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Abstract: Fucoidan has been reported to present diverse bioactivities, but each extract has specific
features from which a particular biological activity, such as immunomodulation, must be confirmed.
In this study a commercially available pharmaceutical-grade fucoidan extracted from Fucus vesiculosus,
FE, was characterized and its anti-inflammatory potential was investigated. Fucose was the main
monosaccharide (90 mol%) present in the studied FE, followed by uronic acids, galactose, and
xylose that were present at similar values (3.8–2.4 mol%). FE showed a molecular weight of 70 kDa
and a sulfate content of around 10%. The expression of cytokines by mouse bone-marrow-derived
macrophages (BMDMs) revealed that the addition of FE upregulated the expression of CD206 and
IL-10 by about 28 and 22 fold, respectively, in respect to control. This was corroborated in a stimulated
pro-inflammatory situation, with the higher expression (60 fold) of iNOS being almost completely
reversed by the addition of FE. FE was also capable of reverse LPS-caused inflammation in an in vivo
mouse model, including by reducing macrophage activation by LPS from 41% of positive CD11C to
9% upon fucoidan injection. Taken together, the potential of FE as an anti-inflammatory agent was
validated, both in vitro and in vivo.

Keywords: fucoidan; Fucus vesiculosus; anti-inflammatory; macrophage

1. Introduction

Marine-origin byproducts may present an interesting source of unexplored anti-
inflammatory compounds such as polyphenols, proteins, and sulfated polysaccharides
(e.g., fucoidan). These marine-derived bioactive compounds may constitute interesting
alternatives to currently available synthetic drugs, having potential protective effects over
the pathogenesis of inflammatory diseases and lower side effects [1]. Fucoidan is a sulfated
polysaccharide mainly composed of fucose units and other carbohydrate monomers as
minor components [2]. It can be extracted from different species of brown algae, Fucus
vesiculosus being the most reported and well-studied [3]. Fucoidan may present different bi-
ological activities such as antitumor, antiviral, anti-angiogenic, and anti-inflammatory [4–7].
Different structural characteristics have been associated with the biological activity of
fucoidans, molecular weight and sulfation degree being the most described ones [8]. More
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recent studies have also related the bioactivities of fucoidan to sulfates position and branch-
ing degree [9,10].

Fucoidan is being investigated for short- and long-term inflammation treatment [11,12].
The anti-inflammatory mechanisms of action of fucoidans comprise antioxidant, transcrip-
tion factors, adhesion molecules, matrix metalloproteinases, complement cascade prop-
erties, and it can also regulate pro-inflammatory enzymes and the expression of related
genes [7]. The most discussed possible mechanism of action is the downregulation of
MAPK and NF-κB signaling pathways, followed by a decrease in pro-inflammatory cy-
tokines [12]. Different in vitro studies showed promising anti-inflammatory results for
fucoidan from Fucus vesiculosus. For example, fucoidan decrease TNF-α and IL-1β levels
in mouse macrophages (RAW 264.7 cell line) stimulated by lipopolysaccharide (LPS) [13].
The immunomodulatory properties of photopolymerizable fucoidan were also evaluated
in human monocytes (THP-1 cell line) differentiated into macrophages, presenting similar
activity as IL-10, by decreasing LPS- and IFN-γ-induced CD86 expression [14]. In LPS-
stimulated BV2 microglia cells, fucoidan inhibited the production of nitric oxide (NO) and
prostaglandin E2 (PGE2), and reduced the expression of inducible nitric oxide synthase
(iNOS), IL-1β, and TNF-α, for example [15]. These anti-inflammatory properties of fu-
coidan were achieved by the suppression of NF-κB, MAPK, and AKT molecular pathways.
A decreased production of pro-inflammatory cytokines (e.g., TNF-α, IL1β, IL-6) was also
observed when human keratinocytes and Caco-2 cells were treated with fucoidan [16,17].
Likewise, the inhibition of COX enzymes and hyaluronidase by fucoidan have been ob-
served in a concentration-dependent manner, similarly to the expression of MAPK p38 by
LPS-stimulated human mononuclear U937 cells [18]. Recently, it has been proposed by
Obluchinskaya et al. that fucoidan inhibited the protein denaturation observed in inflam-
mation, with the effect depending on fucoidan concentration and being mainly associated
with fucose contents, although the sulfate content may also play a role [19]. Fucoidan from
Fucus vesiculosus has decreased neutrophil infiltration, as well as systemic inflammation,
presenting lower levels of TNF-α and IL1β in mice [20]. Similarly, a fucoidan extract from
the same species inhibited the recruitment of leucocytes in an inflammation rat model, ap-
parently in a way not dependent on fucoidan’s chemical structure, but without association
to P-selectin, in opposition to fucoidans from other brown algae species [21]. Fucoidan
is also capable of reducing the inflammation (decreased levels of IL-1α, IL-1β, and IL-10
of bowel disease when orally administered [22]. Moreover, a fucoidan-based cream was
capable of inhibiting carrageenan-induced edema in rats upon topical application in a
dose-dependent manner, being comparable to a diclofenac gel [23].

All these studies were carried out using purified fucoidans, allowing for the acquisi-
tion of structure–function relationships. However, the term “fucoidan” encloses a group
of polysaccharides composed of a fucose backbone chain, often sulfated, with a range of
chemical characteristics (molecular weight, sugar profile, sulfation degree and pattern,
among others), depending on the specific seaweed sample and extraction methodology [24].
Thus, the production of large-scale and commercially available fucoidan extracts, even at a
pharmaceutical grade, hardly allows obtaining a unique bioactive structure, and different
fucoidan extracts can correspond to different (groups of) chemical entities, which could
prevent its anti-inflammatory properties. In this study, we selected a specific commercially
available fucoidan extract from Fucus vesiculosus, herein represented as FE, hypothesizing
that it contained the active structures able to influence in vitro and in vivo inflammation.
Therefore, FE was chemically characterized, and its potential anti-inflammatory activ-
ity was assessed both in vitro using the RAW 264.7 cell line and bone-marrow-derived
macrophages, and in vivo upon intraperitoneal injection in mice.

2. Results and Discussion
2.1. Structural Characterization of Fucoidan Extract (FE)

Molecular weight and sulfation degree are the most described physicochemical factors
influencing fucoidan bioactivity [8]. Moreover, monosaccharide composition and sulfate
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position may also influence the final biological activity, recently being taken into considera-
tion [9]. The brown seaweed species and specific reproductive phase of the used sample,
as well as the extraction method, may be the possible triggers to influence these intrinsic
properties [3,25,26]. Given this variability, with the structure–activity relationship not yet
fully established, the biological activity of each new extract being produced should not be
assumed, but confirmed.

Taking this into consideration, the fucoidan extract (FE), herein studied, was exten-
sively characterized. The total carbohydrate content of FE was 66% (w/w) and had a
sulfation degree of around 10% (Table 1). The monosaccharide composition was assessed,
confirming that fucose was the main sugar (around 90% mol) (Table 1), with uronic acids
(3.8 mol%), galactose (3.3 mol%), and xylose (2.4 mol%) present in smaller amounts. FE
had a molecular weight of 70 kDa and a polydispersity (Mw/Mn) of 1.5, confirmed by the
gel permeation chromatography (GPC) analysis (Table 1).

Table 1. Monosaccharide composition (% mol), total content of sugars, sulfation degree (% w/w), and
molecular weight of fucoidan extract (FE).

Monosaccharides (mol%) Total
Sugars

(%, w/w)

Sulfate
(%, w/w)

Mw
(kDa) Mw/Mn

Fucose Xylose Galactose Uronic
Acids

FE 90.4 ± 2.0 2.4 ± 0.7 3.3 ± 0.7 3.8 ± 0.7 66.1 ± 2.6 9.9 ± 2.9 70 1.5

Due to the different fucoidan species and extraction methods, it is difficult to define
specific and strict ranges for the parameters described above to meet the biological re-
sponses. The molecular weight of FE herein studied was within the range that others
reported in the literature, from few kDa to over 100 kDa [3,10]. The total of carbohydrate
content was slightly increased in this extract when compared to other extracts that have
been previously characterized by our group (50–52.5% w/w) and the sulfation degree was
lower (around 30% in the other extracts) [9]. Furthermore, this FE presented a higher
proportion of Fuc and a lower proportion of other monosaccharides when compared to
those same extracts (fucose 71.2–79.1% mol, uronic acids 9.8–15.3% mol, xylose 3.9–8.0%
mol, and galactose 3.5–5.5% mol). These differences may be attributed to the purity of this
FE, since the polysaccharide extract herein used was a pharmaceutical grade, with a purity
of 98%.

To determine the type of glycosidic linkages and the sulfate group position along the
polymer chain of FE, a methylation analysis was performed before and after desulfation.
If a position is acetylated in the native polysaccharide and becomes methylated after
desulfation, it is an indication of a sulfate residue at that position. Thus, FE was mainly
sulfated in C-2 and C-4, since the glycosidic linkages 2,3,4-Fuc and 2,4-Fuc decreased after
desulfation, and 3,4-Fuc, 2-Fuc, 3-Fuc, and 4-Fuc increased (Table 2). The residue of 2,3-Fuc
was not disadvantaged by significant changes and, consequently, FE could be branched
at C-2, with the linkage C-3 belonging to the main chain. The residues of the other sugars
(t-Xyl, 2-Xyl, and t-Gal) did not show relevant modification in the residue content for
native and desulfated FE. This procedure was performed to better understand the level
of polymer branching and position of sulfate groups in fucose. The fine characterization
of the chemical structure might require the chromatographic purification of FE to obtain
fractions composed by (ideally) single chemical components, which is beyond the goal of
the present study.
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Table 2. Methylation analyses before (native) and after the desulfation (desulfated) of FE.

Substitution Native FE Desulfated FE

t-Fuc 7.2 ± 0.3 10.8 ± 1.1
2-Fuc 6.7 ± 0.6 9.4 ± 0.3
3-Fuc 0.6 ± 0.0 3.8 ± 0.2
4-Fuc 3.4 ± 0.1 6.5 ± 1.0

2,3-Fuc 4.8 ± 0.4 5.6 ± 0.7
2,4-Fuc 9.9 ± 0.4 7.1 ± 0.5
3,4-Fuc 11.6 ± 0.7 16.8 ± 0.8

2,3,4-Fuc 49.9 ± 1.1 32.7 ± 2.6
Total Fuc 93.9 ± 1.2 92.7 ± 1.1

t-Xyl 4.0 ± 0.8 4.4 ± 0.5
2-Xyl 1.5 ± 0.1 2.0 ± 0.2

Total Xyl 5.5 ± 0.9 6.5 ± 0.7
t-Gal 0.6 ± 0.2 0.8 ± 0.4

Total Gal 0.6 ± 0.2 0.8 ± 0.4

2.2. Toxicity of the Fucoidan Extract (FE) over RAW 264.7 Macrophages

RAW 264.7 murine macrophage cell line is often used as a first screening model of
natural products’ bioactivity and to predict their potential effect [22]. The effects of FE on
the viability of RAW 264.7 macrophages were assessed for different FE concentrations after
48 h of incubation (Figure 1). There is no positive correlation between cell viability and
FE concentrations, and no significant differences were observed for all tested conditions.
All further experiments were conducted using 0.1 mg/mL, where negligible cytotoxic
effects were observed, since macrophage viability was above 70% (in accordance with
ISO 10993-5). This same range of fucoidan concentrations (0.1 mg/mL) did not impair
macrophage’ growth, as previously reported by others [13,23].
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Figure 1. Assessment of polysaccharide cytotoxicity in RAW 264.7 murine macrophages. Cell viability
was quantified with CCK-8 assay after incubation with FE for 48 h.

2.3. Expression of Pro- and Anti-Inflammatory Cytokines

Mouse bone-marrow-derived macrophages (BMDMs) are a kind of primary cells,
extracted directly from the alive animal. Although RAW 264.7 cells are frequently used as
models to assess (anti-)inflammatory response because they are widely available and easy
to culture, evidence has revealed that the main biological process involving the cell cycle
control, cytoskeleton reorganization, and apoptosis was significantly dissimilar from RAW
264.7 cells to BMDM [27]. Alongside that, BMDMs are proven to be more sensitive and a
more realistic response to an inflammatory stimulus [28], thus being selected as the in vitro
model in this study. After 48 h incubation with FE, different cytokines (TNF-α and IL-12 as
pro-inflammatory, and CD206 and IL-10 as anti-inflammatory) were quantified [29]. TNF-α
activates different cell signaling pathways and mediates the production of many other
inflammatory mediators, participating in the initiation and progression of the inflammatory
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response [30]. IL-12 is produced early during infections, and comprises a heavy chain
(p. 40, [31]) and a light chain (p. 35, [31]). This cytokine is associated with innate and
adaptative immunity through the induction of IFN-γ. IL-10 is produced via a wide variety
of activated immune cells, and its main actions are anti-inflammatory, inhibitory, or self-
regulating [32]. CD206, a mannose receptor, is a membrane-bound protein, predominantly
expressed by macrophages and dendritic cells, acts as a pattern recognition receptor that
plays a role in innate and adaptive immunity [33,34].

The effect of FE on the expression of the above-mentioned cytokines by BMDM was
studied (Figure 2). The presence of 100 µg/mL FE induced a slight increase in TNF-α
expression with no statistically significant differences compared to the control condition.
However, the expression of IL-12, CD206 and IL-10 was significantly higher than the control
condition. Indeed, the expression of CD206 and IL-10 was much higher than the other two
quantified cytokines, demonstrating the anti-inflammatory potential of FE.
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2.4. Reversed Inflammation in M1 Phenotype

Inflammatory stimuli such as LPS (lipopolysaccharides) induces macrophage acti-
vation and, consequently, the expression of cytokines that mediates different stages of
inflammation [35,36]. Indeed, the inhibition or induction of cytokine production plays a
crucial role in the control of inflammation. To assess the effects of FE over the expression
of anti- and pro-inflammatory molecules such as inducible nitric oxide synthase (iNOs),
CD206, and IL-10 in a simulated inflammatory situation, BMDMs were subject to LPS+IFN-
γ stimulation for 12 h. iNOS is one of the direct consequences of an inflammatory process
and a major mediator of inflammation in various cell types [37]. As observed in Figure 3A,
the expression of iNOS was significantly increased after LPS+IFN-γ stimulation, as ex-
pected. This situation was reversed through the addition of FE, with expression levels
similar to the basal condition. The addition of FE increased CD206 expression in response
to LPS+IFN-γ stimulation. A similar behavior was observed for IL-10 protein, another
anti-inflammatory cytokine. Previous studies reported the effect of fucoidan from Fucus
vesiculosus at similar concentrations (i.e., 50–100 µg/mL) on different cell types, specifically
RAW 264.7, Caco-2, and BV2 microglial cells [13,15,17]. These studies showed that fucoidan
decreased the expression of pro-inflammatory cytokines after LPS-stimulation. Fucoidan
from species other than Fucus vesiculosus also presented some promising results. Fucoidan
extracts from Laminaria japonica reduced the expression of iNOS, TNF-α, and IL-6 [38,39].
In a particular study, Caco-2 cells were used, and both pro- and anti-inflammatory cytokine
expressions were assessed [40]. A decreased expression of TNF-α and IL-1β, along with
increased levels of IL-10 and IFN-γ, was observed for fucoidan from Sargassum hemiphyllum.
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Figure 3. Expression of iNOS (A) and CD206 (B) determined via RT-qPCR, and the amount of
IL-10 quantified by ELISA (C); all inflammatory molecules synthesized by BMDM, stimulated or not
stimulated by LPS and IFN-γ for 12 h, and after FE incubation for 48 h. Significance was set to a
p-value < 0.05. Results are presented as the mean ± standard deviation; * p < 0.05, ** p < 0.01.

Herein, a decreased expression of pro-inflammatory and an increase in anti-inflammatory
mediators validate the anti-inflammatory potential of FE in vitro, after settling a simulated
inflammatory situation. These observations state the reversed inflammation capacity of this
fucoidan extract (FE).

2.5. FE Anti-Inflammatory Response in a Mouse Model

The anti-inflammatory potential of FE was also assessed in vivo through the intraperi-
toneal injection of LPS in a mouse model. Histologically, the typical features of normal
cardiac and lung tissues, or mild morphological changes, were observed in mice injected
with FE after LPS stimulation (Figure 4).
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Figure 4. Morphology of inner organ (lung and heart) stained by H&E. Red (lung) and black (heart)
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These observations are in agreement with the ones of another study, whereby fucoidan
administration attenuated myocardial damage [28]. To ascertain the influence of FE over
tissue-specific macrophages, intraperitoneal macrophages were marked for the surface
markers F4/80 and CD11C (Figure 5). Flow cytometry analysis showed that the F4/80
marker is highly expressed upon FE administration. Indeed, tissue-specific macrophages
aid in maintaining homeostasis and triggering the immune system in response to a stim-
ulus [41,42]. Oppositely, the integrin CD11C that is highly expressed in monocytes and
macrophages, was downregulated when FE was injected, presenting values similar to
the control condition (healthy mice). Therefore, FE did not evoke a CD11C-mediated
response, which is an indicator of macrophage activation [43]. These observations indicate
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that the administration of FE induced a decrease in the inflammatory response upon LPS
stimulation.
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3. Materials and Methods
3.1. Materials

A pharmaceutical-grade fucoidan extract from Marinova (batch number—DPFVF2015505),
herein referred to as FE, with a purity of 98%, was purchased and used as received. Lipopolysac-
charides (LPS from E. coli 055:B5) were purchased from InvivoGen Co., Ltd. (San Diego, CA,
USA). Enzyme-linked immunosorbent assay (EISA) kits for murine IL-10 were purchased
from NeoBioscience Co., Ltd. (Shenzhen, China). FITC anti-mouse F4/80 antibody and APC
anti-mouse CD11C antibody for flow cytometric analysis were purchased from Biolegend (San
Diego, CA, USA). Recombinant murine IFN-γ was purchased from Peprotech (Cranbury, NJ,
USA). The mouse macrophage cell line Raw 264.7 was purchased from American-Type Culture
Collection (ATCC, Manassas, VA, USA), and maintained according to the culture guidelines.
All reagents used for the cell culture were purchased from Gibco Life Technology (Carlsbad,
CA, USA).

3.2. FE Characterization
3.2.1. Molecular Weight

FE molecular weight was determined by GPC using a methodology previously de-
scribed [9]. Briefly, a Malvern Viscotek TDA 305 (Malvern, UK) system composed of a set of
four columns: pre-column Suprema 5 µm 8 × 50 S/N 3111265, Suprema 30 Å 5 µm 8 × 300
S/N 3112751, Suprema 1000 Å 5 µm 8 × 300 S/N 3,112,851 PL, and Aquagel-OH MIXED
8 µm 7.5 × 300 S/N 8M-AOHMIX-46-51, followed by a refractometer (RI-Detector 8110,
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Bischoff), right-angle light scattering, and viscometer detectors. For the eluent, a solution of
0.1 M NaN3 and 0.01 M NaH2PO4 with a pH = 6.6 was used at a flow rate of 1 mL min−1,
and the system kept at 30 ◦C. To calibrate elution times, a commercial set (Varian ®, Palo
Alto, CA, USA) of pullulans with narrow polydispersity and Mp (molecular mass at the
maximum chromatographic peak) varying from 0.18 to 708 kDa was used.

3.2.2. Sulfate Content

The sulfate ester content present in FE was determined via elemental analysis using
a Truspec 630-200-200 with a TCD detector, with 2 mg of each sample in duplicate. The
temperatures were set at 1075 ◦C (combustion furnace) and 850 ◦C (after burner tempera-
ture). The sulfur value obtained was converted to the sulfate ester content of the FE, using
a calculation methodology adapted from [44,45].

3.2.3. Monosaccharide Composition

Neutral monosaccharides were determined as alditol acetates via gas chromatography
with a flame ionization detector (GC-FID), using 2-deoxyglucose as the internal standard,
as described elsewhere [46]. Briefly, pre-hydrolysis with 72% sulfuric acid was performed
on the FE for 3 h at room temperature (RT), followed by a 2.5 h hydrolysis at 100 ◦C with
1 M sulfuric acid. The obtained monosaccharides were reduced with sodium borohydride
and acetylated with acetic anhydride using methylimidazole as the catalyst.

A modification of the colorimetric method 3-phenylphenol was used to quantify
the uronic acids [46]. Samples were hydrolyzed with 1 M sulfuric acid at 100 ◦C for
1 h. Galacturonic acid was used to make an external calibration curve. Hydrolysis was
performed in duplicate for all samples. A third analysis was performed concerning the
samples with higher variability.

The total content of carbohydrates was determined through the sum of the monosac-
charide contents.

3.2.4. Glycosidic Linkage and Substitution Analysis

Methylation analysis was used to determine the glycosidic linkages and the position
of sulfate groups [46].

For desulfation, dimethyl sulfoxide (1.8 mL) was used to dissolve the samples (10 mg),
followed by the addition of pyridine (0.1 mL), pyromellitic acid (13 mg), NaF (12 mg),
and pyridine (0.2 mL), in a sequential order. This solution was stirred at 120 ◦C for 3 h,
cooled, and poured into a NaHCO3 solution (1 mL). The desulfated polysaccharide solution
was dialyzed and freeze-dried. Methylation analysis was performed on the desulfated
polysaccharides.

Anhydrous dimethylsulfoxide (1 mL) was used to dissolve native and desulfated
samples (1–2 mg), and 40 mg NaOH was added in an argon atmosphere. The methylation
was performed by stirring the samples for 20 min in 80 µL CH3I, which was added two
more times. This was followed by the addition of a mixture of CHCl3/MeOH (1:1, v/v,
3 mL), and dialyzed (12–14 kDa) against 50% EtOH. A 2 M TFA solution at 120 ◦C for 1 h
was used to hydrolyze the methylated sample and, after that, the sample was reduced
and acetylated, as previously described for neutral sugar analysis (using NaBD4 instead
of NaBH4). Gas chromatography coupled with mass spectrometry (GC-qMS) was used to
separate and analyze the partially methylated alditol acetates.

3.3. Biological Assays
3.3.1. Assessment of Cytotoxic Effects of FE on the RAW264.7 Cell Line

RAW 264.7 cells were seeded onto 96-well plates (5000 cells per well). After 12 h, the
cells were co-incubated with various concentrations (0.125, 0.25, 0.5, 1, 2 mg/mL) of FE.
After another 48 h, the cell viability was tested according to Cell Counting Kit-8 (CCK-8),
whereby the reaction reagent, WST-8 (10 µL), was added into each well and incubated for
2 h. The absorbance was measured at 450 nm.
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3.3.2. Assessment of the Pro-/Anti-Inflammation Effects of FE on Mouse
Bone-Marrow-Derived Macrophages

Mouse bone-marrow-derived macrophages (BMDMs) were extracted from the back
limbs of mice and cultured according to previous studies. The primary BMDMs were
seeded on a six-well culture plate (2 × 106 cells per well) for direct use, or pre-induced
into a M1 phenotype and treated with LPS (100 ng/mL) and IFN-γ (40 ng/mL) for 12 h.
After co-incubated with FEs (100 µg/mL) for 24 h, the cells were gently washed with PBS,
and their RNA was collected with TRIzol for subsequent RT-qRCR analyses. In parallel,
the culture medium was collected and the expression of IL-10 was determined via ELISA.
All primers used for RT-qPCR were synthesized by life technologies (China), and their
sequences are as follows (F: forward; R: reverse) (Table 3).

Table 3. Primer sequences used for RT-qPCR procedures.

Gene Forward (5′-3′) Reverse (5′-3′)

TNF-α ACGGCATGGATCTCAAAGAC AGATAGCAAATCGGCTGACG
IL-12 p40 AGCAGTAGCAGTTCCCCTGA AGTCCC TTTGGTCCAGTGTG

IL-10 GCTCTTACTGACTGGCATGAG CGCAGCTCTAGGAGCATGTG
CD206 GCAGGTGGTTTATGGGATGT GGGTTCAGGAGTGTTGTGG
iNOS CCAAGCCCTCACCTACTTCC CTCTGAGGGCTGACACAAGG

GADPH AACGACCCCTTCATTGAC TCCACGACATACTCAGCAC-3

3.3.3. Assessment of Anti-Inflammatory Effects of FE on Mice

This study was ethically approved by the Chinese Academy of Sciences, Guangzhou
Biomedical and Health Research Institute, attributing the ethical approval code 2020070
on 10 April 2020. Male mice (C57BL/6) were obtained from the Animal Centre of In-
stitute of Chinese Medical Sciences, University of Macau. All animals were raised in
specific-pathogen-free animal rooms and treated according to the local policy for animal
experiments. Male C57BL/6 mice (18–22 g) were randomly divided into three groups
(n = 10 per group) and intraperitoneally injected with saline (Group I), LPS at 10 mg/Kg
(Group II), and FE at 10 mg/Kg (30 min before LPS injection (Group III)). Eight hours after
the injection, the mice were sacrificed, and the intraperitoneal macrophages were extracted
by pump-backed cold PBS from the mouse abdomen, red blood cell lysis buffer was added
and the cells were then washed twice with PBS. FITC anti-mouse F4/80 antibody and APC
anti-mouse CD11C antibody were used for flow cytometric analysis; meanwhile; both the
heart and lung organs were collected, embedded in paraffin, sectioned into 6 µm, and
stained with hematoxylin and eosin (H&E).

3.4. Statistical Analysis

The result data were presented as the mean ± standard deviation (SD), from n ≥ 3.
Statistical analyses were carried out using a one-way ANOVA (GraphPad Prism, San Diego,
CA, USA), with *, ** and *** denoting p < 0.05, p < 0.01 and p < 0.001, respectively.

4. Conclusions

This study elucidated the anti-inflammatory behavior of a commercially available
fucoidan extract (FE) at a pharmaceutical grade, obtained from Fucus vesiculosus. The results
indicate that FE induced the expression of anti-inflammatory cytokines such as CD206
and IL-10 in BMDMs. The addition of FE reversed the increased expression of iNOs after
LPS+IFN-γ stimulation, for values in the range of the control condition. The addition of FE
increased CD206 and IL-10 expression in response to LPS+IFN-γ stimulation, proving the
anti-inflammatory behavior. Regarding the in vivo studies, FE reversed inflammation after
LPS stimulation, both the lung and cardiac tissues being normal when compared with the
control group. In conclusion, the anti-inflammatory behavior of the commercial fucoidan
extract evaluated in this study was confirmed, revealing that large-scale production could
be further explored for application in clinical settings. Nevertheless, further studies are



Mar. Drugs 2023, 21, 302 10 of 12

needed to better understand the structure–activity relationship, namely by investigating
the chromatographic fractions of FE, with a narrower range of chemical features, and their
anti-inflammatory activities.
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