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Abstract: As the largest habitat on Earth, the marine environment harbors various microorganisms
of biotechnological potential. Indeed, microbial compounds, especially polysaccharides from marine
species, have been attracting much attention for their applications within the medical, pharmaceutical,
food, and other industries, with such interest largely stemming from the extensive structural and
functional diversity displayed by these natural polymers. At the same time, the extreme conditions
within the aquatic ecosystem (e.g., temperature, pH, salinity) may not only induce microorganisms to
develop a unique metabolism but may also increase the likelihood of isolating novel polysaccharides
with previously unreported characteristics. However, despite their potential, only a few microbial
polysaccharides have actually reached the market, with even fewer being of marine origin. Through
a synthesis of relevant literature, this review seeks to provide an overview of marine microbial
polysaccharides, including their unique characteristics. In particular, their suitability for specific
biotechnological applications and recent progress made will be highlighted before discussing the
challenges that currently limit their study as well as their potential for wider applications. It is
expected that this review will help to guide future research in the field of microbial polysaccharides,
especially those of marine origin.
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1. Introduction

Over the past few years, there has been increasing interest in the development of
natural polymers, also referred to as biopolymers, for industrial applications [1], and in
particular, polysaccharides have been gaining much attention in the biomedical, cosmetic,
food, and pharmaceutical fields. Although polysaccharides can be produced by different
types of organisms (e.g., bacteria, fungi, algae, crustaceans, and plants), those from bacteria
and fungi have been highly popular as they replicate rapidly, are easier to manipulate, and
are abundant producers of those polymers, with the latter also more easily separated than
those from non-microbial counterparts [2,3]. Furthermore, in addition to their biological
activities, they also display low toxicity, biocompatibility, biodegradability, and other
physical and chemical characteristics [4–7]. Thus, without undermining the value of non-
microbial sources of polysaccharides, this review mainly focuses on those obtained from
bacteria and fungi in order to highlight their potential for future studies, especially in view
of developing polymers for practical applications.

An overview of these microbial compounds suggests that they are usually macro-
molecules of high molecular weight and are made up of at least 10 monosaccharide units
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held together by glycosidic bonds [8]. They can also be either linear or branched in structure,
while in terms of content, they may be classified as homopolysaccharides or heteropolysac-
charides if they, respectively, contain one type or different types of monosaccharides [7–9].
In the latter case, while D-glucose is often the most common constituent, other sugars
(e.g., D-xylose, D-mannose, D-galactose, L-galactose, L-arabinose, and D-fructose) may
also be present alongside derivatives such as simple sugar acids (glucuronic and iduronic
acids) or amino sugars (D-glucosamine and D-galactosamine) [10]. Finally, in addition to
the above sugars, the presence of non-organic moieties, including sulfates, phosphates,
pyruvates, and acetates, is also frequently noted [4,5]. Altogether, different combinations of
these variable features contribute to the extensive compositional and structural diversity
displayed by microbial polysaccharides.

Given that the structure of polysaccharides ultimately determines their functions,
such diversity is actually of functional significance to microorganisms. Indeed, through
variations in the monosaccharide composition, non-sugar side chains, glycosidic link-
ages, and other characteristics, bacteria and fungi are able to synthesize a wide range of
polysaccharides that are involved in different biological processes [8]. For instance, some
polysaccharides, such as glycogen, occur intracellularly, where they act as storage molecules
to provide energy under starvation conditions [4,8,11]. Others are part of bacterial and
fungal cell walls or capsules, and as structural polymers, they not only are responsible for
maintaining cellular integrity but also assist in other functions such as conferring protection
against environmental stresses, regulating membrane permeability, or even mediating
interactions with the surroundings, which, in the case of pathogenic microorganisms, may
include the onset of immunological responses [12–14]. Finally, there are polysaccharides
that are secreted outside microbial cells and are thus often termed as exopolysaccharides or
extracellular polysaccharides (EPSs). Being commonly synthesized by bacteria and fungi,
EPSs are arguably one of the most studied ones, as reflected in the number of publications
available on the subject. This can probably be attributed to the fact that, unlike intracellular
or cell wall polysaccharides, EPSs are produced in relatively larger amounts within a short
time while being more easily isolated and purified. As such, they are better suited for
practical applications and will be the main subject of focus in this review [15,16].

2. The Case of Marine Polysaccharides

With around 70% of the Earth’s surface covered with water, the marine environment is
undoubtedly an attractive source of microbial polysaccharides [17]. Indeed, aquatic habitats
are known to harbor a large diversity of microorganisms, and, in a similar way to terres-
trial microbes, it is likely that this also translates into significant diversity in terms of the
polysaccharides that they can produce [18], as evidenced by previous reports (e.g., [5,19]).
However, increasing interest in marine polysaccharides over the past few years can ar-
guably be attributed to the potential of isolating polysaccharide-producing organisms that
can be sources of novel polymers. Indeed, it is often reported that fewer than 1% of marine
microorganisms are currently known or cultured, and as a result, the microbial populations
in different marine ecosystems remain relatively under-explored [20–22]. Therefore, there
is an increased likelihood of identifying novel microorganisms, which, in turn, may lead to
the isolation of novel polysaccharides with unique properties, especially since some taxa
can produce only specific polymers [4]. For instance, in India, Srivastava et al. [23] isolated
a novel heteropolysaccharide of around 286 kDa, made up of glucose and galacturonic acid,
from the marine bacterium Brevibacillus borstelensis, while in a different study, Rhodotorula
mucilaginosa, a marine-derived red yeast, was found to yield a new 1200 KDa exopolysac-
charide that consisted of fucose, galactose, mannose, and glucose [24]. Similarly, there are
also reports on the isolation of novel exopolysaccharide-producing species or other new
marine-derived polymers [25–29]. Table 1 provides some examples of novel polysaccha-
rides and/or novel polysaccharides-producing marine bacteria and fungi that have been
reported over the past decade. While such examples may not be exhaustive, they clearly
highlight the potential of exploring aquatic species in the search of new polysaccharides.
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Table 1. Examples of novel polysaccharides- and/or novel exopolysaccharides-producing marine bacteria and fungi, reported over the past decade, that highlight
the large diversity of these polymers in terms of size, composition, and biological activities. (* tr—trace amounts; N/A—not available)—Note: when not available,
figures of polysaccharide structures were inferred based on information provided in the relevant studies and should not be taken as representing the actual or most
stable conformations of the polymers.

Organism Name Composition Molecular
Weight (kDa) Possible Structure(s) Biological Activity

(If Any) Level of Characterization Reference

Vibrio alginolyticus

Mannose, glucosamine,
gluconic acid,

galactosamine and
arabinose (5:9:3.4:0.5:0.8)

14.8 N/A Antitumor activity

Molecular weight, monosaccharide
composition, functional groups,

surface morphology, and element
composition

[30]

Bacillus sp.

Mannose, glucosamine,
galacturonic acid, glucose

and xylose
(1:2.58:0.68:0.13:3.09:1.41)

22.3 N/A Anticancer through
different mechanisms

Molecular weight and
monosaccharide composition [31–33]

Microbacterium aurantiacum Glucose, mannose, fucose
and glucuronic acid 7000
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Table 1. Cont.

Organism Name Composition Molecular
Weight (kDa) Possible Structure(s) Biological Activity

(If Any) Level of Characterization Reference

Pseudoalteromonas sp.

Mannose, glucose,
galactose, rhamnose,

xylose,
N-acetylgalactosamine

and
N-acetylglucosamine

>2000
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Table 1. Cont.

Organism Name Composition Molecular
Weight (kDa) Possible Structure(s) Biological Activity

(If Any) Level of Characterization Reference

B. licheniformis

Fructose, fucose, glucose,
galactosamine and

mannose
(1.0:0.75:0.28:tr:tr) *

1000
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Table 1. Cont.

Organism Name Composition Molecular
Weight (kDa) Possible Structure(s) Biological Activity

(If Any) Level of Characterization Reference

Aspergillus ochraceus Mannose and galactose
(2.16:1.00) 29
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Furthermore, as already pointed out, polysaccharides are often produced to protect
bacteria and fungi from their surroundings. Hence, in response to the unique conditions
prevailing in marine environments, it can be expected that aquatic species may develop
specific metabolic and physiological capabilities for better adaptation, thereby resulting
in the production of compounds, including polysaccharides, which may be absent from
terrestrial microbes [48]. This was highlighted in the study by Abdel-Wahab et al. [37],
in which a marine strain of the fairly common Bacillus subtilis species yielded a novel
β-glycosidic sulfated heteropolysaccharide. This polymer, consisting of glucose, rhamnose,
and arabinose, could also exhibit a wide range of biological activities (anti-oxidant, anti-
inflammatory, cytotoxicity, and anti-Alzheimer activities). Such protective functions have
been of particular value in studies involving microorganisms from extreme marine habitats.
Indeed, some species are able to survive in specific areas characterized by very high or
low temperatures (thermophiles and psychrophiles), high or low pH (acidophiles and
alkalophiles), high pressures (piezophiles), or even high ionic strengths (halophiles) [49].
In these cases, the extremophiles adopt specific survival strategies, which include but are
not limited to the production of polysaccharides with unique properties [50,51], with exam-
ples of such polysaccharides that have been isolated from extremophilic microorganisms
during the last decade, provided in Table 2. Thus, it can be expected that the study of
microbial species from extreme environments could yield polysaccharides with new or
improved properties.

Table 2. Examples of polysaccharides isolated from extremophilic microorganisms.

Species Name Type of
Environment EPS Name EPS Composition Distinguishing

Features Reference

Polaribacter sp. Polar region
(Arctic) EPS

N-acetyl glucosamine,
mannose, glucuronic acid,

moderate amounts of
galactose and fucose, and
minor amounts of glucose

and rhamnose

Tolerance to high
salinity and a wide pH

range
[52]

Alteromonas
infernus

Deep-sea
hydrothermal vent GY785

Glucose, galactose,
galacturonic acid and

glucuronic acid
- [53]

Vibrio diabolicus Deep-sea
hydrothermal vent HE800

N-acetyl glucosamine,
N-acetyl galactosamine and

glucuronic acid
- [53]

Pseudomonas sp. Polar region
(Antarctica) EPS Glucose, galactose, fucose,

and uronic acid
Cryoprotection and

emulsification [54]

Zunongwangia
profunda Deep-sea (1245 m) EPS -

High moisture
retention and

anti-oxidant potential
[55]

Halomonas
nitroreducens Hydrothermal vent EPS

Three different EPSs made
up of glucose, mannose,

galactose, and small
quantities of rhamnose,

arabinose, and galacturonic
acid in variable amounts

Pseudoplastic nature
with high emulsifying,

anti-oxidant, and
heavy metal-binding

activities

[56]

An overview of the above tables suggests some common features in the study of
microbial polysaccharides. Firstly, the high diversity of novel bacterial and fungal polysac-
charides is quite obvious, especially in terms of the molecular weight, composition, and
biological activities, all of which further lend support to the potential of exploring such
microbial compounds. However, although the above list is not exhaustive, there seems to
be a greater focus on polysaccharides from marine bacteria as compared to fungal sources,
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probably due to the former’s higher diversity as free-living organisms, as well as their ease
of isolation in terms of growth requirements. This is also particularly obvious as far as
polymers from extremophiles are concerned. Nevertheless, fungal sources remain a major
source of polysaccharides, and research on such species is still likely to yield polysaccha-
rides of interest. In addition, in terms of the level of characterization, determining the
molecular weight, functional groups, and monosaccharide composition tend to be standard
practices, but interestingly, a survey of the literature suggests that structural characteri-
zations, even partial ones, seem to also be gaining in importance. However, studies that
fully establish structure–function relationships for polysaccharides in view of explaining
their biological activities are still far from common, probably because a highly technical
and experimental analysis is required to determine the structures of such high molecular
weight polymers [37].

3. Current Research on Marine Microbial Polysaccharides

Over the years, the potential of microbial polysaccharides for biotechnological ap-
plications became increasingly recognized, as reflected by the number of studies on the
subject, with Osemwegie et al. [2], as reported by Nadzir et al. [57], identifying thousands of
publications focused on microbial polysaccharides between 1976 and 2018 alone. Although
many of these did not specifically involve marine species, a survey of the literature suggests
a similar trend as far as marine microbial polysaccharides are concerned. The following
sections provide an overview of the current trends in research on marine polysaccharides
from bacterial and fungal species.

3.1. Biomedical Applications

One of the most promising properties displayed by marine microbial polysaccharides
is their biological activities. Indeed, it is not uncommon for studies to investigate such
characteristics in view of presenting these polymers as attractive candidates for biomed-
ical applications, with some of the most studied biological activities being anticancer,
antimicrobial, anti-oxidant, and immunomodulation [18].

3.1.1. Anticancer Activity

Cancer, characterised by an uncontrolled proliferation of cells, is currently one of
the major diseases affecting human health, as well as the second cause of death in the
world, with an estimated 18.1 million people diagnosed with the condition in 2018 [58,59].
So far, surgery, chemotherapy, and radiotherapy remain the main forms of treatment for
different types of cancers, but these approaches are not without side effects, which include a
number of health complications as well as toxicity and/or injury to non-targeted organs and
cells [58,60,61]. Consequently, the search for alternative forms of treatment has prompted
interest in natural compounds, with results of studies often highlighting the potential of
marine microbial polysaccharides for such applications.

Indeed, the anticancer activities of polysaccharides from marine bacteria and fungi are
already well established, with cytotoxic effects often reported against lung [32],
liver [29,31,62,63], breast [59,62,64–66], cervical [62], and colorectal cancers [59]. In these
cases, the apoptosis of cancer cells seems to be a common mechanism, although pro-
grammed cell death can be mediated through different pathways. These different mecha-
nisms of action are particularly obvious from studies in which different polysaccharides
were tested against different cell lines. For example, Tukenmez et al. [67] noted changes in
the gene and protein expression of Bax, Bcl-2, Caspase 3, Caspase 9, and Survivin when
EPSs of L. delbrueckii ssp. Bulgaricus were tested against colon cancer cells at a concentration
of 400µg/mL for 24 h or 48 h. The EPS consisted of glucose, mannose, fructose, sucrose,
maltose, and N-acetylglucosamine, with the observed effects attributed to the glucose and
mannose content. In contrast, within a concentration range of 5–80 µg/mL, marine polysac-
charides from Bacillus velezensis activated caspase-3 while increasing levels of cytochrome C
to induce apoptosis in breast cancer cells [65]. Such differences in the mechanism of action
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could arguably be attributed to differences in the composition and/or structure of the two
polysaccharides, as suggested by Tukenmez et al. [67], although the influence of other fac-
tors is not excluded. In addition, within similar cell lines, anticancer effects may also occur
through different mechanisms. For instance, Cao et al. [32] reported the isolation of EPS11,
a 22.3 kDa polysaccharide fraction made up of glucose, mannose, xylose, glucosamine,
and galacturonic acid, from a marine Bacillus species. At varying concentrations up to
90 nM, the authors showed that this polymer could not only affect cell proliferation and
adhesion of lung (A549) and liver (Huh7.5) cells, but also induce apoptosis by preventing
the expression of βIII-tubulin, as well as reducing the phosphorylation of protein kinase
B (PKB or AKT). However, the same polysaccharide also downregulated proteins related
to the extracellular matrix–receptor interaction signaling pathway and targeted collagen I
through the β1-integrin-mediated signaling pathway to prevent cell adhesion, migration,
and invasion [31]. This feature of polysaccharides is, in fact, of practical significance, as the
ability to induce anticancer effects through different mechanisms may reduce the likelihood
that a particular cell line develops resistance to therapy, as is currently the case for a number
of chemotherapeutic drugs [68].

3.1.2. Antimicrobial Activity

Another biological activity of microbial polysaccharides that is commonly investigated
is their ability to inhibit the growth and/or proliferation of pathogenic microorganisms.
This property is particularly relevant nowadays due to the emergence of drug-resistant
pathogens that constantly threaten public health, thereby prompting the need to develop
new and more potent antibiotics [69,70]. In this context, Aullybux et al. [71] isolated
two sulfated EPSs from a marine Alcaligenes and Halomonas sp., which could, in addition to
different pathogens, also inhibit the growth of methicillin-resistant Staphylococcus aureus
(MRSA) at concentrations between 0.25 and 2 mg/mL. Although not specifically attributed
to any particular features of the polymers, the authors argued that the antibacterial activities
could be linked to the presence of certain functional groups that are known to act as metal
chelators. Similarly, polysaccharides (1 mg/mL) from a haloalkalitolerant Alkalibacillus sp.,
recovered from a salt lake, displayed antibacterial effects against Candida albicans, as well
as a number of Gram-positive and Gram-negative bacteria [72].

Although these studies did not determine the underlying mechanism of the antimicro-
bial properties, this can be inferred based on existing reports from other non-marine polysac-
charides. For example, electrostatic interactions between oppositely charged polysaccha-
rides and pathogens’ cell walls, as well as the latter’s subsequent hydrolysis to leak cell
content, have been suggested as one of the mechanisms responsible for the observed an-
timicrobial activities [71]. Similarly, Zhou et al. [73] proposed that interactions between
polysaccharides and biofilm-related signal molecules or cell-surface receptors of pathogens
could disrupt cell communication and biofilm formation, while Rajoka et al. [74] sug-
gested that metal chelation, as well as nutrient suppression through the formation of an
external barrier, could represent additional ways through which antimicrobial properties
are exerted.

However, while the antimicrobial properties of bacterial and fungal polysaccharides
are well known, those derived from marine species are yet to be widely studied, as is
the case for their terrestrial counterparts. As will be discussed in subsequent sections,
this could likely be due to the different challenges encountered in the study of marine
microbial polysaccharides. Nevertheless, this undoubtedly represents a research gap that,
if addressed, could potentially yield new classes of antibiotics to assist the fight against
resistant pathogens [75].

3.1.3. Anti-Oxidant Activity

Bacterial or fungal polysaccharides, especially those that display biological activities,
have been considered not only for their cytotoxicity or antibacterial effects but also for
their anti-oxidant potential [76,77]. Nowadays, it is not uncommon to come across studies
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that highlight the anti-oxidant potential of compounds, probably because it is intrinsically
linked to human health.

Tissues in the human body require oxygen for energy production, but as the oxy-
gen is consumed, those tissues generate free radicals as by-products [78]. Free radicals
are, basically, reactive and unstable molecules containing unpaired electrons, and they
can be grouped into either reactive nitrogen species (RNSs) or reactive oxygen species
(ROSs) [78,79]. These compounds are normally maintained at a suitable concentration
by balancing the body’s production of free radicals through a defence system involving
anti-oxidant enzymes [80]. However, in addition to cellular production, external sources
such as radiation, chemicals, pollutants, cigarettes, alcohol, some drugs, or heavy metals,
just to name a few, can also contribute substantially to the levels of ROS/RNS [80]. These
can undoubtedly cause an imbalance, especially if the body is no longer able to coun-
teract the additional production of free radicals, hence resulting in a condition of oxida-
tive/nitrosative stress. Under this condition, these excess radicals, especially ROS, interact
with various biological macromolecules such as proteins, DNA, RNA, and lipids, causing
their structural and functional alterations [80,81]. Given that these macromolecules have
important physiological functions, it is, therefore, not surprising that oxidative/nitrosative
stress has been established as a major cause of human diseases, which include cardiovascu-
lar, organ disorders (pancreas, lungs, eyes, kidneys, and joints), neurodegenerative diseases,
and even cancer [78,80].

In light of the above, it can be understood why anti-oxidant compounds are highly
regarded as being beneficial for health. Indeed, anti-oxidants are molecules that, at low
concentrations, inhibit or cause a significant delay in the oxidation of compounds [82], and
as such, they help to hinder the negative effects of oxidative stress. Interestingly, reports on
the anti-oxidant activities of polysaccharides from marine bacteria and fungi are not lacking,
with some even involving novel species (e.g., Enterobacter cloacae MBB8) or novel polymers
(e.g., EPSR4 from Bacillus subtilis) [25,37,83,84]. However, while this commonly studied
activity of marine microbial EPS is now fairly established, the next step would undoubtedly
be developing practical applications for such polymers. In this context, it is worth noting
that providing anti-oxidants as supplements has been suggested as a means of mitigating
the negative effects associated with oxidative stress [85]. Hence, the successful isolation
of anti-oxidant EPS from two probiotic marine bacteria (Rhodotorula sp. and Pediococcus
pentosaceus), as reported by Wang et al. [86] and Ayyash et al. [87], further highlights the
potential of studying marine microorganisms for this purpose.

3.1.4. Drug Delivery

Besides their biological activities, microbial polysaccharides are also suitable to en-
hance the activities of other compounds, and for this purpose, they are often applied
in the development of drug-delivery systems. Such nano-based or targeted delivery of
therapeutic agents ensures that the latter are delivered at the required site and in a con-
trolled manner, thereby overcoming the limitations (e.g., drug bioavailability, unwanted
side effects, and non-specificity of drugs) that are encountered with current methods of
drug delivery [88,89]. For this purpose, the selection of a suitable carrier molecule is a key
parameter that needs to be considered, as its properties eventually influence the mechanism
of drug release [90]. However, more importantly, the selected carrier would need to be
biodegradable, biocompatible, and safe in order to be considered for such applications, and
interestingly, microbial polysaccharides display such characteristics [90,91].

Dextran, composed of a linear chain of D-glucose linked by α-(1→6) bonds and
commonly synthesized by lactic acid bacteria, is a widely used EPS for developing tar-
geted delivery systems [92]. As a result of its non-toxicity, non-immunogenicity, and
biocompatibility, dextran represents a suitable polymer for encapsulating or adsorbing ther-
apeutic agents and ensuring their delivery while effectively providing protection against
the immune system, as well as digestive enzymes [93]. The efficacy of such systems was
demonstrated by Wang et al. and Fang et al., who developed dextran-based nanocarri-
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ers for the delivery of doxorubicin, with the results confirming the improved anticancer
effects alongside reduced toxicity to the drug [94,95]. Similarly, chitosan (a derivative of
chitin) and levan (a fructose homopolymer) also display properties such as biocompatibil-
ity, biodegradability, and low toxicity [96,97]. These features were further confirmed by
studies whereby cisplatin, 5-fluorouracil, and resveratrol were successfully loaded onto
those polysaccharides for delivery to cancer cells while being safe for healthy ones [98–100].

While there are reports on the production of the above polysaccharides from marine
microorganisms (e.g., Penicillum spinulosum and Halomonas sp.) [101,102], it is surprising
to note that such applications are yet to be established for those obtained from marine
bacteria or fungi. This was reflected in an overview of two recent reviews on the appli-
cation of marine microbial EPS as drug carriers, whereby the focus was largely, if not
completely, on polysaccharides from non-marine sources [90,91]. However, the absence
of a significant number of studies on the subject does not suggest that the potential of
marine microbial polysaccharides has been overlooked. For instance, in an attempt to
develop microgels as protein carriers, Zykwinska et al. successfully assembled EPSs
from Vibrio diabolicus, a deep-sea hydrothermal bacterium, for the encapsulation of bovine
serum albumin [103]. As a possible extension to that study, the authors subsequently
isolated EPS from Alteromonas infernus to yield microcarriers that could encapsulate Trans-
forming Growth Factor-β1 (TGF-β1) for applications in cartilage engineering [104]. Sim-
ilarly, K1T-9, a 207 kDa heteropolysaccharide isolated from the novel marine bacterium
Neorhizobium urealyticum, was successfully applied as an emulsifier for the encapsulation of
astaxanthin [39]. Therefore, given the diversity and possibly unique properties of marine
microbial polysaccharides, addressing the current research gap could potentially lay the
foundations for the development of new or improved drug-delivery systems based on
these polymers.

3.2. Bioremediation

Over the past few decades, industrialization and other human activities such as the
improper disposal of wastes and the excessive use of pesticides and fertilizers have been a
major cause of environmental pollution [105]. In particular, water contamination via heavy
metals such as chromium (Cr), cadmium (Cd), lead (Pb), arsenic (As), mercury (Hg), and sil-
ver (Ag), just to name a few, has been of concern not only due to their non-biodegradability
and toxicity at certain concentrations but also due to their potential accumulation along the
food chain [106]. Therefore, the removal of heavy metal contaminants has been devised
as an effective strategy for treating polluted areas, and in this context, electroplating, ion
exchange, precipitation, and membrane processes represent some of the most commonly
used approaches for this purpose [106,107]. However, these methods are not without
drawbacks, the most important of which include the high cost involved, its low efficiency,
and the production of toxic by-products [106]. As a result, attention has shifted to bet-
ter alternatives, with microbial-based treatments proving to be a suitable candidate for
such applications.

Indeed, microorganisms, especially those from heavy-metal-polluted areas, have
evolved to develop tolerance to such pollutants, and therefore, they can be ideal candi-
dates for bioremediation processes [108,109]. While the microbial-based removal of toxic
heavy metals from the environment can be mediated through different pathways [109],
the current review will focus on the potential of their polysaccharides for this purpose.
Microbial polysaccharides contain a number of functional groups such as carboxyl, hy-
droxyl, phosphate, amine, and uronic acids, with marine-derived ones being particularly
rich in the latter [5,110]. These groups confer an overall negative charge to the poly-
mers, thereby allowing them to bind to the positively charged heavy metals through
the process of adsorption and subsequently leading to their removal [5]. For instance, a
Bacillus cereus strain, isolated from a contaminated estuarine sediment, showed potential
for water detoxification at concentrations of 25 to 150 mg/L due to its EPSs’ affinity for
Pb, Cu, and Cd [106]. In this case, higher adsorption capacity, largely attributed to the
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functional groups present, occurred at the lower doses. Similarly, Concórdio-Reis et al. [111]
reported the isolation of the EPS FucoPol from an Enterobacter species. This polymer, which
showed specificity towards Pb, had an overall metal removal efficiency of 91.6–93.9% and
this was achieved at a concentration of 5 g/L through its carboxyl and hydroxyl groups,
under acidic conditions and within a temperature range of 5–40 ◦C. A different study
further highlighted the potential of marine environments as a source of novel polysac-
charides for bioremediation processes. Indeed, Zhang et al. [38] reported the ability of a
novel polymer from an Alteromonas species to adsorb Cu, Ni, and Cr at a concentration of
1 g/L, thus indicating its suitability for the removal of heavy metals. However, despite its
novel structure, the observed effects were still attributed to the functional groups present,
especially O-H, C=O, and C-O-C, as is often the case for other microbial polysaccharides.

Closely related to the above are potential applications of marine microbial polysaccha-
rides as bioflocculants. Flocculation refers to the aggregation of small suspended particles
into larger flocs to aid their removal, and while it is not limited to heavy metals, it is
nevertheless also applied to water treatment [112]. In this context, Chen et al. character-
ized a novel bioflocculant from the marine Alteromonas species [113]. Largely composed
of polysaccharides, this polymer (20–220 mg/L) could effectively remove dyes such as
Methylene Blue, Direct Black, and Congo Red at efficiencies between 72.3% and 98.5%,
thus proving to be effective for the treatment of dyed wastewater. In a different study, a
marine Bacillus species achieved 85% bioflocculant activity, with the optimum conditions
for such activities also determined [112]. Overall, based on the above studies, it would not
be unlikely that the huge diversity of marine microbial polysaccharides, as well as their
specificity to pollutants, could drive the search for new polymers. At the same time, the
fact that the presence of a polysaccharide backbone can enhance the thermal stability of
bioflocculants could spark additional interest in the isolation of such polymers.

Although the above examples are not exhaustive, a key factor that explains the wide
interest in polysaccharides is the remarkable structural diversity displayed by these poly-
mers, as this translates into a wide range of properties, as well as potential applications.
Thus, any prospective uses of polysaccharides are often dependent on structural charac-
teristics such as the monosaccharide composition, the type of functional groups present,
or even the conformation, including the degree of branching and the type of linkage [114].
For instance, the presence of neutral monosaccharides (e.g., glucose, mannose, fucose,
arabinose, D-galactose, and glucuronic acid) has been reported as being more likely to
induce anti-oxidant activities [76], while in their study on polysaccharides from Lacto-
bacillus reuteri, Chen et al. [115] noted that the amount of galactose was related to the
anti-inflammatory activity of the polymer, with higher amounts of the monosaccharide en-
hancing the biological activity. Similarly, in terms of conformations, the types of glycosidic
linkages may affect the solubility and flexibility of polysaccharide chains, thus making
them more or less suited to certain specific applications [67,76]. In other cases, polymers
with mostly β-1,3-linkages were also reported as displaying greater antitumor activities
in contrast to those containing mostly β-1,6- linkages [67]. Finally, as far as functional
groups are concerned, biological activities are often observed when specific groups are
present. For example, phosphate groups can contribute to the immunomodulatory effects
of polysaccharides by improving their affinity to immune cells. In addition, compared with
neutral polysaccharides, phosphorylated ones are also more likely to inhibit the growth of
certain cancer cells [116,117]. Similarly, sulfated or acetylated polysaccharides can display
better biological activities than non-sulfated ones, especially antibacterial, anti-oxidant,
and antitumor effects [116,118,119]. As discussed in the subsequent section, the influence
of the functional groups on the biological properties of polysaccharides is actually of great
significance in generating specific polymers of practical value.

4. Challenges for the Commercialization of Marine Microbial Polysaccharides

Despite the wide interest in microbial polysaccharides, as well as their great potential
for a number of applications, only a few of these polymers have actually been commercial-
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ized so far, with even fewer being from marine microorganisms (e.g., HE800 EPS, bearing
the trademark Hyalurift® [120], and HYD657, commercially available as Abyssine® [121]).
However, a survey of deposited patents related to marine microbial polysaccharides does
suggest that the potential of these polymers for a wide range of applications is recognized
(Table 3). Hence, while learning the barriers to commercialization may not necessarily
result in more products, addressing them may potentially increase the likelihood that the
results of research are eventually translated into practical applications.

Table 3. Examples of patents that have been deposited for polysaccharides derived from marine
bacteria or fungi during the last decade.

Patent Number Species Source Characteristic of
Polysaccharide Patented Application

AU2016330332B2 Alteromonas sp.
Deep-sea

hydrothermal
environment

15 kDa over-sulfated
exopolysaccharide (GYS15)

Anti-metastatic and/or
related uses for various

cancers

CN116120477A - Antarctic sea

4350–4360 kDa extracellular
polysaccharide with low

temperature resistance and
moisturizing functions

Preparation method and
application

ES2585398B1 Pseudomonas sp. Marine sediment

2000 kDa exopolysaccharide
with cryoprotective, emulsifying,

thickening, stabilizing, or
texturing properties

Cosmetic application

CN105087450A Alteromonas marina - 167 kDa exopolysaccharide
Culture of organism and

preparation of
polysaccharide

US10993434B2 Pseudoalteromonas
sp. Polar region 100–430 kDa exopolysaccharide Cryoprotection of cells

CN107523515A Pseudoalteromonas
sp. - -

Absorption of heavy
metals from drinking

water

LU501700B1 Aerococcus
urinaeequi - -

Growth of
microorganism and

polysaccharide
production

CN109457001A - -

Polysaccharide with mannose,
glucosamine, ribose, rhamnose,
glucuronic acid, galacturonic

acid, glucose, galactolipin,
xylose, and arabinose

Preparation and
application as decoloring

agent

One of the main factors that limit the production of polysaccharides is the high cost
of production, even though microorganisms are relatively easier to grow and manipulate,
are better producers, and are, overall, cheaper sources of biopolymers in comparison with
non-microbial sources [5,122]. In this case, improving the yield of polysaccharides is a
commonly applied strategy to make the process more cost-effective, and this can often
be achieved through process optimization, whereby the growth conditions that maximize
yields are identified and applied. For instance, Hereher et al. managed to increase EPS
production from a Micrococcus roseus strain by over four times by modifying the amount
of sucrose and ammonium sulfate, as well as the incubation temperature and pH [123].
Similarly, a three-fold increase in EPS yield was reported for a Halomonas xianhensis strain by
optimizing culture conditions [124]. In addition, favoring the use of cheaper substrates has
also been proposed as a means of bringing down the overall cost of production [125,126].
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However, it should be noted that it is not uncommon for some microbial species to
still have relatively low yields despite process optimization, and, in this case, the genetic
modification of the microorganisms can provide a powerful alternative to improve yields,
especially since they are more easily amenable to genetic changes compared to higher
organisms [127]. Such modifications can range from increasing the availability of EPS
precursors, overexpressing genes involved in EPS assembly, or even knocking out those that
compete against EPS production. For instance, the marine yeast Aureobasidium melanogenum
was successfully modified with the INU1 gene to improve pullulan production by more
than five times compared with the wild strain [128]. At the same time, in addition to better
yields, this approach may also help in generating tailor-made polysaccharides with better
or novel physicochemical and biological properties [129]. Interestingly, as pointed out by
Wang et al. [130], these benefits can be particularly suited to extremophilic microorganisms,
which, despite their potential to synthesize EPS with distinct features and properties, are
relatively poor producers of such polymers.

Another commonly applied strategy that has been proposed as a means of improv-
ing the value of isolated microbial polysaccharides is structural modification. As noted
before, the properties of microbial polysaccharides are tightly linked to their structures,
and therefore, this approach is particularly suited to cases where the isolation of closely
related microbial species yields polysaccharides of nearly similar structures or those with
no biological activities, both of which may not bring significant additional value to existing
research [9,131]. In other cases, although polysaccharides may display the potential for spe-
cific applications, the absence of suitable physico-chemical properties (e.g., poor solubility)
may hinder subsequent interest in their exploitation [50]. Thus, by altering the structures of
such polymers through physical, biological, and chemical means, their existing properties
can be enhanced and tailored for individual applications [50,131]. For instance, through a
sulfation modification, Chopin et al. [132] improved the ability of GY785, an EPS from the
bacterial strain Alteromonas infernus isolated from deep-sea hydrothermal vents, to drive
the chondrogenic differentiation of mesenchymal stem cells, hence enhancing its potential
for cartilage repair. Furthermore, there are also reports on phosphorylation modifications,
which not only enhance existing biological activities of polysaccharides but also help to
induce such activities in polymers in which they are naturally absent [131,133]. Overall,
while reports of such modifications of polysaccharides from marine bacteria and fungi are
not extensive, it is likely that this approach can be a powerful tool that could increase the
likelihood of developing commercially viable marine microbial polymers. However, for
most reported microbial polysaccharides, the relationship between structure and biological
functions is not precisely established, hence making it more difficult for commercializa-
tion [57]. Therefore, the above examples clearly highlight the need to characterize the
structures of microbial polysaccharides as part of studies, especially since such information
would provide an understanding of potential modifications that could be undertaken in
view of obtaining desirable properties.

According to Li et al. [58], the low application of polysaccharides can also be linked to
the lack of in vivo research. Although studies involving animal models are not completely
absent, integrating more in vivo research is more likely to provide a better insight into the
actual potential of polysaccharides, especially as far as their biomedical applications are
concerned. Finally, as noted before, most marine microorganisms remain unculturable, and
this clearly limits studies on marine polysaccharides, as these require culturable samples for
extracting and characterizing the polymers [134]. Therefore, devising new culture methods
to improve the isolation of previously uncultured microorganisms can pave the way to the
production of novel polysaccharides.

5. Conclusions and Future Perspectives

This paper provides an overview of marine microbial polysaccharides, their peculiari-
ties, and current trends in their study. Research gaps, including challenges to their practical
applications, were also briefly addressed. With much of the marine environment still
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relatively unexplored, there is no doubt that research on marine microbial polysaccharides
remains promising. In particular, focusing on extreme environments may yield polymers
which are not only unique in terms of their properties but also of potential high commer-
cial value. In fact, as talks on climate change and the need to reduce petroleum-derived
compounds step up, switching to sustainable alternatives is likely to take on even greater
importance, thereby further fuelling interest in marine microbial polysaccharides.
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