
����������
�������

Citation: Mohammadpour, M.;

Samadian, H.; Moradi, N.; Izadi, Z.;

Eftekhari, M.; Hamidi, M.; Shavandi,

A.; Quéro, A.; Petit, E.; Delattre, C.;

et al. Fabrication and

Characterization of Nanocomposite

Hydrogel Based on

Alginate/Nano-Hydroxyapatite

Loaded with Linum usitatissimum

Extract as a Bone Tissue Engineering

Scaffold. Mar. Drugs 2022, 20, 20.

https://doi.org/10.3390/md20010020

Academic Editors: Maila Castellano

and Andrea Dodero

Received: 21 November 2021

Accepted: 14 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

marine drugs 

Article

Fabrication and Characterization of Nanocomposite Hydrogel
Based on Alginate/Nano-Hydroxyapatite Loaded with Linum
usitatissimum Extract as a Bone Tissue Engineering Scaffold

Mahnaz Mohammadpour 1, Hadi Samadian 2,*, Nader Moradi 3, Zhila Izadi 2, Mahdieh Eftekhari 2,
Masoud Hamidi 4 , Amin Shavandi 4 , Anthony Quéro 5, Emmanuel Petit 5, Cédric Delattre 6,7,*
and Redouan Elboutachfaiti 5

1 Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-111,
Tehran 6715847141, Iran; mahnazmohammadpour@modares.ac.ir

2 Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences,
Kermanshah 6734667149, Iran; izadi_zh@razi.tums.ac.ir (Z.I.); mahdieh.eftekhari@kums.ac.ir (M.E.)

3 Student’s Research Committee, School of Pharmacy, Kermanshah University of Medical Sciences,
Kermanshah 6714415153, Iran; nadermoradi19961@gmail.com

4 BioMatter-Biomass Transformation Lab (BTL), École Polytechnique de Bruxelles, Université Libre de
Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; Masoud.Hamidi@ulb.ac.be (M.H.);
amin.shavandi@ulb.ac.be (A.S.)

5 UMRT INRAE 1158 BioEcoAgro, Laboratoire BIOPI, University Institute of Technology, University of Picardie
Jules Verne, 80000 Amiens, France; anthony.quero@u-picardie.fr (A.Q.); emmanuel.petit@u-picardie.fr (E.P.);
redouan.elboutachfaiti@u-picardie.fr (R.E.)

6 Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal,
63000 Clermont-Ferrand, France

7 Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
* Correspondence: h-samadiyan@alumnus.tums.ac.ir (H.S.); cedric.delattre@uca.fr (C.D.)

Abstract: In the current paper, we fabricated, characterized, and applied nanocomposite hydrogel
based on alginate (Alg) and nano-hydroxyapatite (nHA) loaded with phenolic purified extracts
from the aerial part of Linum usitatissimum (LOH) as the bone tissue engineering scaffold. nHA
was synthesized based on the wet chemical technique/precipitation reaction and incorporated into
Alg hydrogel as the filler via physical cross-linking. The characterizations (SEM, DLS, and Zeta
potential) revealed that the synthesized nHA possess a plate-like shape with nanometric dimensions.
The fabricated nanocomposite has a porous architecture with interconnected pores. The average
pore size was in the range of 100–200 µm and the porosity range of 80–90%. The LOH release
measurement showed that about 90% of the loaded drug was released within 12 h followed by a
sustained release over 48 h. The in vitro assessments showed that the nanocomposite possesses
significant antioxidant activity promoting bone regeneration. The hemolysis induction measurement
showed that the nanocomposites were hemocompatible with negligible hemolysis induction. The
cell viability/proliferation confirmed the biocompatibility of the nanocomposites, which induced
proliferative effects in a dose-dependent manner. This study revealed the fabricated nanocomposites
are bioactive and osteoactive applicable for bone tissue engineering applications.

Keywords: tissue engineering; alginate hydrogel; nanocomposite; nano-hydroxyapatite; Linum
usitatissimum phenolics extract

1. Introduction

Bone fracture is a common condition that everyone may encounter in their life. In
small fractures, the bone tissue can regenerate by itself, but in large defects, it is required to
be treated with proper interventions to improve and help the healing process [1]. Autograft
is the gold standard clinical treatment for large bone defects, and despite its acceptable
treatment outcomes, suffers from critical shortcomings related to the harvesting process. For
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instance, we can cite the potential for donor site infection, limited quantity, increased blood
loss, donor site pain, hypersensitivity or morbidity, and additional surgical procedures [2–4].
Novel treatment strategies have been trying to propose innovative concepts to eliminate
the limitations of the current treatment modalities. Alternatively, nanotechnology in
combination with tissue engineering has evolved as an innovative concept to bypass the
need for autograft and propose sophisticated structures as bone healing materials [5,6].

Scaffolds have central roles in tissue engineering strategies that support cell attach-
ment, migration, growth, and even differentiation. Resemblance to the native structure
of bone is the prerequisite and vital for bone tissue engineering. Bone is a biocomposite
of collagen and hydroxyapatite (HA) ceramics, where the first one provides the 3D struc-
ture, flexibility, and resorbability and the ceramics impart strength and osteoconductivity.
Accordingly, 3D nanocomposites containing HA have grabbed significant attention in the
bone tissue engineering concept [7–9]. Various types of natural and synthetic polymers
have been applied to fabricate 3D scaffolds for bone tissue engineering. Natural polymers
have fascinating biological properties over synthetic ones, while synthetic polymers have
fascinating mechanical properties. Alginate (Alg) is a natural anionic polysaccharide that
obtains from brown macro-algae. Due to its biocompatibility, such as easy to process,
gel-forming ability, biodegradability, and non-toxicity, Alg has been widely applied in
different fields of biomedicine, ranging from drug delivery to regenerative medicine [10].
Using Alg, it is possible to synthesize a 3D hydrogel scaffold for bone tissue engineering.
Studies on the use of alginate in bone regeneration have shown its potential in bone tissue
engineering applications. However, high hydrophilicity of alginate decreases cell adhesion
and protein adsorption; research by Tohamy et al. and Purohit et al. showed that the fabri-
cation of Alg-based nanocomposites with nHA or GO promotes the mechanical properties,
bioactivity, protein absorption, and proliferation and adhesion of MG-63 cells [11–13].

In addition to structural properties, a sophisticated scaffold should have biological
activities. Antioxidant natural substances have shown promising results in accelerating the
tissue regeneration process. Natural substances obtained from herbal plants are rich in var-
ious bioactive phytochemicals with a wide range of biological properties. The application
of these phytochemicals has resulted in effective and accelerated healing outcomes [14–16].
Flax (Linum usitatissimum L.) is a dicotyledonous plant widely distributed in temperate cli-
mate zones, and cultivated as a source of fiber, oil, and medicinal compounds [17]. Flaxseed
is an oilseed with various fascinating biological activities that are widely used in industrial
and natural health products. It is a good source of polysaccharides, cyanogenic glycosides,
cyclic peptides, linolenic acid, cyclic peptides, and alkaloids [17,18]. Flaxseed extracts have
various biological activates, such as antioxidant and anti-inflammatory activities beneficial
for tissue engineering applications [19]. Nevertheless, the phytochemical composition of
aerial parts (leaves and stems) and roots of flax has been less studied compared to the
compounds obtained from the flaxseed. Recent years have seen a resurgence of interest
for the study of secondary metabolites synthesized from the phenylpropanoid pathway in
flax. A group of secondary metabolites called phenolic compounds, which are also present
in flax, play a variety of functions, such as in plant growth, developmental processes, and
defense responses to stress environments [20–23]. In fact, several studies have proved
that they possess antioxidant and radical scavenging properties [24]. Moreover, some
of these products or their components possess antimicrobial properties [25] and exhibit
multidirectional phytotherapeutic activity. They have significant role in management of
various human chronic diseases, such as cancer, diabetes, and cardiovascular disorders [26].
Furthermore, our laboratory has recently identified the presence of flavones C-glycosides
in a polar extract obtained from the aerial parts of flax [27]. It has been reported that
flavonoids exhibit health-protecting activities because of their strong antioxidant proper-
ties. According to several authors, some of these flavonoids have been reported to exhibit
various biological activities including anti-inflammatory, anti-viral, anti-fungal, and anti-
bacterial activities [28]. Thanks to these favorable properties, flavonoids play an important
role in bone development, remodeling, repair, and regeneration [15,29].
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Accordingly, in the current study, we fabricated a 3D nanocomposite scaffold based on
Alg/nHAp and hydromethanolic extract of aerial parts of flax rich in phenolic compounds
and flavonoids as the bone tissue engineering scaffold.

2. Results
2.1. Extraction and Characterization of Purified Extract from Aerial Part of Linumusitatisimum

In this study, the preparation of aerial part of flax crude extract was realized by
hydromethanolic extraction, which was selected to extract organic substances, including
compounds of medium and high polarity (e.g., phenolics acids, flavonoid glycosides, etc.).

In most cases, purification of plant crude extracts containing phenolic compounds is
necessary because considerable amounts of other compounds may also be extracted. Ad-
sorption on macroporous resins was tested as a means of concentrating and pre-purifying
the phenolic compounds present in the crude extract. This method consisted of two steps,
including adsorption of the phenolic compounds (due to the strong noncovalent bonding
and aromatic stacking interactions) from aqueous solution obtained from crude extract,
followed by desorption of the targeted phenolic compounds with ethanol. Water-soluble
impurities were easily removed by a water washing step before elution of the resin with
ethanol. Ethanol eluted extract was concentrated under vacuum to obtain purified pheno-
lics extract (LOH, 10.4 ± 0.4 g) with a yield around 2% (w/w) of dry weight of the extract.

Flavonoids and phenolic compounds have widely been described as producing a
variety of biological effects. Linum usitatissimum harbors a panoply of bioactive compounds
with potential pharmacological properties. Therefore, defining total phenolic content and
concentration of flavonoids in LOH is a key step in the exploration of its therapeutic
potential in the biomedical applications, especially tissue engineering nanocomposite
scaffolds.

In the present research, the total amount of phenolics in LOH was determined ac-
cording to the Folin–Ciocalteu procedure. The result showed that the LOH was found to
contain a high number of phenols (740.06 ± 1.2 µg GAE/mg).

The total flavonoid content of LOH was determined by utilizing aluminum chloride
colorimetric method. The tested LOH was found to contain high amounts of flavonoids
(550 ± 2 µg RE/mg).

Phytochemical screening of LOH by means of UPLC-MS analysis revealed the pres-
ence primarily of phenolic acids and flavones C-glycosides compounds. A variety of these
phenolic compounds were identified, and these relative proportions are different (data not
shown). The results obtained were compared with those obtained by Tchoumtchoua et al.
(2019) [27] and confirmed that the aerial parts of flax contain a significant source of pheno-
lic compounds.

2.2. Synthesis of Hydrogel Nanocomposite

The detailed synthetic procedure of the alginate-based gel was sketched in Scheme 1.
The main purpose of this study was to fabricate a bone-mimicking porous scaffold based
on a highly biocompatible matrix, namely, Alg, which contains osteoconductive nHA
nanoparticles and LOH. The LOH is a mixture of phenolic compounds extracted from
aerial part of flax and was used as drug loaded into alginate-nHA nanocomposite hydrogel.
The preparation method of nHA granules by wet chemical precipitation method used
in this study was reported earlier [29]. The solid-gel is achieved by ionotropic gelation
procedure by pouring the hydrogels into CaCl2 solution and then freeze-dried in −80 ◦C.
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Scheme 1. General scheme for synthesis route of the Alginate/nHA/LOH nanocomposite gels.

2.3. Characterization Studies
2.3.1. Characterization of nHA

The hydrodynamic size, Zeta potential, and the criticality of the synthesized nHA
were characterized using XRD analysis, DLS, and Zetasizer, respectively. The powder XRD
patterns of nHA are shown in Figure 1. As can be seen, the nHA nanoparticles revealed
sharp and intense peaks at 2θ of 25.8◦, 31.86◦, 40.16◦, and 49.6◦ that were indexed to (002),
(211), (310), and (123) reflection planes [30,31]. The synthesized nHA exhibited XRD pattern
similar to the standard HAp available from the Joint Committee on Powder Diffraction
Standards (JCPDS; standard number 84-1998). The DLS measurements of nHA were carried
out in deionized water between −200 and +200 mV. The nHA has a negative surface charge
with a maximum peak at −9.41 mV with an average size of 391.3 nm and polydispersity
index (PDI) of 0.287.
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2.3.2. Morphology and Microstructure of Hydrogel Nanocomposite

To achieve a view of the structure of produced nanocomposite hydrogel, after freeze-
drying, SEM micrographs of the scaffolds cross-sections and surfaces were provided
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(Figure 2A,B). The results showed that the fabricated hydrogel nanocomposites have
a porous microstructure with interconnected pores. As a scaffold for tissue engineering,
the nanocomposites have a sponge state and exhibit an open and interconnected macro-
porous architecture containing a lot of pores with irregular holes. The porosity (vol%)
quantification was estimated within ranges of approximately 80–90%. The cell behaviors,
including cell spreading and proliferation, transportation of nutrients and oxygen, waste
products, and the ability of the scaffold to retain water are affected by porosity [32,33].
Therefore, LOH-loaded hydrogel with the pore size distribution of 100–200 µm can be
useful for fabricating scaffold for cell attachment and growth or to incorporating biological
substances. At higher magnifications of Figure 2C,D, nHA nanoparticles incorporated into
the hydrogel with an average size of 50 nm, and plate-like shape and fine dispersibility can
be seen.
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different contents of nHA (B) 7% nHA, (C) 14% nHA, and (D) 21% nHA. High magnification SEM
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the scale bare in the magnified Figures are 5 µm.

2.3.3. Elemental Analysis

Semi-quantitative elemental analysis of the fabricated hydrogel nanocomposites was
conducted using the EDX analysis and the results are presented in Figure 3. The spectrum
approved the presence of calcium and phosphate elements while an increase in the content
of Ca and P of the samples is evident with increasing nHA percentage. The calcium
quantity obtained is related to both the Ca in nHA and the Ca2+ bridges linked to the
alginate hydrogel.
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2.3.4. FTIR Spectroscopy

Molecular interactions between Alg polymer, nHA, and LOH polyphenolic extract in
the Ca2+ cross-linked nanocomposites were examined by the Fourier transform infrared
spectroscopy (FTIR). In Figure 4, FTIR spectroscopy of fabricated Alg/nHA/LOH was
compared with FTIR peaks of the pure state of Alg, nHA and LOH. The FTIR spectra of pure
Alg absorbance bands in 1614 and 1415 cm−1 correspond to the asymmetric and symmetric
stretching vibration of C=O groups, respectively. The observed peaks in 1080 cm−1 and
1030 cm−1 are assigned to C–O–C bands vibrations [30,34–36]. The phosphate absorption
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bands in the FTIR spectrum of nHA are identified by peaks at 472.9, 560, 603.5, 962, 1029,
and 1092 cm−1 and two weak carbonate bands are observed at 1416 and 1456 cm−1 for
nHA. The stretching and flexural modes of the hydroxyl (OH−) group in the apatite lattice
are confirmed by absorption bands at 3566, 1622, and around 630 cm−1 [31,36]. In LOH
FTIR spectra, the C–H symmetrical and asymmetrical stretching vibration in CH2 and
CH3 groups are revealed at around 2920 and 2848 cm−1, while their bending vibrations
are located at 1487 and 1450 cm−1. The peaks at about 1650 cm−1 are related to carbonyl
(C=O) groups and at near 1263, 1076, and 1030 cm−1 are due to C–O and C–C stretching
vibrations [36–38]. FTIR spectrum of nanocomposite gel contains all absorbance peaks of
Alg, LOH, and nHA, with some shifts and overlapping in the intensity and/or shape of
the absorption peaks. The presence of LOH and nHA and the hydrogel formation through
crosslinking have caused a modification in OH stretching vibration to a narrower peak.
The spectra also showed an increase in the absorption vibrations of the C=O group from
1614 and 1415 cm−1 to 1624 and 1435 cm−1. The removal of the peaks related to the –CH3
and –CH2 bending of LOH at 1487 and 1450 cm−1 may be due to the hardening of the
structure. It was mentioned that nHA has an absorption band at 1029 and 1092 cm−1 due
to the stretching of PO4

3−. Alg also has a strong absorption band at this place referred to
C–O–C group [31,36]. Therefore, broadband centered around1047 cm−1 is contribute to the
overlap of C–O–C stretching of Alg and PO4

3− stretching of nHA after the integration of
Alg, nHA and LOH. The observed broadband at about 484 and 569 cm−1 is attributed to
the PO4

3− bending vibrations of nHA. It could be concluded that the incorporation of nHA
and LOH into Alg was successful.
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2.4. Swelling Behavior

The swelling properties of hydrogels can reflect their water uptake capacity. The
percentages of swelling at different time points are presented in Figure 5. The swelling
behavior of Alg/LOH/nHA gel shows highly dependent on the amount of nHA nanopar-
ticles. In the presence the swelling ratio decrease with the increasing of nHA content to
14% (w/w) and then increased again when the nanoparticle concentration increased to 21%
(w/w). The swelling is dependent on the hydrophilic groups at the matter. With increasing
nHA content, there are fewer hydrophilic groups available as they are bonded to the nHA.
Besides that, the swelling of the hydrogels involves large-scale segmental motion, which
ultimately results in an increased distance between the polymer chains. When there is a
high distribution of nHA throughout the gel, the nHA particles could contract and limit
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the movability of Alg polymer chains, which all work together to develop low swelling of
the gel [35,39,40]. A further increase in nHA concentration in the gel limits the transfer of
sol–gel of Alg, so the nanocomposite hydrogel is cross-linked loosely, which facilitates the
water permeation into the gel and increases their swelling [40–42].
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2.5. LOH Entrapment Efficiency (EE) and Loading Capacity (LC)

The effect of different ratios of nHA (7%, 14%, and 21% w/w of total Alg) on the EE%
and the LC% of LOH was evaluated and the results are presented in Table 1. For this
purpose, the EE% and LC% parameters of LOH entrapped within all three of the hydrogel
nanocomposites were determined spectrophotometrically (λmax = 270 nm), deducting the
amount of LOH that remained in the CaCl2 solution supernatant after crosslinking from
the initial amount in the reaction solution. Hydrogel nanocomposites with a higher nHA
ratio exhibit a higher quantity of EE% and higher loading efficiency values with a nonlinear
trend. According to previous articles, nHA can enhance the loading and encapsulation
of hydrophilic and anionic drugs through hydrogen bond formation and/or electrostatic
interactions [40,42,43]. Loading of LOH in Alg/nHA composite could be attributed to
twofold interactions of LOH with both nHA and alginate matrix.

Table 1. The EE% and LC% of LOH-loaded cross-linked hydrogel for LOH.

Group Entrapment Efficacy (%) Loading Capacity (%)

Alg/LOH/nHA 7% 55.07 1.47
Alg/LOH/nHA 14% 61.47 1.71
Alg/LOH/nHA 21% 63.66 1.80

2.6. Release Behavior of LOH

We have tried to assess the cumulative release behavior of LOH from the fabricated
hydrogel nanocomposite labeled with Alg/LOH/nHA 21% by UV spectroscopy at the
physiological pH 7.2 in PBS and deionized water. Figure 6 demonstrates that 50% of LOH is
released from the extract-loaded gel within the first 3 h of analysis, while in aqueous media,
nanocomposite gel can release approximately 40% of extract during this time. Although
the faster release was observed in PBS at all time points, accompanied by a relatively burst
release in the early hours, most LOH was completely released from cross-linked composite
gels in about 24 h in both media. These observations are related to the low stability of
Alg-based hydrogels in physiological and aqueous environments because of the release of
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Ca2+ ions in the environment, resulting in breaking and reducing crosslink bonds [44–46].
The ion exchange reactions of phosphate and sodium ions with Ca2+ in PBS intensified the
phenomenon [36,47,48].
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2.7. In Vitro Results
2.7.1. Hemocompatibility Assay

Hemocompatibility assessment was carried out to evaluate the disruption of red
blood cells (RBC) membrane induced by a foreign substance that causes the leakage of the
blood cell contents into the surrounding liquid [49–51]. It is established that hemolysis
lower than 10% is acceptable and considered hemocompatible [52,53]. In this work, the
hemolytic property of Alg/LOH/nHA was tested via direct contact of samples with RBC
solution, and the results are shown in Figure 7, representing the calculated hemolysis
percentage. In all cases, total hemoglobin concentration was within the reference range and
no significant hemolysis was observed compared to the positive control. Moreover, the
hemolysis percentage of the negative control group was calculated as 0%.

2.7.2. Antioxidant Activities

The antioxidant activity of LOH was assessed and compared with ascorbic acid (as the
positive control) using the DPPH assay kit and the results are presented in Figure 8. The
result showed significant antioxidant activity that was more than 95% similar to the ascorbic
acid. The antioxidant substances can modulate the inflammatory responses induced after
the injury [54].
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2.7.3. Cell Proliferation Results

The cellular compatibility of prepared hydrogel nanocomposites was assessed on the
MG-63 cell line using the MTT assay kit and the results are presented in Figure 9. The cells
were cultured in contact with the nanocomposite gels, which served as a scaffold for tissue
repair and evaluated for proliferation and survival of the cell. The materials’ toxicity level
for cells was evaluated using MTT assay at 24 h and 48 h after initial seeding and results are
shown in Figure 9. The osteoblast-like MG-63 cells indicated a good degree of proliferation
after seeding onto all three types of scaffold compared with the control group. Figure 9
reports that the scaffold containing more nHA exhibits higher cell proliferation.
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Based on the outcomes achieved from blood and cell compatibility evaluations, we can
conclude that the fabricated hydrogel nanocomposites, as scaffolds are generally non-toxic
and safe under in vitro conditions and can be suitable and promising materials for bone
tissue engineering applications.

3. Discussion

The primary aim of this work was to introduce an alginate-based nanocomposite
hydrogel containing purified extract obtained from aerial part of Linum usitatissimum (LOH)
labeled with Alg/LOH/nHA and assessment of its potential as a porous scaffold for use
in bone tissue engineering purposes. Given this, alginate was incorporated with nHA
as inorganic reinforcing and an osteoconductive moiety of composite gel that appears
particularly practical because of having excellent biocompatibility and osteoconductivity
and strong mechanical properties [30,35,55]. Many articles have reported that sodium
alginate forms porous, strong, and stable solid gels via ionically cross-linking with cal-
cium [40,56–59]. Although the cross-linked alginate-ion gel is known as a biocompatible
and bioactive network with unique cell adhesion properties, it has disadvantages, such
as limited durability in physiological conditions, which affects the swelling behavior and
release of the drug [44–46,59,60]. The prepared composite gel was loaded with LOH, an
extract employed in diverse medicine for its biologically active compounds [36,37,61,62].
According to Wang et al., several intermolecular cross-links may be formed through Ca2+

between nHA and Alg, LOH and Alg, and nHA and LOH due to the divalent nature of Ca
ions [35].

As noted, synthesized nHA are plate-like with an average size of 50 nm (according
to the SEM images). After freeze-drying, Alg/LOH/nHA scaffold revealed a network
morphology with porosity above 80–90% and interconnected pores (size 100–200 nm) on
both cross-sections and surface, thus providing a suitable environment for the entry of
oxygen and nutrients for the cultured cells and the exit of their waste products. Therefore,
porous interconnected construction is a key characteristic for bone tissue engineering
scaffolds. Cell adhesion, proliferation, and differentiation, as well as angiogenesis in
the scaffold, are affected by pore size, porosity percent, and pore size distribution. The
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appropriate porosity percent also facilitates the release of the drug from the nanocomposite
and increases its swelling and water absorption capacity [31,40,63,64].

Swelling behavior is a significant feature for scaffolds of bone tissue engineering, be-
cause the scaffold must remain stable in the biological environment until cells have reached
a certain growth [31,40]. The swelling degree also has direct effects on the drug delivery
and release. However, unlimited swelling leads to the deformation and loss of integrity and
strength of the structure and tension in the surrounding tissues [35,39,41]. Swelling behav-
ior is a characteristic dependent on the porosity and hydrophilicity of the polymer. Sodium
alginate shows high hydrophilicity and porosity capacity, and thus, represents a superior
swelling and water absorption percentage. After ion cross-linking, the gel shows decreased
hydrophilicity, mobility, and swelling capacity [30,35,39–42]. In the current work, based
on the SEM images, the proper and homogeneous distribution of nHA in the Ca-alginate
matrix was evident. The superficial interactions between gel hydrophilic groups and nHA
(14% w/w) reinforcements further reduce the swelling rate. High incorporation of nHA
(21% w/w) into calcium alginate gel enhance the water permeation into the structure and
swelling degree due to loosening the cross-links [35,42]. Accordingly, the swelling behavior
of the nanocomposite gel can be controlled and optimized by the introduced content of
inorganic reinforcing, here nHA.

LOH is an extremely hydrophilic and very water-soluble extract, and thus, it is not
simply maintained in porous polymeric networks, such as Alg hydrogels [36]. On the other
hand, nHA and sodium alginate are both very good biocompatible substances, but when
each is used purely as a drug carrier, they have a burst release and the drug is washed away
in a short time [35,40]. In the present instance, EE% and LC% of LOH in Alg/nHA organic-
inorganic composites were on the rise when we increased the nHA content. This result could
be related to the upward interaction of the LOH with the Alg/nHA nanocomposite [43].
Additionally, a sustained release of LOH from the nanocomposite gel was observed for
about 12 h. The addition of nHA improved the loading of LOH in composite. They also
showed acceptable blood compatibility and notable cells cytocompatibility towards MG-63
osteosarcoma cells. This observation can be partly due to the osteoconductive properties of
nHA, which enhanced the cell adhesion on the hydrogel nanocomposite. Results of these
tests showed promising performance for bone tissue regeneration and repair. Previous
studies also showed that the incorporation of HA crystals enhances the proliferation of cells.
Bendtsen et al. [65] fabricated Al-polyvinyl alcohol-HA hydrogel for 3D bioprinting bone
tissue engineered scaffolds and observed high cell viability. In another study, Yan et al. [39]
fabricated injectable Alg/HA gel scaffold for drug delivery and bone tissue engineering.
The authors reported that the fabricated scaffold provided suitable biocompatibility due to
the presence of HA crystals.

4. Materials and Methods
4.1. Materials

Sodium alginate (SA) and calcium chloride (CaCl2. 4H2O), used as a crosslinking
agent of SA, were purchased from Merck (Darmstadt, Germany). The linseed plants (Linum
usitatissimum L., winter flax species) were provided by the Linea industry (Wavignies,
France). The plants were harvested from the fields during the early stages of flowering,
in May 2020. After the sampling, the aerial part of the plants was lyophilized and then
stored under vacuum at −20 ◦C. All used solvents were obtained from Sigma-Aldrich
(St. Louis, MO, USA). The MTT assay kit was purchased from Roth (Karlsruhe, Germany).
Fetal Bovine Serum (FBS), DMEM/F-12 cell culture medium, Trypsin-EDTA, and Penicillin-
Streptomycin (Pen-Strep) were obtained from Gibco (Karlsruhe, Germany). All chemicals
were used as received without any further purification, except the ones mentioned specifi-
cally. The MG-63 cell line was acquired from the Pasteur Institute, Iran. Plastics and tissue
culture plates were from SPL, Korea.
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4.2. Extraction, Purification, and Characterization of Extract from the Aerial Parts of
Linum Usitatisimum
4.2.1. Extraction and Purification

The plant material was ground using a blade crusher with 1 mm screens. Just before
extraction, the powder was ground again from an electric mill to decrease particle size and
improve extraction yields. The powder thus obtained was subjected to extraction for one
hour at room temperature with agitation using an electric stirrer. In total, 500 g of powder
were immersed in 10 L of an H2O/MeOH mixture (50/50, v/v). The solution obtained
was filtered through a Büchner funnel and then evaporated under the vacuum at 40 ◦C
in order to remove the methanol. The crude extract (4 L) was applied to the XAD 16-N
resin. The resin was then washed with 2 L of H2O to remove non-recoverable compounds,
and then eluted with 2 L of an 80/20% EtOH/H2O mixture in order to recover the interest
compounds. This latter fraction, containing polyphenolic molecules, was then evaporated
under vacuum, and then lyophilized to obtain the dry matter of the purified extract from
the aerial part of Linum usitatisimum (LOH).

4.2.2. Determination of the Total Phenolic Content

The Folin–Ciocalteu assay was used to quantify the total phenolic content. The test
samples (1 mL) were mixed with sodium carbonate (2%, w/v) and the Folin–Ciocalteu
phenol reagent (10%, v/v), and the mixture was allowed to stand for 10 min. The absorbance
of the mixture was measured at 750 nm and a standard curve was prepared using gallic
acid. The results were expressed as milligrams of gallic acid equivalents (GAE) per gram of
the LOH.

4.2.3. Determination of Total Flavonoids Content

The sample was dissolved in 600 µL to obtain a concentration of 250 mg/L and
600 µL of AlCl3 (2%) was added. After 60 min, the absorbance was performed at 420 nm.
The concentration of the total flavonoid content in the samples was calculated from the
calibration curve performed with rutin (5 to 200 µg/mL) and expressed as rutin equivalent
(RE) per gram of the LOH.

4.3. Preparation of the Nanocomposite Hydrogels

The nano hydroxyapatite (nHA) was produced through a wet chemical precipitation
procedure, as described in the previous report [17]. Afterward, 20, 40, and 60 mg of nHA
powder was added to 10 mL of LOH solution (1% w/v), which was prepared in distilled
water. The nHA was dispersed under magnetic stirring and ultra-sonication to achieve
the uniform distribution of nHA particles. A proper amount of Alg was added to the
prepared solution to obtain the final concentration of 2% w/v and constantly stirred for
2 h. The construct was cross-linked with 2 M CaCl2 aqueous solution. Finally, the resulting
hydrogels were washed several times with distilled water to remove unreacted Ca2+. The
prepared composite materials were pre-frozen at −20 ◦C for 24 h to stabilize and then
lyophilized under vacuum freeze-drying at −50 ◦C for 24 h. Finally, obtained LOH-loaded
Alg/nHA nanocomposite gels were stored at 4 ◦C until use.

4.4. Spectral Characterization of the Synthesized Alg/nHA/LOH

FTIR analysis of Alg/nHA/LOH samples, sodium alginate, and nHA powder was
carried out by accumulating 16 scans at a resolution of 4 cm−1 over a wavenumber region
of 400–4000 cm−1 using an FTIR spectrometer (Spectrum RX1 FTIR system, Perkin-Elmer,
Texas City, TX, USA). The Powder X-ray diffraction (XRD) characteristics of the nHA were
carried out using a Philips Xpert instrument. X-ray diffraction data were collected using
Cu-Kα radiation operating at 40 kV and 30 mA with 2θ ranging from 10 to 90◦ at a scan
speed of 0.08 s-1. For each sample, peak intensity changes were analyzed relative to the
reference band within the same spectra. The particle size, polydispersity index (PDI), and
zeta potentials of nHA and synthesized samples were measured using a dynamic light
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scattering (DLS) instrument (Zetasizer Nano ZS90, Malvern, Worcestershire, UK). All the
measurements were conducted in triplicate.

4.5. Morphological and Structural Analyses

The surface and cross-section morphology of lyophilized hydrogel nanocomposites
were visualized and analyzed with a Scanning Electron Microscopy (SEM, Philips XL-30,
Eindhoven, The Netherlands). The samples were sputter-coated with a thin layer of
gold and scanned at an accelerating voltage of 20 kV at different magnifications. Energy-
dispersive X-ray (EDX) was also used for elemental mapping and analyzing the chemical
composition of samples.

4.6. Swelling Studies

The swelling behavior of the fabricated Alg/nHA/LOH aerogels was evaluated for
samples with different nHA concentrations and each test was carried out in triplicate. The
analysis was carried out by measuring the weight of prepared hydrogel in a dry (Wdry) and
a wet (Wwet) state as previously described. The studies were performed for 7 days through
continuous immersion of specimens in media. Then, Equation (1) was used to calculate the
percentage of the swelling ratio or the water adsorption of Alg/nHA/LOH:

Swelling ratio (%) =
Wwet − Wdry

Wdry
× 100 (1)

4.7. Entrapment Efficiency (EE) and Loading Capacity (LC)

The entrapment of the LOH into the structure of the hydrogel nanocomposite was
carried out during the cross-linking process. For entrapment efficacy% (EE%) measurement
the absorbance of the supernatant was recorded using UV-VIS spectrometer at λmax (270 nm)
of LOH. A stock solution of 0.1 mg/mL LOH in distilled water was diluted to the desired
concentrations to draw a calibration curve and the concentrations obtained from it was em-
ployed to calculate the EE% and loading capacity (LC) according to Equations (2) and (3):

EE (%) =
(Wt − Ws)

Wt
× 100 (2)

LC (%) =
(Wt − Ws)

Wnp
× 100 (3)

where Wt is the initial amount of LOH dissolved in reaction solution, Ws is concentration
of released LOH in the supernatant after gelation, and Wnp is the mass of the final dried
Alg/nHA/LOH.

4.8. Release Study

The release kinetics of LOH from hydrogel in different releasing mediums of PBS and
deionized water were compared. In any solution, certain quantities of formulated gels
were immersed in a 20 mL releasing medium at room temperature. The release rate of the
LOH from Alg/nHA/LOH 21% was determined periodically via withdrawing 2 mL of
supernatant solution and depositing it into an Eppendorf tube at appropriate time intervals
up to 2 h. Two ml of fresh releasing media was added at each time point to maintain
the solution volumes in 20 mL and the sink condition. Cumulative release of LOH in the
aliquots was quantified by measuring the absorption band centered at 270 nm by UV−VIS
spectroscopy and calibration curve axis. The data represent triplicate determinations.

4.9. In Vitro Evaluations
4.9.1. Hemolysis Assay

For the hemocompatibility assay, the blood was obtained from a healthy volunteer
human and the operation method was according to previous reports [39]. Briefly, 2 mL of
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fresh anticoagulated blood was added to 2.5 mL PBS. The diluted blood (150 µL) was treated
with the samples for 1 h at 37 ◦C. Diluted blood with PBS (0% lysis) and deionized water
(100% lysis) served as negative and positive controls, respectively. After the incubation, the
samples were centrifuged for 5 min at 1500 rpm to collect plasma. The hemolytic potential
of hydrogels was assayed by measuring the absorption of released hemoglobin in plasma
at 545 nm on a Microplate Reader. Each experiment was repeated in triplicate for each test
solution. Hemolysis percent was obtained by Equation (4):

Hemolysis (%) =
Dt − Dnc

Dpc − Dnc
× 100 (4)

where Dt is the absorbance value of the sample at 545 nm, Dnc is the absorbance of the
negative control, and Dpc is the absorbance of the positive control.

4.9.2. Antioxidant Activities Measurement

Different concentrations (0.1, 0.25, 0.5, 1, and 2.5 mg/mL) of the samples were prepared.
In total, 50 µL of the sample with different concentrations was mixed with a 100 µL
methanol solution of DPPH (100 µM) in a 96-well plate. After placing in the dark for
40 min at room temperature, the absorbance was noted at 517 nm and normalized to a
blank sample (the blank contained sample dilution + methanol) and the control sample
(water + DPPH solution). Equation (5) was applied to calculate the inhibition percentage:

Inhibition % = 1 − Abs(sample)− Abs(blank)
Abs(control)− Abs(blank)

× 100 (5)

4.9.3. Cell Proliferation Measurement

For the in vitro biocompatibility evaluation, the appropriate portions of Alg/nHA/LOH
aerogels were placed into the 96-well polystyrene plate, sterilized by immersion in ethanol
(70%) for 4 h at room temperature, and washed by sterilized PBS three times before cell
culture. The MG-63 cells were used as the model cell to investigate the effects of the
synthesized gel on cell survival. A cell suspension of MG-63 cells was seeded on each of
the three types of gels at a density of 1 × 104 cell/well and left at 37 ◦C in 95% humidified
air and 5% CO2 overnight to attach to the substrates. Cell media composed of DMEM with
10% FBS and 1% penicillin/streptomycin was added to each well. The culture medium was
changed into the fresh one every day, and the cells were cultured for 48 h. The number of
viable cells was determined by measuring their mitochondrial reductase activity using the
tetrazolium-based colorimetric method (MTT conversion test). This assay depended on the
cellular reductive capacity to metabolize the yellow tetrazolium salt, 3-(4,5-dimethylthiazol-
2-yl)-3,5-diphenyl tetrazolium dye (MTT), to a highly colored Formazan product. The
viability of the cultured cells was evaluated by adding 100 µL of MTT to any well after 48 h
and incubated at 37 ◦C for 4 h. The medium was withdrawn and 200 µL DMSO was added
to each well and agitated on a shaker thoroughly to dissolve the Formazan crystals. The
UV absorbance of the Formazan solution was measured spectrophotometric ally at 570 nm
by the Microplate Reader.

4.10. Statistical Analysis

All experiments were run in triplicate per sample. Quantitative data were reported
as mean ±standard deviation (SD). Statistical analysis was performed using a one-way
analysis of variance. Comparison between means was done using the t-test with a minimum
confidence level of p ≤ 0.05 for the statistical significance using R-3.3.3 software.

5. Conclusions

Nanotechnology as an enabling technology has unprecedented effects on different
fields of biomedicine. Nanostructured bone tissue engineering scaffolds have shown
promising results in accelerating and improving the bone healing process. In the current
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study, we fabricated a 3D hydrogel nanocomposite based on Alg/nHA/LOH as the bone
tissue engineering scaffold. The characterization results revealed that the fabricated 3D
nanocomposite scaffolds have a porous microstructure with interconnected pores archi-
tecture and nHA crystals are dispersed throughout the scaffold. The in vitro evaluations
showed that the fabricated nanocomposite scaffolds are hemocompatible and cytocom-
patible with beneficial proliferative effects. Moreover, the incorporation of LOH imparted
antioxidant activity to the scaffold. The results of the current study indicated that the
produced 3D nanocomposite scaffolds have beneficial physicochemical and biological
properties and can be applied as the bone tissue engineering scaffold.
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