515 [M-92] generated by elim-
ination of toluene moiety from the polyene chain and m/z 494.3283 [M-106] generated
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by elimination of xylene moiety from the polyene chain, were observed. The UV-Vis
spectrum [λmax values (427, 452, and 480 nm)] indicated the presence of β,β-carotene type
chronopher (Figure 4C) [20].
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Figure 3. Phylogenetic tree of strain SG73 and related microorganisms created with the neighbor-joining method. Numbers
indicate bootstrap values. T indicates type strain of a species.

These results indicate that the main carotenoid produced by Sphingomonas sp. SG73 is
nostoxanthin ((2,3,2′,3′)-β,β-carotene-2,3,2′,3′-tetrol). Production of nostoxanthin by other
Sphingomonas strains has been reported [9,13]; however, the major carotenoids produced by
this strain were caloxanthin and zeaxanthin, and the ratio of nostoxanthin was estimated
to be about 11% (area%) and less than half of the two main carotenoids. Sphingomonas sp.
SG73, found in this study, produced nostoxanthin with high purity of approximately 97% of
the total carotenoid production. A biosynthesis pathway for nostoxanthin by Sphingomonas
species has been reported and is shown in Figure 5 [9]. Nostoxanthin is synthesized from
β-carotene via four hydroxylation steps performed by two enzymes. Caloxanthin and
zeaxanthin, which are the main carotenoids in S. elodea ATCC 31461, are precursors of
nostoxanthin, and they are synthesized from β-carotene through β-cryptoxanthin.
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2.4. Effect of Sea Salt on Growth and Nostoxanthin Production

To confirm that Sphingomonas sp. SG73 is derived from the sea and is tolerant to sea
salt, Sphingomonas sp. SG73 was cultured in YM liquid medium containing from 0% to 7.2%
artificial sea salt. As shown in Figure 6A, the addition of 1.8% and 3.6% sea salt increased
growth of Sphingomonas sp. SG73, and the strain grew best with 1.8% of sea salt (1.6-fold).
When grown in 5.4% sea salt concentration, growth of the strain was decreased, and the
strain did not grow in the medium containing 7.2% sea salt.

Nostoxanthin production in Sphingomonas sp. SG73 cultured with each salt concentra-
tion was analyzed by HPLC analysis. Nostoxanthin production by Sphingomonas sp. SG73
was highest when grown with 1.8% of sea salt and was 2.5-fold higher as compared with
the amount produced without sea salt (Figure 6B). Carotenoid production per cell density
was higher when cultured with 5.4% sea salt than with 1.8% sea salt. When the growth
of Sphingomonas sp. SG73 was suppressed at higher salt concentrations, it suggested that
metabolic, proteomic, and energetic flows to cell growth might be held down and their
excess flows were diverted to the carotenoid biosynthetic pathway.

Growth of some Sphingomonas relative species with 3.6% sea salt were surveyed (data
not shown). Similar to Sphingomonas sp. SG73, the addition of 3.6% sea salt increased
growth of Sphingomonas sp. NBRC 101068 and NBRC 101704, which were isolated from
seawater of Tokyo Bay and Pacific Ocean, respectively, whereas Sphingomonas sp. JCM
11416 and NBRC 13937, which were isolated from air and human blood, showed no growth.
Since 3.6% sea salt is the concentration in seawater, the Sphingomonas strains showed
favorable growth and higher nostoxanthin production under 3.6% sea salt. However, the
sea salt concentration of the deep sea of Suruga Bay has been reported to be approximately
3.4% [21]. Further optimization of sea salt concentration between 1.8% and 3.6% and other
metabolic and culture conditions may improve growth and nostoxanthin production of
Sphingomonas sp. SG73.
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3. Materials and Methods 
3.1. Materials 
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Figure 6. Effect of sea salt on growth and nostoxanthin production by Sphingomonas sp. SG73. (A) Cell density (OD660) of
Sphingomonas sp. SG73 cultured with sea salt; (B) Relative production of nostoxanthin by Sphingomonas sp. SG73. Black bars
indicate the relative production level, and gray bars indicate the relative value of production per cell density. All values are
means and standard deviations for triplicate experiments. ** p < 0.01.

3. Materials and Methods
3.1. Materials

The following products were used in the experiments described below: Tryptone
(Thermo Fisher Scientific, Waltham, MA, USA); yeast extract and malt extract (Becton,
Dickinson and Company, Franklin Lakes, NJ, USA); D-glucose (FUJIFILM Wako Pure
Chemical Corporation, Osaka, Japan); and Daigo’s artificial seawater (FUJIFILM Wako
Pure Chemical Corporation, Osaka, Japan). All solvents for HPLC analysis were purchased
from Kanto Kagaku, Tokyo, Japan.

3.2. Strains and Media

The bacteria in this study were isolated from deep sea sediment of Suruga Bay,
Shizuoka, Japan (Table 1). Rich yeast malt (YM) medium was used as base medium,
containing 5 g/L tryptone, 3 g/L yeast extract, 3 g/L malt extract, and 10 g/L D-glucose.
Deep sea microorganisms in the sediment were cultivated on YM agar medium containing
0.36% (w/v) Daigo’s artificial seawater at 22 ◦C for 3 to 7 days, and bacteria that grew as
colored colonies were isolated.

3.3. Cultivation of Isolated Strains

The isolated strains were pre-cultivated in 10 mL YM liquid medium in a 50 mL
baffled Erlenmeyer flask at 22 ◦C with agitation at 200 rpm for 24 h. Each culture was
inoculated into 10 mL of fresh medium in a 50 mL baffled Erlenmeyer flask to achieve
initial OD660 values of 0.15. Then, cells were grown at 22 ◦C with agitation at 200 rpm for
72 h. To evaluate the salt tolerance of isolated strains and the effect of salt on carotenoid
production in the isolated strains, Daigo’s artificial seawater was supplemented into the
YM liquid medium at concentrations from 0 to 7.2% (w/v); 3.6% artificial seawater is
equivalent to real seawater.

3.4. Carotenoid Analysis

To measure the intracellular carotenoid content of the isolated strains, harvested cells
were suspended in 1 mL acetone and broken using a bead shaker (Shake Master NEO,
BMS, Tokyo, Japan) with 0.6 mm diameter zirconia beads. The resulting cell extract was
centrifuged at 8000× g for 10 min at 4 ◦C.

Carotenoid analysis was performed using a HPLC system (Shimadzu, Kyoto, Japan)
equipped with a COSMOSIL packed column Cholester (NACALAI TESQUE, Kyoto,
Japan), as described previously [22]. The separation was performed at 35 ◦C, with
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methanol/tetrahydrofuran = 8/2 (v/v) as the mobile phase at a flow rate of 1.0 mL/min,
and the detection was performed at 470 nm with an SPD-20AV detector (Shimadzu). Twenty
microliters of each sample solution was injected.

3.5. Identification of Carotenoid Structure

The LC/MS analysis of carotenoids was carried out using a Waters Xevo G2S Q TOF
mass spectrometer (Waters Corporation, Milford, CT, USA) equipped with an Acquity
UPLC system. The ESI-TOF/MS spectra were acquired by scanning from m/z 100 to
1500 with a capillary voltage of 3.2 kV, cone voltage of 20 eV, and source temperature of
120 ◦C. Nitrogen was used as a nebulizing gas at a flow rate of 30 L/h. The MS/MS spectra
were measured with a quadrupole-TOF MS/MS instrument with argon as a collision gas
at a collision energy of 20 V. The UV-Vis absorption spectra were recorded from 200 to
600 nm using a photodiode-array detector (PDA) (Acquity UPLC PDA eλ Detector, Waters,
Milford, MA, USA). An Acquity 1.7 µm BEH UPLC C18 (2.1 id X 100 mm) column (Waters
Corporation, Milford, CT, USA) was used as a stationary phase and MeCN/H2O (85:15)–
MeCN/MeOH (65:35) (linear gradient 0 to 15 min) as a mobile phase, at a flow rate of
0.4 mL/min for the HPLC system.

3.6. Genetic Analysis

The 16S rRNA gene sequence of the isolated strain was determined by TechnoSuruga
Laboratory Co. Ltd., Shizuoka, Japan. The 16S rRNA gene sequence was subjected to ho-
mology searching using ENKI v3.2 (TechnoSuruga Laboratory, Shizuoka, Japan) against the
Microbial Identification Database DB-BA15.0 (TechnoSuruga Laboratory, Shizuoka, Japan)
and the International Nucleotide Sequence Databases (DDBJ, ENA, and GenBank). Multi-
ple alignments were analyzed using the CLUSTAL W algorithm [23], and a phylogenetic
tree was constructed using MEGA v7.0 [24] by the neighbor-joining method. The 16S rRNA
gene sequences of the isolated strain and its closest relatives were identified as follows:
Sphingomonas sanguinis NBRC 13937T (AB680528), S. pseudosanguinis G1-2T (AM412238),
S. yabuuchiae GTC868T (AB071955), S. parapaucimobilis NBRC 15100T (BBPI01000114), S.
paucimobilis ATCC 29837T (U37337), S. zeae JM-791T (KP999966), S. carotinifaciens L9-754T
(JQ659512), S. yunnanensis YIM 003T (AY894691), S. adhaesiva GIFU11458T (D16146), S. gin-
senosidimutans Gsoil 1429T (HM204925), S. desiccabilis CP1DT (AJ871435), S. spermidinifaciens
DSM 27571T (JQ608324), S. yantingensis 1007T (JX566547), S. carri PR0302T (KP185150), S.
mucosissima CP173-2T (AM229669), S. aracearum WZY27T (MH636880), S. panacis DCY99T
(KM819014), S. naasensis KIS18-15T (KC735149), S. koreensis JSS-26T (AF131296), S. oligophe-
nolica S213T (AB018439), S. asaccharolytica IFO 10564T (Y09639), S. mali NBRC 15500T
(AB680884), S. pruni IFO 15498T (Y09637), S. aquatilis JSS-7T (AF131295), S. melonis DAPP-
PG 224T (AB055863), S. cynarae SPC-1T (HQ439186), S. hankookensis ODN7T (FJ194436),
S. panni C52T (AJ575818), and Novosphingobium capsulatum NBRC 12533T (AB680290).

4. Conclusions

In this study, a novel nostoxanthin producer Sphingomonas sp. SG73 was isolated from
deep sea sediment that had been collected from Suruga Bay, Shizuoka, Japan. Nostoxanthin
is expected to have high antioxidative activity. The strain was halophilic, and the growth
and nostoxanthin production was stimulated with 1.8–3.6% sea salt. In the future, a com-
mercial supply of nostoxanthin can be achieved by improvement of this pure nostoxanthin
producer Sphingomonas sp. SG73.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/md19050274/s1, Figure S1: Chromatogram of LC/MS/MS analysis. The main peak is nostoxanthin.
The small peak 1, 2, and 3 is presumed as caloxanthin, zeaxanthin, and β-cryptoxanthin, respectively.
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