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Abstract: Marine-derived chitosan (CS) is a cationic polysaccharide widely studied for its bioactivity,
which is mostly attached to its primary amine groups. CS is able to neutralize reactive oxygen
species (ROS) from the microenvironments in which it is integrated, consequently reducing cell-
induced oxidative stress. It also acts as a bacterial peripheral layer hindering nutrient intake and
interacting with negatively charged outer cellular components, which lead to an increase in the cell
permeability or to its lysis. Its biocompatibility, biodegradability, ease of processability (particularly
in mild conditions), and chemical versatility has fueled CS study as a valuable matrix component of
bioactive small-scaled organic drug-delivery systems, with current research also showcasing CS’s
potential within tridimensional sponges, hydrogels and sutures, blended films, nanofiber sheets and
fabric coatings. On the other hand, renewable plant-derived extracts are here emphasized, given
their potential as eco-friendly radical scavengers, microbicidal agents, or alternatives to antibiotics,
considering that most of the latter have induced bacterial resistance because of excessive and/or
inappropriate use. Loading them into small-scaled particles potentiates a strong and sustained
bioactivity, and a controlled release, using lower doses of bioactive compounds. A pH-triggered
release, dependent on CS’s protonation/deprotonation of its amine groups, has been the most
explored stimulus for that control. However, the use of CS derivatives, crosslinking agents, and/or
additional stabilization processes is enabling slower release rates, following extract diffusion from
the particle matrix, which can find major applicability in fiber-based systems within ROS-enriched
microenvironments and/or spiked with microbes. Research on this is still in its infancy. Yet, the few
published studies have already revealed that the composition, along with an adequate drug release
rate, has an important role in controlling an existing infection, forming new tissue, and successfully
closing a wound. A bioactive finishing of textiles has also been promoting high particle infiltration,
superior washing durability, and biological response.

Keywords: chitosan; plant extracts; drug delivery systems; nanoparticles; bioactive; electrospun
fibers; medical textiles

1. Chitosan

Chitin is the second most abundant biologically derived polymer worldwide, after
cellulose [1]. It is the primary structural component of the exoskeleton of shrimps, crabs,
lobsters, and squid pens, and is present in smaller amounts in the cell walls of some fungi
and yeast and in plants [2]. This polysaccharide has a chemical structure similar to that of
cellulose, with hydroxyl groups at position C-2 replaced by acetamido groups [3]. Chitosan
(CS) is mainly obtained by partial deacetylation of chitin, under high temperatures and
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alkaline conditions [1,4], when the degree of acetylation (DA, molar fraction of N-acetylated
units) is lower than≈50%. Glucosamine and N-acetylglucosamine are connected through a
1,4-glycosidic bond to form the skeleton of CS, which leads to a linear polymeric structure
(Figure 1) [3,5].
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CS’s molecular weight (Mw) and the DA are its main structural parameters influencing
the overall behavior of the polymer as a biomaterial [2,7]. CS with a wide range of DA and
Mw can be found commercially (DA < 35% and Mw between 10 and 800 kDa), being widely
accepted that low Mw is below 50 kDa, medium Mw is between 50 and 150 kDa, and high
Mw is superior to 150 kDa [8]. CS is soluble in nearly all diluted aqueous acidic solutions
and insoluble in water, concentrated acid, alkali, alcohol, and acetone and in common
organic solvents. The polymer can be degraded enzymatically, through chemoenzymatic
means, recombinant approaches, and physical means such as electromagnetic radiation
and sonication. In humans, in vivo degradation of CS is thought to be primarily due to
the activity of lysozymes (present in articular cartilage, liver, plasma, saliva, tears, and
milk) and bacterial chitosanolytic enzymes (e.g., chitosanase) that have been identified
in human tissues of the gastrointestinal tract and lung. These enzymes hydrolyze both
glucosamine and acetylated residues, leading to polymer erosion into a suitable size for
renal clearance [2,9].

CS is regarded as a nontoxic and a biologically compatible polymer, extensively stud-
ied for multiple biomedical applications including the formulation of small-scale drug
delivery systems [2,10]. Among its numerous attractive features, mostly connected to its pe-
ripheral groups, notably its primary amines and hydroxyl groups, the polymer inherently
exerts mucoadhesive, haemostatic, chemoattractive, regenerative, analgesic, antioxidant,
and immunomodulatory traits [2,11–13]. Its mucoadhesiveness results in transient opening
of the tight junctions between epithelial cells of the intestinal mucosal barrier to enhance
permeation of drugs, proteins, and food nutrition [14]. Its resemblance to human proteo-
glycans, thus being prone to molecular recognition by living cells or tissues, makes it an
appealing regeneration enhancer [2]. The polysaccharide’s terminal moieties react with
the unstable free and reactive oxygen species (ROS) stabilizing them, namely, CS with
low DA and Mw [7]. A low DA also encourages an anti-inflammatory response [15–17],
with a high DA favouring a pro-inflammatory phenotype that can be useful to counteract
cancer cell invasion [18–20]. Moreover, CS is endowed with antimicrobial capacity and
enhanced ability to regulate gut microbiota towards homeostasis [2,11–13,21]. CS oligosac-
charide (DA = 12% and Mw < 1 kDa) supplementation (while dispersed in water) has
been shown to decrease blood glucose levels and reverse the insulin resistance of diabetic
mice, together with having higher intestinal integrity, and suppressed inflammation and
lipogenesis, thereby contributing to gut microbial balance [22]. CS nanoparticle (NP; di-
ameter (d) ≈ 50 nm, built with CS with DA = 5% and Mw = 220 kDa through undisclosed
methodology) intake exerted a positive influence over the composition of colonic micro-
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biota of weaned pigs [23]. Gut dysbiosis enables pathogens to dominate the gut, mostly
bacteria [24]. Hence, it is worth mentioning that CS’s antibacterial activity is particularly
interesting. It is mainly of electrostatic nature, when its amine groups are protonated
(which traditionally occurs at 9.5 < pH < 6.5, depending on its DA [25]) [26,27]. Two mech-
anisms of antibacterial action have been proposed: presence on the cell surface, forming a
polymer layer preventing substance exchange, interfering with nutrient intake; or CS of
lower Mw reaching the intracellular environment, adsorbing electronegative substances
thereby disrupting the physiological activity of bacteria and killing them. Literature also
highlights a concentration-dependent antibacterial effect of CS [4,6,26]. However, the effect
of the polysaccharide can be limited in basic, or even neutral, environments [25–27]. Con-
sequently, a large number of CS derivatives are being developed, given that its amino and
hydroxyl groups confer the polymer with a high chemical versatility that has been widely
explored to maximize the polymer processability, solubility, pH-responsiveness over a
larger pH range, as well as its antimicrobial efficiency [10]. CS derivatives are easily ob-
tained [3,28], including amine (N-modified) and hydroxyl (O-modified) group substitution
by acylation, carboxylation, alkylation, and quaternization, among others [10,29]. Table 1
reveals the latest trends (between 2020 and 2021) regarding CS and CS derivatives used as
antibacterial agents for biomedical applications. Regulatory approval for the use of CS and
its derivatives in the highlighted fields has required material characterization and produc-
tion consistency, functionality, specifications of the product, material and product safety
profile and analysis using validated methods [30]. CS continues to be widely explored
for its antibacterial features, being incorporated into increasingly complex architectures to
attempt solving multivalent clinical needs. However, despite knowing that a particular
range of DA and/or Mw may enhance CS’s antibacterial capacity [27], the choice behind
CS’s batch selection remains poorly justified, with the polymer’s inherent properties being
poorly characterized as well. However, efforts clearly benefit from CS’s chemical versatility
to create polymeric derivatives with ingenious capabilities, providing added value towards
multiple biomedical applications.
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Table 1. Latest trends exploring the antibacterial capacity of CS or CS derivatives while integrating different processed architectures, including main attributes of the created polymer (DA
and Mw) or its derivatives (name of the derivative, DA, degree of substitution (DS) and Mw), biomaterial-processed structures, afflicted bacteria, and intended application.

CS or CS Derivative
CS-Based Structure(s) AM Features Afflicted Bacteria Intended Application Ref.

DA Derivative DS Mw

23–62% Thymine-modified CS - 154–194 kDa CS porous sponges

Wrinkled and damaged cell walls,
particularly with increased DS, which

increased CS’ solubility and charge
density. 100% cell death.

Staphylococcus aureus,
methicillin-resistant
Staphylococcus aureus

(MRSA), Escherichia coli,
Pseudomonas aeruginosa,

and Acinetobacter baumannii

Wound dressing [31]

- - - 50–190 kDa

Core [gelatin (GN) +
poly(vinylpolypyrrolidone) (PVP)

+ imipenem/cilastatin]—shell
(CS + poly(ethylene oxide) (PEO)

+ vancomycin) nanofibers

Zone of inhibition (ZoI) of 2.45, 2.90, 2.75,
and 1.85 cm, respectively. CS enabled
controlled release of the antibody for

higher global efficiency.

MRSA, S. aureus, P.
Aeruginosa, and E. coli Wound dressing [32]

≥10% Carboxymethyl CS ≥20% 10–20 kDa
Carboxymethyl CS loaded with
waterborne polyurethane–GN

hydrolysate hydrogel film

ZoI of 12–16 and 16–20 mm, respectively.
Higher activity of higher CS derivative

amount, especially at lower pH.
S. aureus and E. coli Wound dressing [33]

9.7% - - 100–300 kDa

Cinnamon leaf or
clove-oil-loaded CS and

poly(vinyl alcohol) (PVA)
blended films

CS films alone were effective against both
bacteria and capable of eradicating all P.

aeruginosa in 1 h (*** p < 0.001). Still,
loaded CS/PVA films showed

significantly improved AM traits in
relation to unloaded films within 2 h

of contact.

S. aureus and P. aeruginosa Wound dressing [34]

15% - - Low

Thyme-oil-loaded
CS-tripolyphosphate (TPP)

microcapsules spray dried onto
linen fabric

>98% growth inhibition due to oil and CS
joint action. E. coli Textile finishing [35]

26% - - 292 kDa
TiO2 nanoparticles (NPs)

dispersed onto
CS–glycerol-coated cotton fabric

99.8 and 97.3% bacterial reduction,
respectively, driven by CS’s

cationic nature.
S. aureus and E. coli Textile finishing [36]

15% Quaternized tosyl CS 45–55% - Crosslinked hydrogels of CS
derivative and GN

Quaternary CS (replacing primary -OH)
and free amino groups interacted with the

anionic bacterial membrane, and the
lipophilic chain perturbed the

hydrophobic domains of the cell envelope.
Minimum inhibitory concentration (MIC):
128−256, 64−128, 256, 256−512, 64 to 128,

64−128, 64−256, and
256−512 µg/mL, respectively.

MRSA, S. epidermidis, P.
aeruginosa, A. baumannii,
vancomycin-resistant S.

aureus (VRSA), E. faecium,
vancomycin-resistant

Enterococcus (VRE) and
E. coli

Healthcare infection
control [37]
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Table 1. Cont.

CS or CS Derivative
CS-Based Structure(s) AM Features Afflicted Bacteria Intended Application Ref.

DA Derivative DS Mw

15% - - Medium
TPP-crosslinked CS, GN,

potato-starch, and banana peel
powder (BPP) blended films

ZoI of 5–8 (S. aureus) and 9–11 mm
(E. coli), because of the CS and BPP

combined effect.
S. aureus and E. coli Wound dressings [38]

29% - - - CS-coated UV-disinfected
Vicryl sutures

Growth inhibition of both bacterial and
fungal pathogens, profound inhibition of

slime formation, and mixed-species
biofilm inhibition, as a result of CS’s

activity. No hyphal formation.

S. epidermidis and
Candida albicans Surgical sutures [39]

10% O-carboxymethyl CS 80% 200 kDa O-carboxymethyl CS and
Jeffamine porous hydrogel

≥99% bacterial reduction on account of
CS’s amine groups. E. coli

Wound dressing, drug
delivery, and tissue

engineering
[40]

- Methacrylated glycol CS 70% -
β-cyclodextrin-/triclosan-

complex-grafted methacrylated
glycol CS

Full inhibition of bacterial infection in 5 h
and improved wound healing, attributed
to the hydrophilic/hydrophobic nature of

CS derivative.

S. aureus and E. coli Tissue adhesives for
wound closure [41]

- Quaternized CS 26% -
Crosslinked (carbodiimide

chemistry) quaternized
CS-coated titanium printed cages

ZoI: 15 mm2, 0 CFU/mL, decreased
crystal violet staining, in vivo inhibition
of bacterial growth throughout the entire
observation period (1–5 d), and reduced
bacterial quantity in the extracted cages.

S. aureus Intervertebral fusion
cages [42]

15% - - 5–20 mPa.s Spray-dried CBO-loaded CS and
gelatin microcapsules

Over 90% growth inhibition until 10
fabric washes. S. aureus and E. coli Functional finishing of

linen [43]

- - - Medium
Self-assembled nanogels of

gluthathione–silver (Ag)
nanoclusters (NCs) and CS

Improved antibacterial action (>10-fold),
with the well-dispersion of the ultrasmall
Ag NCs in the CS framework protecting

Ag NCs from decomposition and
aggregation and allowing a slow release
of Ag+ ions; the positively charged CS

carrier substantially promotes
Ag–bacteria interaction and the

concomitant Ag bactericidal activity.

S. aureus, E. coli, Bacillus
subtilis, and P. aeruginosa

Theranostic
nanomedicines [44]

21% - - Medium CS-TPP NPs incorporated within
cotton fabric via pad-dry-curing

Increased ZoI: ≈20 (S. aureus and B.
subtilis), ≈16 (E. coli and Proteus vulgaris),
≈25 mm (C. albicans and A. Niger) due to

CS-based NP action.

S. aureus, B. subtilis, E. coli,
Proteus vulgaris, C. albicans

and Aspergillus Niger
Textile finishing [45]
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Table 1. Cont.

CS or CS Derivative
CS-Based Structure(s) AM Features Afflicted Bacteria Intended Application Ref.

DA Derivative DS Mw

- - - -

CS-coated PCl microparticles
(MPs) encapsulating Ag NPs,

then entrapped into PVA/PVP
microneedle layers

pH-triggered Ag release enabled 100%
eradication of bacterial bioburdens from

an ex vivo biofilm model in rat skin,
given the feasibility of the loading of

silver NPs into responsive MPs.

S. aureus and P. aeruginosa Biofilm skin infections [46]

- - - - CS hydrogel combined with zinc
oxide/zeolite nanocomposite

33 and 45% biofilm formation and
metabolic activity reduction, due to a joint
effect from the nanocomposite’s elements.
Significantly decreased gtfB, gtfC, and ftf

reinforcing lower bacterial adhesion.

Streptococcus mutans Dental biofilm control [47]

- Double bond modified
N-dodecylated CS - -

Macroporous cryogel containing
double bond modified

N-dodecylated CS and graphene
oxide (GO)

Excellent near-infrared (NIR)-assisted
photothermal antibacterial activity

against both bacteria and killed 99% of
them after 20 min NIR irradiation,

because of the CS derivative and GO.

S. aureus and E. coli Clinical hemorrhage
and infection control [48]

5–10% Quaternary CS 76.4% 340 kDa
Quaternary CS/PVA nanofiber

membrane crosslinked with
blocked diisocyanate

~100% antibacterial efficacy, attributed to
the CS derivative permanently cationic

net charge.
E. coli Wound dressings [49]

<25% - - 310–375 kDa Graphene/CS/magnetite NPs

ZoI of 21.3 and 19.3 mm and MIC of 60
and 70 µg/mL, respectively, due to

synergistic antibacterial action of NP
constituents.

ESBL-producing
P. aeruginosa and Klebsiella

pneumoniae

Biomedical
applications with

antibacterial
requirement

[50]

- N–succinyl CS - 150 kDa PVA/N–succinyl CS/lincomycin
porous hydrogels

~100% and ~70% antibacterial efficacy,
respectively, with the antibiotic being

held responsible for most of it.
S. aureus and E. coli Wound dressings [51]

15–25% - - Medium Ag NP-doped multilayered
CS hydrogel

ZoI: ~7 and ~12 mm, promoted by staged
release pattern of Ag NPs based on acid

triggered dissolution of the
multi-membrane layer by layer.

S. aureus and E. coli Implant coating or
wound dressings [52]

- Quaternized CS - -

Double-crosslinked oxidized
dextran–dopamine and

quaternary CS with encapsulated
Ag NPs and deferoxamine

15.5 and 20.8% survival rate, plus 3/97%
and 9/91% live/dead cells, respectively,

through the combination of Ag NPs
and HTCC.

S. aureus and E. coli
Bacterial infected
diabetic wound

dressing
[53]



Mar. Drugs 2021, 19, 359 7 of 40

Table 1. Cont.

CS or CS Derivative
CS-Based Structure(s) AM Features Afflicted Bacteria Intended Application Ref.

DA Derivative DS Mw

- Quaternized CS 22% - Protocatechuic-acid-grafted
quaternized CS

Excellent antibacterial properties and
showed a satisfactory synergistic

antibacterial effect with
protocatechuic acid.

S. aureus and MRSA Infection control [54]

15–25% - - 50–190 kDa
Tea-tree-oil-loaded

CS-poly(ε-caprolactone)
core-shell nanocapsules

Increased cell death (17%), following
contact with released essential oil and

CS shell.
Cutibacterium acnes Topical acne treatment [55]

- - - - Thiolated CS/Ag nanowire
composite hydrogels

Increased ZoI because of CS derivative
and Ag joint action. S. aureus and E. coli Obstetric wound care [56]

8% Fluorinated quaternary
CS - 50–190 kDa Fluorinated quaternary CS

Bacterial cell death in 6 h. MICs of 64 to
512 µg/mL (Gram-positive bacteria) and

128 to 512 (Gram-negative bacteria),
particularly effective against MRSA and B.
subtilis. Fluorination and quaternization

of CS improved its solubility and
antimicrobial activity. Fluorine is the most

electronegative element with a strong
effect on the conformational and

physicochemical properties of
organic compounds.

MRSA, E. coli, P. aeruginosa,
Streptococcus sanguinis,
Salmonella enterica, S.

epidermidis, B. subtilis, and
S. aureus

Infection control [57]

15–25% Mannose-functionalized
CS - Medium Mannose-functionalized CS

nanosystems

Particular bacterial growth inhibition (4×
lower), anti-adherence (4× lower), and
biofilm disruption (3–6× lower) activity.

Electrostatic interaction disturbed the
bacterial membrane integrity, osmolarity,
and depletion of nutrients. With mannose,

it interacted with bacterial membrane
lectins, interfering with adhesion

and motility.

Multidrug-resistant clinical
isolates of E. coli, Listeria
monocytogenes, S. aureus,

and P. aeruginosa

Infection control [58]

15% N-halamine
hydantoin-containing CS 56% 250 kDa N-halamine

hydantoin-containing CS films

0.003% and 0.218% CFU/mL, on account
of the biocidal N–Cl bonds added to the

already antibacterial CS.
S. aureus and E. coli Infection control [59]

15–25% - - 100–300 kDa

CS–hyaluronic acid
polyelectrolyte multilayered

coating of nylon
monofilament sutures

Significant growth inhibition in the first
hours of contact, given antibacterial

features of the built coating.
S. aureus and E. coli Sutures [60]
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Table 1. Cont.

CS or CS Derivative
CS-Based Structure(s) AM Features Afflicted Bacteria Intended Application Ref.

DA Derivative DS Mw

15–25% Catechol-modified
quaternized CS Medium

Catechol modified quaternized
CS incorporated into

PDLLA-PEG-PDLLA hydrogel

>95% bacterial cell death, potentiated by
the quaternized CS moieties. S. aureus and E. coli Wound dressings [61]

- - - - Cellulose acetate nanofibers
coated with CS nanowhiskers

99% growth inhibition due to CS
nanowhisker activity. E. coli

Biomedical
applications with

antibacterial
requirement

[62]

- N-succinyl CS - Low N-succinyl CS-ZnO NPs
conjugated with curcumin

MIC reduction of 25-to-50-fold and
minimum bactericidal concentration

(MBC) reduction of 10-to-40-fold,
respectively, given curcumin addition to
NPs containing CS derivative and ZnO,

all endowed with antibacterial traits.

S. aureus and E. coli

Biomedical
applications with

antibacterial
requirement

[63]

- - - Medium CS and β-glycerolphosphate
hydrogel

In vitro unresponsiveness but clear
in vivo bacterial reduction, as treated

wounds were completely re-epithelialized
and closed on day 14 post-surgery.

A. baumannii Wound dressings [64]
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2. Plant-Derived Biomolecules

Plant extracts are widely used as natural drugs in conventional medicine, given their
high availability from nature (e.g., seeds, bark, wood, roots, leaves, flowers, and fruits),
bioactivity, operating facility, reduced capital costs, and scalability [65,66]. Plants synthetize
a large panoply of structurally different compounds such as simple phenols and phenolic
acids, quinones, flavonoids, tannins, coumarins, terpenes and terpenoids, alkaloids, lectins
and polypeptides, among other phytochemicals, each having a specific and distinct role in
the plant’s bioactivity [66–71]. Some, such as terpenoids, also give plants their odors; others
(quinones and tannins) offer to plants their pigmentation [69]. These biomolecules can exert
strong antioxidant, anticancer, anti-inflammatory, and antimicrobial properties at their site
of action [14,72–75]. Their ability to inactivate free radicals is mostly mediated by phenolic
biomolecules within its composition, namely the hydrogen atoms of the adjacent hydroxyl
groups (o-diphenol), the double bonds of the benzene ring, and the double bond of the oxo
functional group of some flavonoids. They reduce tissue lipid oxidation, this way delaying
aging, decreasing inflammation, oxidative stress, as well as the chances of developing some
diseases, namely cardiovascular pathologies (e.g., myocardial infarction and atherosclerosis),
cancer, metabolic (e.g., diabetes) and neurological disorders (e.g., depression) [14,70,76]. Plant-
based metabolites act as defense mechanisms against invasive microorganisms, insects, and
herbivores. They wield antibacterial activity via multiple mechanisms, acting in consonance
for increased host protection. Their chemical versatility has additionally enabled the synthesis
of a large variety of functionalized skeletons. Modes of action are variable, yet potent [77–80].
Inhibition of cell wall synthesis, permeabilization and disintegration of bacterial peripheral
layers, restriction of bacterial physiology, oxygen uptake and oxidative phosphorylation, efflux
pump inhibition, modulation of antibiotic susceptibility, biofilm inhibition, hindrance of the
microbial protein adhesion to the host’s polysaccharide receptors, and attenuation of bacterial
virulence, are known and acclaimed mechanisms of action of such elements [67,69,70,81].
Compounds such as lectins even allow specific recognition and reversible interaction to
either free carbohydrates or glycoconjugates, without modifying their structure. They may
form ion channels in the microbial membrane or inhibit adhesion of microbial proteins to
host polysaccharide receptors. Hence, they are capable of precipitating polysaccharides and
glycoproteins or agglutinating cells [82–85]. Overall, these changes are mostly induced by
hydrophobic effects, covalent binding and hydrogen binding of their phenolic compounds [69].
The multitarget action of plant extracts, unlikely to induce resistance [86], has the potential
to surpass the current clinical failures posed by traditional antibiotics [66]. Table 2 illustrates
the main classes of antibacterial plant constituents based on the categorization published
by Cowan [69], including the representation of chemical structures of relevant examples.
For instance, gallic acid (a phenolic acid), while loaded into CS-based NPs and dispersed
within collagen and fibrin hydrogels [87], has shown an excellent DPPH (2,2-Diphenyl-2-
picryl hydrazyl hydrate) radical scavenging activity even at the lowermost concentration of
0.05 mg/mL, strongly contributing for a faster re-epithelialization and wound contraction,
qualities that are highly valued for wound dressing applications. In another study [88],
thyme-essential-oil-loaded CS NPs and nanocapsules, rich in thymol and carvacrol (simple
phenols), exhibited an antibacterial action dependent on thymol and carvacrol release rate,
with 100% phenol release in 5 h (rather than 10 h) evoking 50% larger ZoIs, thus reinforcing
their importance in the field. Authors indicated that studies related to mechanism of action
on bacteria were ongoing. A final example described cinnamaldehyde combination with CS
in the form of NPs via Schiff reaction between the free amine groups of CS and the aldehyde
group of the phenylpropanoid [89]. It substantially enhanced CS’s antibacterial capacity,
additionally improving the stability of the CS NPs. The bacterial growth inhibition was
33–34% higher for grafted CS than for the unmodified polysaccharide-based NPs. Lectins and
polypeptides were excluded from the table, given that they have more complex structures
than the other cited classes. Regardless, these proteins or glycoproteins are often positively
charged, with disulphide bonds. Concanavalin A and galectin-1 are well-known examples,
having as ligands Manα1-OCH3 and Gal(β1→4)Glc, respectively [82–85,90].
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Table 2. Main classes of antibacterial plant constituents based on the division proposed by Cowan [69], in addition to representative chemical structures of relevant examples.

Antibacterial Compound
Classes Description Examples Ref.

Phenols and polyphenols

Simple phenols Single substituted phenolic ring

Eugenol
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Table 2. Cont.

Antibacterial Compound
Classes Description Examples Ref.

Coumarins Phenolic substances with fused
benzene and α-pyrone rings

Novobiocin
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3. Chitosan-Based Small-Scaled Particles Loaded with Plant-Derived Biomolecules

Most of the chemical components of plant extracts are, in general, volatile and sus-
ceptible to temperature, light incidence, oxygen- and/or moisture-induced degradation,
thereby losing efficacy [121,122]. In some cases, these can even induce toxicity and allergic
reactions [123]. Small-scaled particles, as drug reservoirs, can bypass the later issues due to
their capacity to control drug delivery and provide effective solutions [121–123].

CS has already been the object of a vast number of very interesting studies, as NP,
MP, particle-, film-, or coating-layer component [34,124–129] or even as reducing agent
of inorganic NPs [130]. However, these formulations have excluded plant extracts from
their composition. Much has also been published on the use of plant extracts as reducing
agents for inorganic NP synthesis, namely silver, gold, zinc, or copper oxide NPs [131–134].
However, organic NPs, templated upon natural or synthetic organic molecules, are more
easily recognized by the host and biodegraded. CS has been extensively explored as a
carrier component of organic drug delivery systems (mostly nanoparticles, NPs) for load,
and release, of plant-derived compounds [135], with hydrophobic biomolecules being
traditionally encased by a CS-based shell, and hydrophilic biomolecules entrapped within
the CS-containing matrix.

Nanoparticulate systems are colloidal-sized particles with diameters ranging from 1 to
1000 nm [136–138]. Their size offers a high surface/volume ratio and the correlation with
structural sizes of biological components: they are small enough to pass through biological
barriers, internalize target cells, and influence a number of cellular processes [139–141].
Loaded NPs can protect the cargo from biodegradation, thus retaining their bioactivity,
extend circulation times, enable their controlled release, and ensure their efficacy at the
target site, using lower doses than if they were to be used in free form [123,142]. Depending
on the method employed for their preparation, nanospheres—matrix-like systems in which
the drug is dispersed within the polymer chains—or nanocapsules—vesicular systems that
are formed by a drug-containing liquid core (aqueous or lipophilic) surrounded by a single
polymeric membrane, can be obtained [143–145]. Ionic gelation is the most commonly
described procedure for CS-based NP production. In short, CS has the ability to func-
tion as a polyelectrolyte, as it is a polymeric macromolecule with charged or chargeable
groups (particularly its primary amine groups) when dissolved in polar solvents (predom-
inantly water) [2]. Ergo, ionic gelation is a self-assembly process driven by electrostatic
interactions between aqueous solutions of charged macromolecules such as CS and small
molecules (like tripolyphosphate, TPP) carrying opposite electrical charges [66,146,147].
It is an easy, versatile, low-cost technology, requiring a simple and easily scaled-up ap-
paratus, enabling multiple biomolecules incorporation with high efficiency, stability, and
controlled release [2,148]. CS-based small-scale particles have also been broadly gener-
ated by emulsification methods. A single emulsion/solvent extraction method is another
frequent example [143–147]. An emulsification protocol (exposure to high energy source:
ultrasound, homogenizer, milling) implies mixing one liquid phase into another totally or
partially immiscible by resorting to stabilizers like surfactants, which are able to reduce the
interfacial tension between the two liquid phases to achieve stability [143,145]. Typically, a
non-water-miscible organic solution of a hydrophobic drug is mixed with preformed poly-
mers into an aqueous phase containing surfactants. Nano-sized organic solvent droplets are
obtained, being templates for nanocarrier assembly. The non-aqueous phase is removed by
evaporation under low pressure or vacuum or by solvent extraction using a large volume of
water, leading to the formation of NPs dispersed in the water phase. Hence, formed NPs are
then collected by centrifugation or filtration and washed with pure water or buffer solution
to remove residual stabilizers and free drug, and freeze-dried for storage [144,145]. Alter-
natively, hybrid techniques like emulsification followed by ionic gelation can be pursued,
so that the hydrophilic particle surface is further stabilized [73,75,149–151]. To encapsulate
hydrophilic drugs, a double emulsion (water-in-oil-in-water) may be formed with the drug
dissolved in the internal aqueous phase [145]. That, however, has not appear in published
work. Figure 2 represents the most commonly employed processing methodologies to
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create small-scaled organic particles with CS as skeletal component and carrying plant
extracts for enhanced biological effect.
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Figure 2. Key steps involved in the preparation of plant-extract-loaded CS-based NPs by (a) ionic gelation and (b) simple
emulsion techniques [2,66,144,145,152].

Table 3 showcases relevant examples of plant-extract-loaded CS-based small-scale
particles for the aforementioned biomedical applications. Most of the research is being
done with low-medium Mw CS and 15 < DA < 25%, used as-received, and processed
in the form of NPs, namely, using ionic gelation, emulsification, or the hybrid top-down
and bottom-up approaches such as emulsification followed by ionic gelation. Integrated
plant extracts are mostly hydrophobic in nature, and encapsulated (or entrapped, litera-
ture is unclear) within the NP matrix, even though some of it gets adsorbed to the NPs,
and some affinity with CS through hydrogen bonding may also take place [34]. After
a certain amount of time and under certain conditions, the latter traditionally suffers a
burst release while the remainder of the extract gets released over a longer period of time.
Following the electrostatically self-assembly methods of ionic gelation or polyelectrolyte
complexation, pH change (as it occurs after NP incubation in physiological conditions) is
the most appointed trigger for drug release, given that a higher pH will deprotonate the
primary amines of the CS and feed NP matrix disintegration. Notwithstanding, if the NPs
are further stabilized, for instance through the use of trimethylated CS derivatives that
offer pH-independent cationic charges (increasingly evident with higher DS) [119,151,153]
or emulsification [73,75,149–151], thereby reinforcing NP stability, the appointed release
mechanisms are instead driven by diffusion, with a contained matrix swelling allowing the
drug to traverse the NPs and leave them, which is preceded by drug desorption from the
NP peripheral chains. Figure 3 illustrates and summarizes the main paths taken by a drug
to be loaded onto or into small-scale particles (depending on the goal, mechanism, and
kinetic of actuation, and of NP type), which can then be released from them in different
manners and triggered or controlled by multiple stimuli, either acting alone or combined
to function in parallel or one after the other.
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Table 3. CS-based small-scale organic particles loaded with plant extracts for biomedical applications.

CS or CS Derivative Carrier
Composition

Production
Method

Loaded Plant Extract Main Particle
Features Main Observed Effects

Potential
Applications

Appointed
Release

Mechanism
Ref.

DA Derivative DS Mw Hydrophilic Hydrophobic

15 - - 60 kDa
CS/poly(γ-

glutamic acid)
(γ-PGA)

Polyelectrolyte
complexation - Tea catechins

Round-shaped;
dDLS = 134–147

nm; ζ =
−18.7–33.5 mV
(∆ molar ratio)

Enhanced antioxidant
activity.

Dietary
supplements

pH-triggered
disintegration [14]

- - - Low CS/TPP Ionic gelation -
Grape

pomace
extract

Round-shaped;
dDLS = 419–853
nm; ζ = 7.4–14.9
mV (∆ CS and

drug
concentration)

High antioxidant capacity
and antimicrobial action

against
methicillin-susceptible S.

aureus, L. monocytogenes, P.
aeruginosa, S. enteritidis, E.

coli, and C. albicans.
Reduced in vitro intestinal

permeability.

Dietary
supplements

pH-triggered
release [157]

- - - 100–200
kDa CS/TPP Ionic gelation P. dactylifera

extract -
Round-shaped;

dDLS ≈ 210 nm; ζ
= 33 mV

Antioxidant, antibacterial,
antifungal, and anticancer
(yet protecting vital organs

from oxidative stress).

Dietary
supplements - [158]

15–25% - - - CS/lecithin
Nanoprecipitation

or solvent
displacement

- Thyme

Round-shaped;
dTEM = 6.4 (NPs)

or 9.1 nm
(nanocapsules)

Controllable release kinetics
with significant inhibitory

effects against S. aureus and
Bacillus cereus.

Antimicrobial
medication

against
foodborne

bacteria

Desorption, or
diffusion [88]

- - - 190–310
kDa CS/fucoidan Polyelectrolyte

complexation - Quercetin dDLS = 356 nm; ζ
= −30 mV

Controlled release under
biorelevant simulated

gastrointestinal
environments; significant

antioxidant activity.

Nutraceutical
and pharma-

ceutical
uses

pH-responsive
diffusion,

combined with
carrier erosion

[159]

15–25% - - Medium

CS/TPP/sodium
hexametaphos-

phte
(HMP)

Emulsification
and ionic
gelation

- Carum
copticum

Round-shaped;
dDLS =

236.0–721.0 nm

Improved antimicrobial and
antioxidant effects.

Nutraceutical,
cosmetic and
pharmaceuti-

cal
uses

Desorption, then
diffusion,

especially in
alkaline

conditions

[149]
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Table 3. Cont.

CS or CS Derivative Carrier
Composition

Production
Method

Loaded Plant Extract Main Particle
Features Main Observed Effects

Potential
Applications

Appointed
Release

Mechanism
Ref.

DA Derivative DS Mw Hydrophilic Hydrophobic

15.2% - - Medium CS/TPP/Tween
80

Emulsification
followed by

ionic gelation
-

Peppermint
and green tea

oils

Round-shaped;
dTEM = 20–60 nm,

dDLS =
252.6–256.3 nm; ζ
= −20.9–29.0 mV
(∆ molar ratio)

Increased thermal stability;
enhanced antioxidant

activity and antimicrobial
action.

Nutraceuticals,
cosmetic and
pharmaceuti-

cal
uses.

Diffusion [75]

- - - Low CS/TPP Ionic gelation - Physalis
alkekengi-L

Round-shaped;
dSEM = ~160 nm,
dDLS = 196 nm;
ζ= 7.69 mV

Prolonged antioxidant
activity with potential

anticancer performance.

Antioxidant
medical

formulations
Diffusion [160]

4% - - Medium CS/polysorbate
80 Ionic gelation - Thymoquinone

Round-shaped;
dTEM = 74.66 nm,
dDLS = 492.3 nm;
ζ= 3.89 mV

Elevated monoamine
neurotransmitter synthesis,
particularly serotonin, and
prevented oxidative stress
on neural cells (enhanced

antidepressant effects).

Antidepressants
for mental
illnesses

Desorption, then
diffusion [76]

14% - - ~50 kDa CS/TPP Ionic gelation -

Rosmarinic
acid, Salvia
officinalis

(sage) and
Satureja
montana
(savory)

Round-shaped;
dDLS =

280.0–302.4 nm;
ζ= 27.5–30.1 mV

Increased permeability and
retention; no cytotoxic

effects.

Treatment of
oxidative eye

conditions

pH-triggered
disintegration [161]

- - - -

Carboxymethyl
CS,

hydroxypropyl
CS or trimethyl
CS/poloxamer
407/Kolliphor®

HS 15

Emulsification - Tetrandrine
Round-shaped;

dDLS = 157.0 nm;
ζ = 22.1 mV

Improved drug sustained
release and bioavailability;
no sign of ocular irritation.

Treatment of
glaucoma

Desorption, then
diffusion [119]

≤25% - - -
CS/alginate/

tween
80/CaCl2

Emulsification
and ionic
gelation

-
Turmeric and
lemongrass

oil

Round-shaped;
dDLS =

226.4–256.6 nm; ζ
= 35.7–37.3 mV

Hemocompatible, nontoxic
systems with a sustained

drug release profile;
antibacterial, antifungal,

antioxidant, antimutagenic,
and anticarcinogenic

properties.

Medical and
pharmaceuti-

cal drug
delivery
systems

pH-responsive
diffusion [73]
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Table 3. Cont.

CS or CS Derivative Carrier
Composition

Production
Method

Loaded Plant Extract Main Particle
Features Main Observed Effects

Potential
Applications

Appointed
Release

Mechanism
Ref.

DA Derivative DS Mw Hydrophilic Hydrophobic

15.2% - - Medium CS/TPP/Tween
80

Emulsification
followed by

ionic gelation
-

Peppermint
and green tea

oils

Round-shaped;
dTEM = 20–60 nm,

dDLS =
252.6–256.3 nm; ζ
= −20.9–29.0 mV
(∆ molar ratio)

Increased thermal stability;
enhanced antioxidant

activity and antimicrobial
action.

Nutraceuticals,
cosmetic and
pharmaceuti-

cal
uses.

Diffusion [75]

10 - - 150 kDa

Citric
acid-CS/TPP

and N, N,
N-trimethyl

CS/TPP

Emulsification
and ionic
gelation

-
Ocimum

gratissimum
essential oil

Round-shaped;
dDLS = 134.9 and
153.5 nm; ζ = 26.1

and 22.6 mV,
respectively

Increasing antioxidant
activity even after 75 h.

With, CS derivative,
antibacterial activity at a
lower concentration for

both Gram-negative and
Gram-positive food

pathogens. Toxic towards
MDA-MB-231 breast cancer

cell lines.

Antioxidant,
antibacterial

and
anticancer

agents

Desorption, then
diffusion [151]

- - - -
CS grafted to
mesoporous

silica NPs

Emulsification,
chemical

grafting and
gate-

penetration by
super-critical

CO2

- Zedoary oil
Mesoporous

round-shaped;
dDLS = 86.7 nm

Controlled release triggered
by pH changes; increased

stability of the loaded
molecule

Drug
delivery
systems

pH-responsive
diffusion [162]

≤15% - - Medium CS/Pterocarpus
marsupium Ionic gelation Pterocarpus

marsupium -
Round-shaped;

dDLS = 676 nm; ζ
= 57.3 mV

Higher stability, enhanced
entrapment efficiency, and

sustained drug release
characteristics. Significant
increase in alpha-amylase
inhibition and appreciable
anti-inflammatory activity.

Therapeutic
agent against
diabetes and

inflamma-
tory

disorders in
drug delivery
applications

Desorption, then
slow

degradation and
diffusion

[163]

15% - - 50–190
kDa

CS/quinoline/
Tween 60 Nanoemulsion - Quercetin

Nanorod shape
and monolithic

structure; dDLS =
141–174.8 nm; ζ =
−2.4 to −14.1 mV

Enhanced pH-sensitive
controlled release;

remarkable anticancer
activity against HeLa cells
by reducing cancer cells’

proliferative skills.

Anticancer
drug

nanocarriers

pH-responsive
diffusion [74]
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Table 3. Cont.

CS or CS Derivative Carrier
Composition

Production
Method

Loaded Plant Extract Main Particle
Features Main Observed Effects

Potential
Applications

Appointed
Release

Mechanism
Ref.

DA Derivative DS Mw Hydrophilic Hydrophobic

15.2% - - Medium CS/TPP/Tween
80

Emulsification
followed by

ionic gelation
-

Peppermint
and green tea

oils

Round-shaped;
dTEM = 20–60 nm,

dDLS =
252.6–256.3 nm; ζ
= −20.9–29.0 mV
(∆ molar ratio)

Increased thermal stability;
enhanced antioxidant

activity and antimicrobial
action.

Nutraceuticals,
cosmetic and
pharmaceuti-

cal
uses.

Diffusion [75]

15–25% - - 50–190
kDa CS/TPP Ionic gelation - Posidonia

oceanica

Round-shaped;
dDLS = 252.4 nm;
ζ= 19.7 mV

Excellent physical and
chemical stability during
storage; enhanced extract
solubility and prolonged

release; improved inhibitory
effect on cell migration.

Treatments to
prevent neu-
roblastoma

cell
migration

Diffusion [164]

- - - - CS/Tween 20 Nanoemulsification - Zataria
multiflora oil

Round-shaped;
dDLS = 463 nm; ζ

= 18.35 mV

Improved the proliferation
inhibition rate of breast
cancer cells by inducing

apoptosis, generating ROS,
and triggering

mitochondrial membrane
permeabilization, while

damaging cell DNA
without harming normal

cells.

Breast cancer
medication - [165]

≤10% - - 50–190
kDa

CS/Liquid
paraf-

fin/Tween
80/Span

80/magnesium
stearate

Emulsification - Cinnamaldehyde
Round-shaped;
dTEM = 80–150

nm

Increased chemical stability
and synergistic antibacterial

action against
Gram-positive and

Gram-negative bacteria.

Medical
textiles (e.g.,

wound
dressings)

- [89]

5% - - - CS/TPP Ionic gelation - Vaccarin

Round-shaped;
dTEM ≈ 40 nm,

dDLS = 216.6 nm;
ζ = 37.1 mV

No evidence of cytotoxic
effects; increased umbilical

vein endothelial cells
proliferation and migration;

up-regulated IL-1β and
PDGF-BB factors,

promoting angiogenesis.

Wound
healing

Burst, then
sustained release [105]
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Table 3. Cont.

CS or CS Derivative Carrier
Composition

Production
Method

Loaded Plant Extract Main Particle
Features Main Observed Effects

Potential
Applications

Appointed
Release

Mechanism
Ref.

DA Derivative DS Mw Hydrophilic Hydrophobic

15.2% - - Medium CS/TPP/Tween
80

Emulsification
followed by

ionic gelation
-

Peppermint
and green tea

oils

Round-shaped;
dTEM = 20–60 nm,

dDLS =
252.6–256.3 nm; ζ
= −20.9–29.0 mV
(∆ molar ratio)

Increased thermal stability;
enhanced antioxidant

activity and antimicrobial
action.

Nutraceuticals,
cosmetic and
pharmaceuti-

cal
uses.

Diffusion [75]

≤15% - - - CS/TPP Ionic gelation

Pterocarpus
marsupium
Roxburgh
heartwood

extract

-
Round-shaped;
dSEM = 400 nm;
dDLS = 676 nm

Inhibition against
Gram-positive and

Gram-negative bacteria.
Healing of complicated

surgical wounds.

Wound
healing Diffusion [163]

15% - - Low CS/TPP Ionic gelation - Gallic acid

Round-shaped;
dDLS =

117.5–356.6 nm; ζ
= 18.3–33.6 mV

Accelerates angiogenesis,
hexosamine synthesis,

collagen deposition, and
recruiting immune cells at

wound area.

Wound
healing

dressings

pH-triggered
desorption, then

disintegration
[87]

- - - - CS/TPP/Tween
80

Ionic gelation
and

emulsification
-

Pandanus
tectorius fruit

extract

Round-shaped;
dDLS = 160.4 nm

No evidence of cytotoxic
responses; increased SR-B1
gene expression required

for an effective reduction of
hypercholesterolemia-

related
symptoms.

Control
medication

for
hypercholes-

terolemia

- [150]

- - - - CS/TPP Ionic gelation - Eugenol

Round-shaped;
dSEM =

23–16-37.67 nm; ζ
= −49.6 mV

Reduced expression of
TGF-β and MCP-1 genes;
NPs revealed increased

immunomodulatory,
anti-inflammatory, and
antioxidant potential.

Treatment of
autoimmune

diseases,
such as

rheumatoid
arthritis

- [166]

21% - - 206.4
kDa CS/Tween 80

Emulsification
and

spray-drying
-

Lemongrass
essential oil
(LEO) and
geranium

essential oil
(GEO)

Round-shaped;
dSEM = 4.959 and

5.009 µm; ζ =
45.26 and 47.34

mV, respectively

Higher thermal and
colloidal stability than raw
CS and EOs. The MIC for C.
albicans was reduced up to
64 times. Reduced biomass

of mature biofilm up to
84%.

Compounds
that have

antibiofilm
activity

against C.
albicans.

Diffusion [72]
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Table 3. Cont.

CS or CS Derivative Carrier
Composition

Production
Method

Loaded Plant Extract Main Particle
Features Main Observed Effects

Potential
Applications

Appointed
Release

Mechanism
Ref.

DA Derivative DS Mw Hydrophilic Hydrophobic

15.2% - - Medium CS/TPP/Tween
80

Emulsification
followed by

ionic gelation
-

Peppermint
and green tea

oils

Round-shaped;
dTEM = 20–60 nm,

dDLS =
252.6–256.3 nm; ζ
= −20.9–29.0 mV
(∆ molar ratio)

Increased thermal stability;
enhanced antioxidant

activity and antimicrobial
action.

Nutraceuticals,
cosmetic and
pharmaceuti-

cal
uses.

Diffusion [75]

91.2% - - 106.8
kDa CS/TPP Ionic gelation Saussurea

costus -
Round-shaped;
dTEM = 48 nm; ζ

= 3.28 mV

Notable antimycotic
potentiality against all
examined strains, with
vigorous structural and

morphological alterations.

Antimycotic
agent to
control

resistant
pathogenic

yeast strains

- [167]

9.6 - - 100–300
kDa CS/TPP Ionic gelation - Cinnamon

leaf oil Round-shaped
Significant reduction of

viable cells, right after 2 h of
incubation.

P.
aeruginosa’s

infection
control

pH-responsive
release [152]

17% - - >150 kDa CS/TPP Ionic gelation Arrabidaea
chica extract -

Round-shaped;
dTEM = 20–60 nm,

dDLS = 60–153
nm; ζ = 32.1–32.9

mV (∆ load
content)

Gastroprotective effect.
Biocompatibility,

antiulcerogenic activity.

Ulcer-
healing

pharmaceuti-
cal

systems

- [168]
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One of the examples presented in Table 3 highlights CS-quinoline NPs loaded with
quercetin, a hydrophobic anticancer plant extract against HeLa cells. The release of the
anticancer drug is controlled by pH fluctuations and showed high cytotoxicity for can-
cer cell proliferation. The results also demonstrated the potential of these CS-based NPs
crosslinked with quinoline derivatives for drug delivery of other therapeutic agents [74].
For application as dietary supplements, CS and poly (γ-glutamic acid) (γ-PGA, an edi-
ble polyamino acid) NPs were loaded with tea catechins, which are potent antioxidant
polyphenolic compounds present in green tea. Following oral administration, the severe
gastrointestinal tract environment poses severe hurdles to the bioactivity of these oxidation-
sensitive compounds. Their encapsulation in NPs solves this problem, and the results
showed an efficient pH-responsive release of tea catechins from the NPs in simulated
gastrointestinal tract media, with an effective antioxidant activity [14]. In the context of
medical textiles, an interesting example depicted emulsion-derived CS NPs crosslinked
with cinnamaldehyde, an extract from cinnamon trees that is also a bactericidal agent. The
results demonstrated antibacterial activity against S. aureus (Gram-positive) and E. coli
(Gram-negative) bacteria. These NPs can coat medical textiles such as wound dressings
or even other antimicrobial sustainable textiles (e.g., sports wears, home textiles, automo-
tive sector) [89]. Another example presented CS emulsion-derived MPs encapsulating
lemongrass or geranium essential oils (EOs) to act against biofilm formation led by Candida
albicans, a commensal fungus yet a dangerous opportunistic pathogen in certain medical
conditions. The minimum inhibitory concentration (MIC) values for loaded MPs were
lower than for unloaded MPs and free EOs. The higher EO-loaded MP biofilm inhibition
percentage demonstrated the efficiency of MPs against C. albicans biofilm formation and
endurance. EO was released by a slow, and sustained, pH-sensitive diffusion process [72].
A final example within the table described CS/TPP NPs synthesized by ionic gelation with
incorporated gallic acid, which is a plant polyphenolic compound with wound healing
properties along with anti-inflammatory, antioxidant, anti-cancer, anti-diabetic, and neuro-
protective activities. With the synthesized NPs, the authors advanced the preparation of
collagen/fibrin scaffold infused with the gallic-acid-loaded CS NPs. The results showed
increased collagen deposition, angiogenesis, epithelialization and fibroblast migration
which culminated in accelerated wound contraction [87]. These results also demonstrated
the potential of the CS NPs to be incorporated in other biomaterial-processed architectures
with suitable properties to facilitate their practical application.

4. Biomedical Applications: Fiber-Based Systems

Numerous processing methodologies exist for polymer phase change from solution
into solid-state fibres, forming continuous monofilament or multifilament yarns or, alter-
natively, short-length staple fibers subsequently blended with natural fibers (e.g., cotton
or wool), or used by themselves to create scaffolding systems [169]. 3D printing and fiber
spinning technologies (e.g., fiber extrusion spinning, melt-spinning, dry-spinning, wet-
spinning, electrospinning) are considered the most prominent techniques in the biomedical
field to generate such fibrous structures [169,170].

Electrospun nanofiber-based systems are particularly appealing [5]. Mats produced by
electrospinning resemble the morphological structure of the extracellular matrix due to their
nanoscale features, are endowed with large surface area per unit volume, and arranged in
a highly interconnected porous architecture, able to easily incorporate biomolecules or NPs
of interest [5,169,171]. Electrospinning is a simple, effective, and versatile method to yield
fibrous structures with fiber diameters ranging between few nanometers to lower than
one micrometer, a size that is difficult to attain using conventional spinning techniques.
Compared to other techniques used for nanofiber production, such as phase separation, self-
assembly, template synthesis, mechanical drawing, melt blowing, hydrothermal processing,
centrifugal force spinning, and bicomponent extrusion, this method is the most effective in
producing nanofibers with a homogeneous structure [5,172,173], thus being the method
of choice for this particular purpose [169,171]. A polymeric solution is injected through
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a needle and directed at a collector (frequently a conductive aluminum plate, which
generates nonwoven structures). Due to the high applied electrical field, the potential
difference created between the needle and collector attracts the polymer to the later while
allowing solvent evaporation to occur along the taken path. The polymeric solution is
this way converted into nanofibers [171]. The use of different polymers, polymer blends,
or nanocomposites made of organic or inorganic materials can modulate the chemical
composition of electrospun membranes. Physical parameters and structures, such as fiber
diameter, mesh size, porosity, texture, and pattern formation can also be maneuvered,
thereby offering numerous possibilities towards electrospun scaffold design that can meet
the demands of an intended application [171,174].

However, most of these fiber-based systems rely on fabrication techniques that heavily
depend on manual intervention, hindering reproductivity and scaling-up, and leading to
high manufacturing costs. Textile technologies are a viable alternative to those approaches,
enabling the production of finely tuned, fiber-based complex constructs with high control
over the design (e.g., size, shape, porosity and fiber alignment), the manufacture and the
reproducibility. They do not involve the use of toxic solvents and allow production on an
industrial scale through spinning, weaving, knitting, non-woven and braided technolo-
gies [175,176]. Afterwards, a textile finishing can be applied to adjust, or determine, certain
characteristics of the textile item: a fabric can be bleached or sterilized for medical use; a
surface can be treated to become hydrophilic or superhydrophobic, depending on whether
moisture absorption or repellency is required by the particular application; in some cases,
like wound dressings, the two sides of the fabric may be tuned to behave differently; and
a textile may be impregnated/coated with an agent(s) to confer specific properties, or to
assist in the uptake or retention properties of the active agent [176].

Different strategies can be used to incorporate plant-extract-loaded particles into
polymer-based solutions to extrude fibers, either by direct (e.g., co-axial spinning) or
indirect (e.g., co-spinning) encapsulation [169]. Additionally, and alternatively, particles
may be immobilized after obtaining the fibers, via entrapment between the fiber yarns
and/or physical/chemical attachment to the fibers [177]. The immobilization of plant-
extract-loaded CS-based organic particles onto fibers, fibrous assemblies, and textile fabrics
can occur via three main types of chemical bonds, similarly as described elsewhere for
the case of biomolecule’s immobilization onto natural fibers [54]: (a) physical adsorption,
(b) physical entrapment, and (c) covalent bonding.

(a) Physical adsorption includes self-assembly methods such as van der Waals interac-
tions, electrostatic interactions, hydrophobic effects, and affinity recognition [152,153];

(b) Physical entrapment of the particles within the fabric’s fibrous structure takes place
either by vacuum induction or assisted by intermediary adhesive layers [154–157];

(c) Covalent bonding comprises short-range intermolecular attractive forces at the molec-
ular scale [158–160].

There are frequently encountered combinations between the latter approaches, as
well. On the other hand, the immobilization method trends of the aforementioned particles
include the dip-pad-dry-cure method, impregnation, exhaustion method, spray-drying,
and covalent chemistry. The goal is to immobilize a sufficient number of compounds in the
fibrous templates, giving them enough bioactivity, for the necessary time period [54,161].

Fibers and textiles have been widely exploited as pharmaceutical repositories (e.g.,
drug-loaded carriers for medical therapy, nucleic acid delivery for gene therapy, enzyme
carriers for biomedical applications), components of wound dressings (e.g., gauze, foam,
hydrogels, transparent films, alginates, hydrocolloids, and antimicrobial dressings) and
anti-adhesion membranes, percutaneous access devices, implantable devices (e.g., vascu-
lar stents and grafts, sewing rings, hernia repair meshes, skin/bone/cartilage/ligament
mimetic scaffolds, nervous conduits, as well as drug delivery systems), sensors, reinforc-
ing fillers, sound absorption, filtration systems, electrodialysis separation, or as part of
personal protective equipment (PPE) and clothing (e.g., masks, surgical gowns, aprons,
gloves, clothing, and hospital linen) [169,175,176,178]. The so-called biotextiles, based
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on natural and synthetic fibers, are defined as “structures composed of textile fibers and
designed for uses in a specific biological environment where their performance depends
on their interactions with cells and biological fluids as measured in terms of biocompat-
ibility and biostability” [169,175]. These functional textiles are therefore designed and
produced for their technical properties and performances, besides apparel and aesthetic
purposes [179,180].

While facing all the above cited strategies and taking into consideration the aforemen-
tioned content of CS or plant extracts alone and the combination of CS as carrier skeleton
and plant extract as payload, the integration of plant-extract-loaded CS-based organic par-
ticles into fiber-based systems gathers great potential for biomedical applications. Table 4
presents a comprehensive representation of existing studies on this subject.

Co-spun poly(ε−caprolactone) (PCL)/CS/curcumin nanofibers were fabricated by
electrospinning, yielding nanofibers of ≈100 nm in diameter [172]. Then, curcumin-loaded
electrostatically self-assembled CS/TPP NPs (via ionic gelation creating round-shaped NPs,
with d≈ 32 nm) were electrosprayed onto the surface of the previously prepared nanofibers,
to improve the sustained release of curcumin at the wound site. Indeed, loaded nanofibers
exhibited appropriate tensile mechanical properties, swelling behavior and water vapor
transmission rate for use as wound dressing. In vitro testing revealed adequate degradation
rate, curcumin release profile (22% in 6 h, 49% in 72 h), antioxidant potency, antibacterial
efficiency (99.3 and 98.9% growth inhibition of MRSA and extended spectrum β-lactamase
producing E. coli after 48 h), further allowing survival and proliferation of human dermal
fibroblasts. In vivo studies showed 96.25% and 98.5% murine wound closure in 15 days,
with and without MRSA infection. Bacterial growth inhibition was clearly perceived,
enabling an enhanced reparative process of the skin, with well-organized connective
tissue formation devoid of inflammation. Another example also resorted to curcumin-
loaded CS/TPP NPs, this time freeze-dried and then dispersed into a PCL/gelatin (GN)
solution prior to co-spinning [181]. This led to homogeneously distributed NPs of 359 nm
of diameter and −10.7 mV of ζ potential and nanofibers with 1548 nm of diameter and
suitable porosity (65%). Mats were endowed with good mechanical strength to act as
a wound dressing material, in addition to a high swelling capacity, degradation profile,
sustained drug release (23% in 6 h, 100% in 106 h), cytocompatibility towards human
endometrial stem cells (favorable cell adhesion, proliferation and metabolic activity), and
wound healing (82% wound closure at day 14). New tissue resembled normal skin, a
regenerated wound, with clear re-epithelialization, normal rete ridges, and rejuvenation of
skin appendages. Adding the stem cells to the mixture further decreased inflammatory
signals and promoted angiogenesis. These studies show that dressings are in fact an
essential part of the healing process, protecting the wound and intervening actively in the
healing process [182].

Coaxial electrospinning was the strategy selected elsewhere [183] with PCL as core
and polyvinylpyrrolidone (PVP)/veratric-acid-loaded CS/TPP NPs in the outer layer, to
create nanofibrous mats encouraging bone tissue formation. Spherical NPs, with diameters
ranging from 99 to 107 nm (and ζ potential of 16–18 mV), were found to increase nanofiber’s
diameter up to ≈515 nm having clearly defined outlines, plus displaying commendable
swelling and degradation behavior, mechanical properties, biomineralization efficiency,
and in vitro drug release capacity (≈60% in 20 days). In vitro cell culture studies with
mouse mesenchymal stem/stromal cells (mMSCs) resulted in valuable cytocompatibility,
and osteoblastic differentiation potential (proven by alizarin red and von Kossa staining
after 14 days of incubation, and gene expression levels of RUNX2, ALPL, COL1A1, and
BGLAP at day 7 of contact with the biomaterial’s constructs). A different study, also aiming
at bone regeneration, showed co-spun sinapic-acid-loaded CS/TPP NPs with PCL solution,
which were also comprehensively characterized, and yielded exciting results in vitro with
mMSCs and in an in vivo rat model including a critical-sized calvarial bone defect [184].
The cytocompatible constructs encouraged staining of alkaline phosphatase and calcium
phosphate deposits, osteogenic potential at the gene and protein levels (runx2, type I colla-
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gen and osteocalcin) through probable activation of the TGF-β1/BMP/Runx2 signaling
pathway. Micro-computed tomography imaging revealed significant new bone formation
with the optimized constructs at 4 weeks, while histological staining (hematoxylin-eosin
and Masson’s trichrome staining protocols) corroborated the later findings, leaving no
doubt regarding their potential for bone neotissue formation. The self-healing capacity
of bone is widely used to recover from small tissue injuries. However, bone grafts are
needed to provide support, fill lacunae, and enhance biological repair/regeneration when
the skeletal defect reaches a critical size [185].

Plant extract-loaded NP-mediated functionalization has also been widely applied to
textile fabrics, with the main goal of obtaining prolonged biological effects [186]. One exam-
ple explored citronella oil encapsulated within CS-based emulsions (having 79–93 nm in
size on the course of 14 days of storage) further stabilized with citric acid onto a cotton knit
(100% cotton textile, pore surface area of 20–90 µm2, distances within interyarn: 10–70 µm,
distances within interfiber (intrayarn): 2–6 µm, and distances within pore (interfiber):
10–90 nm). Prior to particle immobilization through impregnation, the fabric was care-
fully washed and degassed by negative pressure. The results showed that nanocapsules
were able to infiltrate the spacing of cotton textile fibers, including the fiber pores, thus
leading to high washing durability (29% retention after 10 washing cycles). Others [187]
included lemongrass oil loaded into emulsified CS NPs further physically-crosslinked with
TPP (d ≈ 90 nm), which were then imprisoned into cotton fabric (plain-weave 112 g/m2,
60 ends per inch × 58 picks per inch) via dip-dry-curing while aimed at developing a
durable anti-mosquito textile finishing. Acrylate was added as fabric adhesive to retain the
nanogels adhered to the textile fibers. The roughness on fabric groves was maintained on
the surface after dry and wet crocking, with the artificial sweat (acidic and alkaline) treated
fabrics also retaining the roughness due to the presence of the capsules. Efficacy was
proven even after 15 washing cycles, still enabling 75% of repellency against mosquitoes
following the activity of the entrapped compounds (100% bioactivity without washing).
Additionally, given that 36 days of repeated application of nanogel on mice’s skin was
nontoxic, the tested formulation was found to be suitable as protective clothing of military
personnel and individuals at risk for mosquito bites in the line of duty. Of particular note is
the extra caution that these recently published studies had with fabric pre-immobilization
procedures, particularly in appropriately washing it so that no contaminants compromised
the intended subsequent bond formations nor the fabric’s applicability. Finally, one last
example [188] emphasizes the value of functional and antimicrobial textile fabrics by im-
mobilizing such herbal nanotechnologies, given that nearly half of the medical textiles
dwell around antimicrobial treatments [176]. A pad-drying approach was used to coat the
cotton fibers with the plant-derived (Aloe vera nano-sized powder) CS NPs (d ≈ 40 nm),
leading to a conglomerate with UV-blocking properties (while exhibiting absorbance in the
UV region at 269 nm, and having UPF > 50), antibacterial activity (ZoIs of ≈27 mm and
≈22 against S. aureus and E. coli, respectively, being close to the results obtained with the
antibiotic amoxicillin (ZoIs of ≈28 mm and ≈23)), and superhydrophobicity (≈155◦), even
after 10 washes.
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Table 4. Integrative strategies of plant extract-loaded CS-based small-scaled organic particles onto fiber-based systems for biomedical applications.

Fiber-Based Structure
Immobilization

Strategy

Loaded Carrier Main
Chemical

Bonds between
Carrier and Fiber

Bioactivity
Potential

Application Ref.
Materials Processing Functional

Groups Composition Plant Extract Preparation
Method

Collagen/fibrin Cryodesiccation -

Dispersion
(solubilization until
NP homogenization
was reached within

the polymeric
solution)

CS/TPP Gallic acid Ionic gelation -

At 3, 6, 24, and 72 h,
9.71 ± 2.3%, 20.69 ± 3.9%,
≈41% and ≈72% of gallic

acid was released from the
scaffolds. The engineered

scaffold accelerated
angiogenesis, hexosamine

synthesis, collagen
deposition and recruited

immune cells at
wound area.

Wound healing [104]

PCL/CS/Curcumin Electrospinning -

Electrospraying
PCL/CS/curcumin

nanofibers with
curcumin-loaded

CS NPs

CS/TPP Curcumin Ionic gelation -

Improved antibacterial,
antioxidant, and cell

proliferation efficiencies,
with higher swelling

capability and water vapor
transition rate of the

electrospun fibers. In vivo
examination showed

significant improvement of
wound healing in

MRSA-infected wounds.

Wound healing [172]

PCL/GN Electrospinning -

Dispersion
(solubilization until
NP homogenization
was reached within

the polymeric
solution)

CS/TPP Curcumin Ionic gelation -

Improved biocompatibility
and wound healing

abilities in a full-thickness
excisional animal model.

Cell attachment and
proliferation was enhanced
in the presence of the NPs.

Wound healing
and skin

substitutes
[181]

PCL/PVP

Co-axial
electrospinning
(sheath PCL and

core PVP)

-

Solubilization of the
NPs with PVP

portion of the fiber
and extrusion as the

core of the
electrospun fibers

CS/TPP Veratric acid Ionic gelation -

Reached 60% release after
20 days of incubation.
Modified fibers were

biocompatible with mouse
mesenchymal stem cells,

promoting their
differentiation

(upregulation of bone
differentiation-related

markers).

Bone
regeneration [183]
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Table 4. Cont.

Fiber-Based Structure
Immobilization

Strategy

Loaded Carrier Main
Chemical

Bonds between
Carrier and Fiber

Bioactivity
Potential

Application Ref.
Materials Processing Functional

Groups Composition Plant Extract Preparation
Method

PCL Electrospinning -

Dispersion
(solubilization until
NP homogenization
was reached within

the polymeric
solution)

CS/TPP Sinapic acid Ionic gelation -

Enhanced osteoblast
differentiation and

activated the osteogenesis
signaling pathways in

mouse mesenchymal stem
cells. In vivo data reflected

the extract ability to
instigate bone formation.

Bone
regeneration [184]

Wool - -OH Pad-dry-cure
technique CS/TPP Propolis Ionic gelation

Hydrogen
bonding and

physisorption.

Enhanced antimicrobial
action against fungi and

bacteria. Synergistic effects
with textile dyes

(improved antimicrobial
protection).

Textile finishes
for microbial-

protective
clothing

[189]

Cotton

Dip in 3%
NaOH for 45

min, soaked in
10 g·L−1

sodium dodecyl
sulphate for 30
min and in hot
ethanol for 30

min. Then,
washed with

boiling
ultrapure water
for 5 times and
dried at 25 ◦C

under 65%
relative

humidity for
use.

Prior to surface
modification,

fabric degassed
by negative

pressure

-OH

Immersion in
particle dispersion at
40 ◦C, 100 rpm/min
for 1 h. Wet pick up

of 100%. The
finished textile was

dipped into
deionized water and
placed into constant

temperature and
pressure to dry the
textile and remove

the extra water.

CS, citric
acid, CO-40,
TGI or CS,
citric acid,
Span 80,

Tween 80

Citronella oil
Emulsification

and ionic
gelation

Hydrogen
bonding between

particles and
textile fibers, and

electrostatic
interaction with

-NH2 of CS

Aromatic retention of
28.84% after 10 washing

cycles.

Aromatic textile
finishing [186]
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Table 4. Cont.

Fiber-Based Structure
Immobilization

Strategy

Loaded Carrier Main
Chemical

Bonds between
Carrier and Fiber

Bioactivity
Potential

Application Ref.
Materials Processing Functional

Groups Composition Plant Extract Preparation
Method

Cotton

Non-ionic
detergent used

at 25 ◦C for
30 min for fabric
washing, warm
water then cold
water applied,

and finally,
fabric drying

-OH

Dip-dry-cure:
Immersion in 100

g/L of gel on a
shaker at 1000 rpm

at 25 ◦C for 2 h,
dried at 50 ◦C for

5 min and cured at
100 ◦C for 2 min,

rinsing with water
to remove unbound
or loosely bounded

molecules.

CS, Tween
80,

TPP/acrylate

Lemongrass
oil

Emulsification
followed by

ionic gelation.
Acrylate
added as

fabric
adhesive

Hydrogen
bonding between

particles and
textile fibers, and

electrostatic
interaction with

-NH2 of CS

100% of repellency against
mosquitoes (75% after 15

washes). Absence of
dermal toxicity in mice.

Insect-repellent
clothing [187]

Cotton

Perfumed cotton
fabrics initially
washed with

water at 40 ◦C,
drained and
rinsed with

water at 25 ◦C
and finally

spun.

-OH

Impregnation:
immersion in

particle dispersion
for 2 h under

vacuum (100 Pa) at
30 ◦C, air-drying at
50 ◦C with the air
current rate of 0.4
m/s for 1 h in the

oven (moisture
content:

0.01103 kg/m3).

CS, Tween
80/TPP

Rose
fragrance

Emulsification
followed by

ionic gelation

Hydrogen
bonding between

particles and
textile fibers, and

electrostatic
interaction with

-NH2 of CS

80% plant extract release in
20 washing cycles. 55%

release in 10 days at 70 ◦C,
0.4 m/s of air current rate
and moisture content of

0.01 kg/m3.

Long-term
fragrance-
releasing
textiles

[190]
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Table 4. Cont.

Fiber-Based Structure
Immobilization

Strategy

Loaded Carrier Main
Chemical

Bonds between
Carrier and Fiber

Bioactivity
Potential

Application Ref.
Materials Processing Functional

Groups Composition Plant Extract Preparation
Method

Cotton - -OH

Dip-pad-dry-cure
method, with fabric
immersed in carrier
dispersion and citric
acid binder (1%) for

5 min, padded
15 m/min with a

pressure of
1 kgf/cm2, air-dried,

cured 3 min at
140 ◦C and

immersed 5 min in
sodium lauryl

sulfate to remove
unbound NPs and
the soap solution,

followed by
air-drying.

CS, Tween
80, Span 80,
palm oil and

TPP

Neem
methanolic

extract

Emulsification
followed by

ionic gelation

Esterification with
-COOH of citric

acid also
promoting

electrostatic
interaction with

-NH2 of CS

Enhanced antibacterial
efficiency (until 20 laundry

washes): 100% S. aureus
reduction (ZoI: 20 mm)

and 93% E. coli reduction
(ZoI: 14 mm).

Textile finishes
for bacterial
protective
clothing

[180]

Cotton - -OH

Dip-pad-dry-cure:
immersion in

particle dispersion
and citric acid

binder for 5 min,
padding mangle to

remove excess
solution, with 100%

wet pick-up,
air-drying, curing at

140 ◦C for 3 min,
immersion in
sodium lauryl

sulfate for 5 min to
remove unbound
extract, rinsing to
remove the soap

solution and
air-drying.

Alginate,
CaCl2, CS

Methanol
extracts of
Ocimum
sanctum

Ionic gelation
and polyelec-

trolyte
complexation

Esterification with
-COOH of citric

acid also
promoting

electrostatic
interaction with

-NH2 of CS

100% (B. cereus, P.
aeruginosa, and S. aureus)
or 98% (E. coli) bacterial
reduction, effective until
20 or 10 washing cycles.

Biocontrol agent
against bacteria

in fabrics
[191]
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Table 4. Cont.

Fiber-Based Structure
Immobilization

Strategy

Loaded Carrier Main
Chemical

Bonds between
Carrier and Fiber

Bioactivity
Potential

Application Ref.
Materials Processing Functional

Groups Composition Plant Extract Preparation
Method

Cotton

Fabric washed 0,
5, 10, 15, and

25 times,
washing with

2% soapy water
for 15 min, and

rinsing in
clean water

-OH

Dip-dry-cure:
immersion in bath

containing
microcapsule

emulsion, 2D resin,
catalytic agent, and
JFC penetrant. Wet

pick up at 100%,
drying at 80 ◦C for

3 min, curing at
160 ◦C for 2 min,
and then cooling

down to room
temperature.

Washing and drying.

CS, gelatin,
span-80, glu-
taraldehyde

Patchouli oil
Emulsification
and chemical
crosslinking

Crosslinking
between 2D resin

and hydroxyl
groups of cotton

and/or
microcapsules

through
acid-catalyzed
dehydration

Gradual decrease of
antibacterial activity down
to 75 and 70% (against S.

aureus and E. coli,
respectively) after

25 washes.

Antibacterial
mask,

bacteriostatic
sheet and

health-care
clothes

[192]

Cotton

Textile binder
(Knittex CHN,

melamine resin)
used to enhance

microcapsule
fixation to
the fabric

-NH2

Dip-pad-dry-cure:
immersion in
microcapsule

solution, vertical
padding 1.5 kg/cm2

and 7.5 rpm with
two dips and two

nips, drying at 80 ◦C
for 3 min, curing in a
Mathis curing oven
at 100 ◦C for 3 min,

and air-drying.

CS, alginate,
liquid

paraffin,
Span 80,

NaOH, glu-
taraldehyde

PentaHerbs
aqueous
extracts

Polyelectrolyte
complexation,

emulsifica-
tion, and
chemical

crosslinking

Electrostatic
interaction of

-NH2 of melamine
resin and -COOH

of alginate

Cytocompatible towards
human epidermal

equivalent.

Garment
development for

atopic
dermatitis

[193]
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Table 4. Cont.

Fiber-Based Structure
Immobilization

Strategy

Loaded Carrier Main
Chemical

Bonds between
Carrier and Fiber

Bioactivity
Potential

Application Ref.
Materials Processing Functional

Groups Composition Plant Extract Preparation
Method

Cotton - -OH

Dip-pad-dry-cure:
immersion in
microcapsule

dispersion, sodium
hypophosphite

(catalyst), citric acid,
and deionized water
(bath ratio = 1:20) for
70 min; rolling (two

dips and two
rollings; wet pick up,

80%; pressure,
0.3 MPa). Drying at

90 ◦C for 3 min,
curing at 160 ◦C for
2 min, then cooling

to room temperature.
Washing with water

and drying under
vacuum at 60 ◦C for

24 h.

CS, citric
acid

Vanillin
ethanolic
solution

Emulsification
and ionic
gelation

Esterification with
-COOH of citric

acid also
promoting

electrostatic
interaction with

-NH2 of CS

Sustained drug release
until 14 laundry washes.

Functional fibers
in the textile

industry
[194]

Cellulose

Fibers washed
with 1%

non-ionic
detergent at

30 ◦C for 30 min
and rinsed with
water for 15 min

-OH

Dip-pad-dry:
immersion in

particle dispersion,
padding at

2.5 m/min and 4
bars to remove
excess solution,

air-drying, rinsing
with deionized

water, and
air-drying again.

CS,
surfactant,

NaOH
Limonene oil

Emulsification
and

neutralization

Hydrogen
bonding between

particles and
textile fibers, and

electrostatic
interaction with

-NH2 of CS

Decreased oil volatility in
8 h.

Insect repellent
for textiles [195]

Cotton - -OH

Pad-dry: padding at
35 rpm for 5 min

and drying at 60 ◦C
for 10 min

CS
Aloe vera

herbal
nanopowder

Coating

Hydrogen
bonding between

particles and
textile fibers, and

electrostatic
interaction with

-NH2 of CS

ZoI of 22 mm and 27 mm
against E. coli and S. aureus,
respectively, UV-protection

factor of 57 and
superhydrophobicity 155◦.

Antibacterial
protective
clothing

[188]
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5. Conclusions and Future Perspectives

In the biomedical field, recent studies (between 2020 and 2021) mostly exploit CS
and plant extracts forming nanocomposites, directed at infection prevention or control,
additionally acting against oxidative stress and inflammation overload, which are critical
for instance in immunocompromised patients [196–203]. CS is a marine-derived cationic
polysaccharide, approved by the FDA (Food and Drug Administration) for wound dressing
applications and cartilage repairing formulations. It has been approved as functional food
in some Asian countries, recognized as safe (GRAS) and approved for dietary use in Italy
and Finland [177]. Its biocompatibility, bioactivity, chemical versatility, and ease of process-
ing into a variety of structures make it a strong contender for use in numerous biomedical
applications, including microbicidal approaches. As communicable diseases threaten to
reach epidemic proportions, affecting patients from all ages, societal and financial status,
with high mortality rates and healthcare burden, the search for effective antimicrobial
strategies is highly needed. In parallel, plant extracts (widely used as folk medicine) are
increasingly considered as potential alternatives to antibiotics, having high potential for
being a source of natural drugs that can be used to counteract microbial survival and
prosperity [22,54,55]. Several natural drugs have already been approved for clinical use,
namely for antioxidant and antimicrobial purposes [178,179]. Notwithstanding, their com-
bination as organic particles has also been object of several studies, while emphasizing
their antioxidant [158,204,205] and antimicrobial capabilities [204,206,207]. If loaded into
CS-based nano- or micro-scale organic particles [115], plant extracts hold the power to
confer strong and long-lasting effects, without the consequences of overdose-induced
tissue damage or inefficiency due to drug biodegradation ahead of reaching the target
site. Their integration into suitable carriers can protect the drug from biodegradation,
transport it into the target site, enable a controlled release and avoid off-target action, thus
heightening, or complementing, their biological effects [2,180,181]. CS-based small-scale
organic carriers have been widely studied for biomedical applications, having tremendous
potential [2,182,183]. However, the development of plant-extract-loaded formulations is
still limited, namely when applied to fiber-based systems. Nowadays, electrospinning
is the most frequently studied technique to produce fibers (at the nanoscale) carrying
these NPs, namely via co-spinning. The compositions are being mainly sought out for
wound dressing layers additionally encouraging tissue regeneration. Large bone lesions
may also benefit from such strategies. On the other hand, cotton is currently the sole type
of fabric being functionalized with these types of particles, with no major pre-treatment
being applied. Particle addition is mostly done by dip-pad-dry-cure method, frequently
with citric acid acting as linker between CS and the cotton fibers, and the particles be-
ing produced via emulsification followed by ionic gelation methods encapsulating the
hydrophobic plant extracts. An antimicrobial finishing has been the major added func-
tionality. However, poor mechanical properties, washing durability, and burst release
are still frequently encountered obstacles. Yet, research is progressing very well, with
the production of numerous and clever CS derivatives, added processing methodologies,
crosslinking steps, and functionalization protocols, thus creating high hopes to overcome
these limitations and stick to its beneficial traits. Moreover, triggers such as ionic strength,
temperature shifts, enzymatic reactions, oxidative stress, or even light irradiation, not as
explored in this context, could also lead to thrilling new avenues of plant-derived drug
consumption under the appropriate pathological settings. These scientific advancements
can be of great utility to produce safe and effective bioactive medical textiles. Scaffolding
systems, coatings, wound dressings, sutures, face masks, and hospital linen are a few
relevant examples.
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114. Lasoń, E. Topical Administration of Terpenes Encapsulated in Nanostructured Lipid-Based Systems. Molecules 2020, 25, 5758.
[CrossRef] [PubMed]

115. Sumayya, S.S.; Lubaina, A.S.; Murugan, K. Bactericidal potentiality of purified terpenoid extracts from the selected sea weeds
and its mode of action. J. Trop. Life Sci. 2020, 10, 197–205. [CrossRef]

116. Gaba, S.; Saini, A.; Singh, G.; Monga, V. An insight into the medicinal attributes of berberine derivatives: A review. Bioorg. Med.
Chem. 2021, 38. [CrossRef] [PubMed]

117. Gao, S.; Zhang, S.; Zhang, S. Enhanced in vitro antimicrobial activity of amphotericin B with berberine against dual-species
biofilms of Candida albicans and Staphylococcus aureus. J. Appl. Microbiol. 2021, 130, 1154–1172. [CrossRef]

118. Haq, I.U.; Imran, M.; Nadeem, M.; Tufail, T.; Gondal, T.A.; Mubarak, M.S. Piperine: A review of its biological effects. Phytother.
Res. 2021, 35, 680–700. [CrossRef]

119. Li, J.; Jin, X.; Zhang, L.; Yang, Y.; Liu, R.; Li, Z. Comparison of Different Chitosan Lipid Nanoparticles for Improved Ophthalmic
Tetrandrine Delivery: Formulation, Characterization, Pharmacokinetic and Molecular Dynamics Simulation. J. Pharm. Sci. 2020,
109, 3625–3635. [CrossRef]

http://doi.org/10.1186/1472-6882-11-29
http://doi.org/10.15537/smj.2021.2.25706
http://doi.org/10.1016/j.phytochem.2021.112713
http://doi.org/10.1016/j.freeradbiomed.2020.07.025
http://doi.org/10.3390/coatings11040434
http://doi.org/10.1038/s41598-020-76372-z
http://doi.org/10.1016/B978-0-12-809286-6.00008-X
http://doi.org/10.1016/j.fct.2020.111642
http://doi.org/10.1002/9780470123010.ch1
http://doi.org/10.1007/s11101-018-9591-z
http://doi.org/10.1016/j.ijbiomac.2020.10.182
http://www.ncbi.nlm.nih.gov/pubmed/33122060
http://doi.org/10.3390/ijms22041541
http://www.ncbi.nlm.nih.gov/pubmed/33546487
http://doi.org/10.1016/0378-8741(96)85514-0
http://doi.org/10.1016/0005-2736(93)90323-R
http://doi.org/10.3390/nu13010165
http://doi.org/10.1021/np50098a011
http://doi.org/10.1016/S0031-9422(96)00805-9
http://doi.org/10.1021/np50091a022
http://doi.org/10.1007/BF02751105
http://doi.org/10.3390/molecules25235758
http://www.ncbi.nlm.nih.gov/pubmed/33297317
http://doi.org/10.11594/jtls.10.03.03
http://doi.org/10.1016/j.bmc.2021.116143
http://www.ncbi.nlm.nih.gov/pubmed/33848698
http://doi.org/10.1111/jam.14872
http://doi.org/10.1002/ptr.6855
http://doi.org/10.1016/j.xphs.2020.09.010


Mar. Drugs 2021, 19, 359 37 of 40

120. Wang, M.; Ma, B.; Ni, Y.; Xue, X.; Li, M.; Meng, J.; Luo, X.; Fang, C.; Hou, Z. Restoration of the Antibiotic Susceptibility of
Methicillin-Resistant Staphylococcus aureus and Extended-Spectrum β-Lactamases Escherichia coli through Combination with
Chelerythrine. Microb. Drug Resist. 2021, 27, 337–341. [CrossRef]

121. Ghayempour, S.; Montazer, M. Tragacanth nanocapsules containing Chamomile extract prepared through sono-assisted W/O/W
microemulsion and UV cured on cotton fabric. Carbohydr. Polym. 2017, 170, 234–240. [CrossRef]

122. Lis, M.J.; Carmona, Ó.G.; Carmona, C.G.; Bezerra, F.M. Inclusion complexes of citronella oil with β-cyclodextrin for controlled
release in biofunctional textiles. Polymers 2018, 10, 1324. [CrossRef]

123. Mele, E. Electrospinning of essential oils. Polymers 2020, 12, 908. [CrossRef]
124. Lu, Y.; Cheng, D.; Lu, S.; Huang, F.; Li, G. Preparation of quaternary ammonium salt of chitosan nanoparticles and their textile

properties on Antheraea pernyi silk modification. Text. Res. J. 2014, 84, 2115–2124. [CrossRef]
125. Petkova, P.; Francesko, A.; Fernandes, M.M.; Mendoza, E.; Perelshtein, I.; Gedanken, A.; Tzanov, T. Sonochemical coating of

textiles with hybrid ZnO/chitosan antimicrobial nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 1164–1172. [CrossRef]
126. Scacchetti, F.A.P.; Pinto, E.; Soares, G.M.B. Thermal and antimicrobial evaluation of cotton functionalized with a chitosan–zeolite

composite and microcapsules of phase-change materials. J. Appl. Polym. Sci. 2018, 135. [CrossRef]
127. Senthilkumar, P.; Yaswant, G.; Kavitha, S.; Chandramohan, E.; Kowsalya, G.; Vijay, R.; Sudhagar, B.; Kumar, D.S.R.S. Preparation

and characterization of hybrid chitosan-silver nanoparticles (Chi-Ag NPs); A potential antibacterial agent. Int. J. Biol. Macromol.
2019, 141, 290–297. [CrossRef] [PubMed]

128. Silva, I.O.; Ladchumananandasivam, R.; Nascimento, J.H.O.; Silva, K.K.O.S.; Oliveira, F.R.; Souto, A.P.; Felgueiras, H.P.; Zille, A.
Multifunctional chitosan/gold nanoparticles coatings for biomedical textiles. Nanomaterials 2019, 9, 1064. [CrossRef] [PubMed]
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