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Abstract: A HPLC-UV guided fractionation of the culture broth of Streptomyces sp. CNQ-617 has
led to the isolation of a new quinazolinone derivative, actinoquinazolinone (1), as well as two
known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) and 7-methoxy-8-hydroxy
cycloanthranilylproline (3). The interpretation of 1D, 2D NMR, and MS spectroscopic data revealed
the planar structure of 1. Furthermore, compound 1 suppressed invasion ability by inhibiting
epithelial–mesenchymal transition markers (EMT) in AGS cells at a concentration of 5 µM. In addition,
compound 1 decreased the expression of seventeen genes related to human cell motility and slightly
suppressed the signal transducer and activator of the transcription 3 (STAT3) signal pathway in AGS
cells. Together, these results demonstrate that 1 is a potent inhibitor of gastric cancer cells.

Keywords: actinoquinazolinone; Streptomyces sp.; marine natural products; quinazolinone;
gastric cancer; motility

1. Introduction

Cancer is the uncontrolled growth and division of cells in the body [1]. Gastric cancer,
also known as stomach cancer, is responsible for an estimated 768,793 deaths, making it the
fourth leading cause of cancer death in 2020 [2,3]. Suppressed metastasis may be a target in
gastric cancer therapy [4]. During the epithelial—mesenchymal transition (EMT) process,
cancer cells take on a mesenchymal cell phenotype to spread to a different part of the body.
Therefore, EMT plays a significant role in metastatic cancers [5,6]. Furthermore, the signal
transducer and activator of transcription 3 (STAT3) is a kind of oncogene that can promote
the invasion and migration potential of cancer cells [7]. Thus, suppressing the EMT and
STAT3 signal pathways is crucial for developing effective cancer therapies.

Marine microorganisms, including actinobacteria, have emerged as a promising
source for the discovery of novel bioactive compounds with potential pharmacological
properties [8,9]. Actinobacteria are Gram-positive bacteria that have been extensively
studied for their ability to produce secondary metabolites with a wide range of biological
activities. Many of these compounds have demonstrated promising activity against
various diseases, including cancer, bacterial infections, and viral infections [10,11]. The
high biodiversity of marine-derived actinobacteria provides a rich source of novel com-
pounds, which is one of their main advantages [11]. Additionally, marine environments
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offer unique ecological niches, including extreme temperatures, pressures, and salinity,
which can produce unique compounds not found in terrestrial environments. Thus,
marine-derived actinobacteria are considered a valuable resource for drug discovery and
development [10–12].

Streptomyces sp. strain CNQ-617 is a marine-derived actinobacterium isolated from
sediment samples collected from La Jolla Submarine Canyon in California. This strain
has been shown to produce several bioactive compounds with potential therapeutic
applications [10]. Streptomyces is a well-known genus of actinobacteria known for pro-
ducing a large number of secondary metabolites, including many clinically important
antibiotics. Indeed, Streptomyces species are thought to have produced approximately
two-thirds of all known antibiotics [11,13,14]. Researchers have also discovered several
novel bioactive compounds derived from marine-derived Streptomyces species in recent
years.

Therefore, marine-derived Streptomyces and other actinobacteria are regarded as a
valuable resource for the discovery of novel bioactive compounds with potential therapeutic
applications [15–26]. Marineosins A and B are two structurally related compounds that
were first discovered from this strain. They are analogs of the natural product prodigiosin
and have been shown to possess strong and selective anticancer activity against a variety of
cancer cell lines by inducing apoptosis, inhibiting angiogenesis, and disrupting microtubule
assembly [26,27].

In addition to marineosins A and B, this strain has also been shown to produce de-
oxyvasicinone, a compound with potential anti-melanogenic properties. Deoxyvasicinone
has been shown to inhibit melanin production in murine and human melanoma cells,
suggesting that it could be a promising agent for treating hyperpigmentation disorders [10].
Moreover, further extensive investigation of crude extracts from Streptomyces sp. strain
CNQ-617 has resulted in the isolation of a novel quinazolinone derivative, actinoquina-
zolinone (1). This study reported the isolation of actinoquinazolinone (1) along with two
known compounds, 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) and 7-methoxy-
8-hydroxy cycloanthranilylproline (3) (Figure 1), as well as the structural characterization
and bioactivity of 1.
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Figure 1. Chemical Structures of actinoquinazolione (1), 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-
4-one (2), and 7-methoxy-8-hydroxy cycloanthranilylproline (3).

2. Results and Discussion

Actinoquinazolinone (1) was isolated as a yellowish brown oil with a molecular
formula of C13H14N2O6 based on the HR-FAB-MS ion at m/z 295.0924 [M + H]+ (calcd for
C13H15N2O6, 295.0930). The 1H NMR spectrum of 1 (Table 1, Figures S1–S5) displayed one
hetero-aromatic proton at δH 8.07 (1H, s, H-2), two aromatic protons at δH 7.46 (1H, s, H-5)
and 6.98 (1H, s, H-8), one methoxy group at δH 3.88 (3H, s, 6-Ome), and one exchangeable
proton at δH 10.35 (1H, s, OH). Based on spectroscopic data from 13C NMR and HSQC, six
quaternary carbons were assigned at δC 159.7 (C-4), 148.2 (C-6), 153.0 (C-7), 143.9 (C-9),
113.8 (C-10), and 172.2 (C-14), two methylene carbons at δC 51.2 (C-11) and 39.8 (C-13), four
methine carbons at δC 147.1 (C-2), 105.7 (C-5), 110.9 (C-8), and 65.0 (C-12), and one methoxy
carbon at δC 55.7 (6-Ome).
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Table 1. NMR Spectral Data for Compounds 1 (DMSO-d6) a.

No.
1

dC, mult. b dH (J in Hz) COSY HMBC

2 147.1, CH 8.07, s 4, 9, 10, 11
4 159.7, qC
5 105.7, CH 7.46, s 4, 6, 7, 8, 9, 10
6 148.2, qC
7 153.0, qC
8 110.9, CH 6.98, s 4, 6, 7, 9, 10
9 143.9, qC

10 113.8, qC
11a 51.2, CH2 3.74, dd (13.4, 8.2) 12 2, 4, 12, 13
11b 4.12, dd (13.4, 3.9)
12 65.0, CH 4.18, m 13
13a 39.8, CH2 2.29, dd (15.5, 8.2) 11, 12, 14
13b 2.45, dd (15.5, 4.7)
14 172.2, qC

6-Ome 55.7, CH3 3.88, s 6
7-OH 10.35, s
12-OH
14-OH

14-Ome
a 400 MHz for 1H NMR and 100 MHz for 13C NMR. b Numbers of attached protons were determined by analysis
of 2D spectra.

Additional 2D NMR analyses allowed the structure of 1 to be constructed. The
quinazolin-4-one unit was assigned by the NMR signals of six aromatic carbons at δC 105.7
(C-5), 148.2 (C-6), 153.0 (C-7), 110.9 (C-8), 143.9 (C-9), and 113.8 (C-10), and two hetero-
aromatic carbons at δC 147.1 (C-2) and 159.7 (C-4), along with the HMBC correlations from
H-2 to C-4, C-9 and C-10; from H-5 to C-4, C-6, C-7 and C-10; and from H-8 to C-7, C-9
and C-10. In addition, HMBC correlations from 6-Ome to C-6 provided the attachment of
the methoxy group at C-6. Furthermore, COSY cross peaks [H-11/H-12 and H-12/H-13]
and long-range HMBC correlations of H-12 and H-13 with C-14 (δC 172.2) as well as the
carbon chemical shift of C-12 (δC 65.0) allowed the construction of the 3-hydroxybutanoic
acid moiety. This moiety was linked to the quinazolinone moiety through the nitrogen
atom between C-2 and C-4 from the consideration of the carbon chemical shift of C-11
(δC 51.2) and from the observation of the long-range HMBC correlation from H-12 to C-2
and C-4. Additionally, the unassigned hydroxy group was determined to be located at
C-7 based on the carbon chemical shift of C-7 (δC 153.0) and the molecular formula of the
compound. Therefore, the final structure of actinoquinazolione (1) was determined to be
7-hydroxy-6-methoxy quinazolinone with a 3-hydroxy butanoic acid moiety, as shown in
Figure 2.
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The 1H NMR (400 MHz, DMSO-d6) spectrum of 2 revealed one hetero-aromatic proton
at δH 7.90 (1H, d, J = 3.47, H-2), two aromatic protons at δH 7.43 (1H, s, H-5) and 6.98
(1H, s, H-8), one methoxyl group at δH 3.87 (3H, s, 6-Ome), and two exchangeable protons
at δH 11.93 (1H, s, OH) and 10.27 (1H, br s, NH) (Figure S6). The interpretation of 13C
NMR spectral data revealed nine carbons at δC 160.1 (C-4), 153.0 (C-7), 148.0 (C-2), 144.9
(C-6), 143.6 (C-9), 114.7 (C-10), 111.3 (C-8), 105.5 (C-5), and 55.7 (6-Ome) (Figure S7).
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Compound 2 was identified as 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one based
on a comparison of its NMR data to that of a previously reported synthetic compound [28].
However, it was the first report of the compound being isolated from a natural source.

Compound (3) was isolated as yellowish oil and its molecular formula was determined
to be C13H14N2O4 by HR-FAB-MS [M+H]+ ion at m/z 263.1029. The 1H NMR spectrum
of compound 3 displayed para-coupled aromatic protons at δH 7.36 (1H, s, H-1) and 6.58
(1H, s, H-4) (Figure S8). The 13C NMR spectrum of 3 showed twelve carbons at δC 171.2
(C-11), 166.6 (C-5), 151.1 (C-8), 145.4 (C-7), 131.4 (C-9a), 117.9 (C-5a), 111.8 (C-6), 107.7
(C-9), 57.2 (C-11a), 47.1 (C-3), 25.8 (C-1), 23.4 (C-2), and one methoxy group at δC 55.4
(7-Ome) (Figure S9). The chemical structure of 3 was determined as 7-methoxy-8-hydroxy
cycloanthranilylproline based on the comparison of NMR data to those of previously
reported ones [25].

Compounds 1 and 2 are quinazolinone derivatives with an N-containing heterocyclic
scaffold. Quinazolinones are a class of nitrogen-containing heterocyclic compounds found
in nature which are produced by plants and microorganisms [29,30]. Quinazolinones have
sparked considerable interest in the fields of medicinal chemistry and drug discovery. The
chemical structure of quinazolinones has been shown to possess a wide range of pharmaco-
logical properties [31]. Furthermore, quinazolinones are considered as a significant scaffold
of various therapeutic and biological activities, including anticancer [32], anticonvulsant [33],
anti-cholinesterase [34], anti-diabetic [35], antimalarial [36], antimicrobial [37,38], antitubercu-
lar [39], antihypertensive [40], anti-HIV [41], anti-inflammatory [42], and antipsychotic [43].
Other therapeutic and biological activities include cellular phosphorylation inhibition [44],
kinase inhibitory [45], dihydrofolate reductase inhibition [46], inhibitors of tubuline polymeriza-
tion [47], dopamine agonists, and diuretic activities [48,49]. Reported microbial-derived quina-
zolinones, penicamide A, penoxazolones A and B, aspertoryadins A–J, nortryptoquivaline, 2-(4-
hydroxybenzyl)quinazolin-4(3H)-one, and penipanoids B and C, are isolated from the ascidian-
derived fungus Penicillium sp. 4829 [50], the cold-seep-derived fungus Penicillium oxalicum [51],
the marine-derived fungus Aspergillus sp. HNMF114 [52,53], the sea fan-derived fungus Neosar-
torya siamensis [54], the entomopathogenic fungus Isaria farinose [55], and the sediment-derived
fungus Penicillium paneum SD-44 [56], respectively. In addition, several quinazolinones from
Streptomyces have been reported, including 2-(1H-indol-3-yl)quinazolin-4-(3H)-one, quinazolin-
4(3H)-one, 2-methylquinazolin-4(3H)-one [57], 2-(4-hydroxyphenyl) quinazolin-4(3H)-one [50],
quinazolinones A and B, 4(3H)-quinazolinone [58], 2-(2-carboxyethyl)-8-hydroxyquinazolin-
4(3H)-one, 2-(2-carboxyethyl)-6-hydroxyquinazolin-4(3H)-one, 2-(4-hydroxyphenyl)quinazolin-
4(3H)-one [59], farinamycin [60], 2-Methyl-3H-quinazolin-4-one and 1H-quinazoline-2,4-dione
and arborine [61,62]. Moreover, these quinazolinones have been reported to have various
biological activities, such as cytotoxicity to Vero cells [63], antifungal activity against P. litchi [64],
and cytotoxicity against KB and HL-60 cell lines [65].

Additionally, compounds 1 and 2 share structural similarities with previously reported
compound 4-(7,8-dihydroxy-4-oxoquinazolin-3(4H)-yl) butanoic acid, which was isolated
from the leather coral-derived fungus Xylaria sp. FM1005 [66]. However, the structures of
compounds 1 and 2 differ from that of the previously reported compound. In the quina-
zolinone moiety, compound 1 has a substituted methoxy group at C-6 and an additional
hydroxy group attached at C-12, but no 8-OH group. Meanwhile, compound 2 has a similar
structure to compound 1, except for the absence of the 3-hydroxybutanoic acid substituent
on the amide moiety. In addition, 1–3 have been tested for their viability of cancer cell lines.
The relative cell viability of cancer cell lines A549 (lung cancer), AGS (gastric cancer), and
Caco-2 (colorectal cancer) was measured by an MTT assay after treatment with various
concentrations of 1–3 for 48 h. The result showed that treatment with 100 µM of compound
1 significantly decreased the cell viability of A549, AGS, and Caco-2. However, 100 µM
of compound 2 did not affect the cell viability of A549 and AGS, while suppressing the
cell viability of Caco-2. Moreover, 100 µM of compound 3 suppressed the cell viability of
AGS and Caco-2 while having no significant effect on the cell viability of A549 (Figure 3).
Therefore, these results showed that compound 1 is more effective in reducing the cell
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viability of A549, AGS, and Caco-2 than the other two compounds. However, it should be
noted that the observed cell viability reduction by 1–3 is modest even at 100 µM.
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To confirm the concentration-dependent inhibitory effect of compound 1 on cancer
motility, we evaluated invasion assays in A549, AGS, and Caco-2 cells. From the results
(Figure 4A,B), 1 displayed a dose-dependent inhibitory effect on the invasion ability of AGS
at concentrations from 1 to 5 µM, whereas the invasion ability of A549 and Caco-2 cells
were not affected by treatment of 1. The results indicated that 1 has a higher suppression
activity on the AGS invasion ability than A549 and Caco-2.
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Figure 4. Effect of actinoquinazolione (1) on the invasion ability of AGS, A549, and Caco2 cells.
(A) representative images of each insertion in the invasion assay. (B) relative percentage of invaded
cells. Data are presented as the mean ± SD and analysis was performed by Student’s t-test (n = 5).
* p < 0.05, *** p < 0.001.

Cancer metastasis accounts for approximately 90% of cancer deaths [67,68]. A poor
prognosis can be caused by the EMT, which is linked to metastasis [69]. E-cadherin is
known to suppress cancer metastasis; the loss of its expression promotes the EMT markers
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E-cadherin, Snail, Slug, and Twist [69]. We assessed whether compound 1 decreased the
motility associated with EMT by using qPCR assays and Western blot assays (Figure 5A).
Based on the result, treatment with 5 µM of 1 significantly promoted the protein and mRNA
expression level of E-cadherin in AGS cells (Figure 5B,C). Furthermore, the protein and
mRNA expression levels of the EMT effector N-cadherin and the EMT transcription factors
Snail, Slug, and Twist were decreased in AGS by treatment with 5 µM of 1 (Figure 5B,C).
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Figure 5. Effect of actinoquinazolione (1) on EMT markers in AGS cells. (A) Western blot analysis of
E-cadherin, N-cadherin Snail/Slug, and Twist. (B) relative protein levels of E-cadherin, N-cadherin
Snail/Slug, and Twist. (C) relative mRNA expression levels of E-cadherin, N-cadherin Snail, Slug,
and Twist. mRNA expression levels were normalized against the glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) housekeeping gene. Data are presented as mean ± SD and analysis was
performed by Student’s t-test (n = 3).* p < 0.05; *** p < 0.001.

Previous studies have shown that STAT3 and EMT interact with each other to promote
cancer metastasis. EMT is the downstream mediator of STAT3 and, therefore, the upregu-
lation of the positive effect of STAT3 on the EMT process [70]. Western blot assays were
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performed to assess whether treatment with 1 affects the STAT3 protein level. The results
(Figure 6A,B) indicate that 1 did not affect the total STAT3 protein level, whereas 5 µM of 1
slightly decreased the protein level of phosphorylated STAT3 (p- STAT3) in AGS cells.
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Finally, the Human Cell Motility RT2 Profiler PCR Array was used to examine the effect
of compound 1 on the mRNA expression level of cell motility-related genes. The results
(Figure 7) showed that treatment with 5 µM of 1 decreased the expression of ARP2/3
actin-related protein 2/3 (ACTR2/3), rho guanine nucleotide exchange factor (GEF) 7
(ARHGEF7), cell division cycle 42 (CDC42), V-crk sarcoma virus CT10 oncogene homolog
(CRK), cortactin (CTTN), enabled homolog (ENAH), insulin-like growth factor 1 (IGF-1),
insulin-like growth factor 1 receptor (IGF1R), mitogen-activated protein kinase 1 (MAPK1),
Met proto-oncogene (hepatocyte growth factor receptor (MET), Phosphoinositide-3-kinase,
catalytic (PIK3CA), rho family GTPase 3 (RND3), rho-associated, coiled-coil containing
protein kinase 1 (ROCK1), Vimentin (VIM), WAS protein family 1 (WASF1), and walkout-
Aldrich syndrome protein-like (WASL). These genes are related to cancer cell motility and
could be used to treat cancer. ACTR2/3 regulates cell motility by playing an important
role in actin dynamics and cytoskeleton organization [71]. The ARHGEF7 gene stimulates
cancer cell motility and invasiveness by modifying the cytoskeleton [72]. CDC42 is as
known a structural homolog of the Rho GTPase family; inhibition of CDC42 can reduce
cancer progression by suppressing distinct GEFs [73]. CRK is a regulator of kinase and
overexpression of CRK is associated with adenocarcinomas of the stomach [74]. CTTN
is a regulator of actin polymerization by binding the actin-regulated protein complex
ACTR2/3 [75]. ENAH includes a member of the ENAH/VASP family which can modify cell
morphology and adhesion in the metastasis process [76]. IGF1 promotes cell proliferation by
suppressing apoptosis in cancer [77]. MAPK1 is closely related to invasion and metastasis
via modulated EMT [78]. The invasiveness and metastasis of aggressive cancer cells link to
the overexpression of oncogene MET [79]. PIK3CA has been related to cancer cell motility,
which is the second most frequent mutant oncogene. A statistical analysis showed that
mutation of PIK3CA is the reason for more than 10% of cancer cases [80]. RND3 may
serve as a predictor of EMT upregulation [81]. ROCK1 is a small GTPase Rho downstream
effector that is crucial in cancer metastasis [82]. VIM has been related to cancer metastasis by
promoting the EMT process [83]. WASF1, also known as WAVE1 (WASP family verprolin
homologous protein 1), is associated with regulating actin cytoskeleton dynamics for cancer
cell invasion and migration [84].
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3. Materials and Methods
3.1. General Experimental Procedures

Optical rotations were measured using a Kruss Optronic P-8000 polarimeter with a
5 cm cell. Infrared spectra were measured with a Varian Scimitar Series FT-IR spectrometer
in methanol (MeOH). The NMR spectra were established by an Agilent NMR spectrometer
(Agilent, Santa Clara, CA, USA, at 400 MHz for 1H and at 100 MHz for 13C) equipped at the
Drug Development Research Core Center using the signals of the residual solvent as internal
references (δH 2.50 ppm and δC 39.5 ppm for dimethyl sulfoxide-d6 (DMSO-d6) and δH
3.31 ppm and δC 4.91 ppm for deuterated methanol (CD3OD). The low-resolution LC/MS
measurements were recorded on the Agilent Technologies 1260 quadrupole and Waters
Micromass ZQ LC/MS system using a reversed-phase column (Phenomenex Luna C18
(2) 100 Å, 50 mm × 4.6 mm, 5 µm) at a flow rate of 1.0 mL/min at the National Research
Facilities and Equipment Center (NanoBioEnergy Materials Center) at Ewha Womans
University. Open column chromatography was performed using silica (40–63 µm, Merck
silica gel 60, Kenilworth, NJ, USA) eluting with a gradient solvent of dichloromethane
(CH2Cl2) and methanol (MeOH). The fractions were purified via semi-preparative HPLC
using a Waters 996 Photodiode Array Detector HPLC coupled with a reversed-phase
Phenomenex Luna C18 (2) (100 Å, 250 nm × 10 mm, 5 µm) column with a mixture of
acetonitrile and H2O at a flow rate of 2.0 mL/min. High-resolution mass spectra were
recorded on a JMS-700 mass spectrometer (JEOL Ltd., Tokyo, Japan) at Seoul National
University.

3.2. Collection and Phylogenetic Analysis of the CNQ-617 Strain

The marine actinomycete strain CNQ-617 was isolated from a marine sediment sample
collected offshore of La Jolla, California. The strain was specified as the MAR3 clade based
on 16S rDNA analysis. The phylogenetic analysis revealed that this strain showed 99.7%
similarity to Streptomyces cacaoi based upon the result of NCBI blast analysis of the partial
16S rDNA. The gene sequence data are available from GenBank (deposit #EU161093).

3.3. Cultivation and Extraction

Streptomyces strain CNQ-617 was cultured in 160 of 2.5-L Ultra Yield Flasks each
containing 1 L of the medium (10 g/L of soluble starch, 2 g/L of yeast, 4 g/L of peptone,
10 g/L of CaCO3, 20 g/L of KBr, 8 g/L Fe2(SO4)3·4H2O dissolved in 750 mL of natural
seawater and 250 mL of distilled water) at 27 ◦C with constant shaking at 120 rpm. After
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15 days, the culture broth was extracted with ethyl acetate (EtOAc; 160 L in total) to obtain
16.0 g of EtOAc extract.

3.4. Isolation of Compounds

The crude extract (16.0 g) of the CNQ-617 strain was fractionated by medium-pressure
liquid chromatography (MPLC) eluting with a step gradient of CH2Cl2 and MeOH (100/0,
99/1, 98/2, 96/4, 95/5, 90/10, 80/20, 50/50, 0/100, v/v, 600 mL for each gradient) to afford
fractions M1–M9. The fourth fraction M4 was purified by HPLC (Phenomenex Luna C18(2)
100 Å, 250 mm × 10 mm, 5 µm) with 15% acetonitrile in H2O with 0.1% trifluoroacetic acid
(TFA) at a flow rate of 2.0 mL/min to yield 19.0 mg actinoquinazolinone (1, tR 14.5 min)
and 7-methoxy-8-hydroxy cycloanthranilylproline (3, tR 27.0 min). Fraction M8 was also
purified by reversed phase HPLC (Phenomenex 100 Å, 250 mm × 10 mm, 5 µm,) under
isocratic conditions with 11% acetonitrile in H2O with 0.1% TFA at flow rate 2.0 mL/min to
yield 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2, tR 15.9 min).

Actinoquinazolinone (1): yellowish brown oil; [α]25
D = +62.4 (c 0.19, MeOH); UV (MeOH)

λmax (log ε) 202 (2.4), 243 (2.7), 309 (1.9), 322 (1.9) nm; IR (KBr) νmax 3188, 2956, 2925, 1658,
1457 cm−1 (Figure S10), 1H and 13C NMR data, Table 1, Figures S1–S5; HR-FAB-MS m/z
295.0924 [M + H]+ (Figure S11, calcd for C13H15N2O6, 296.0930).

7-Hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2): 1H (400 MHz, DMSO-d6, Figure S6);
δH 7.91 (s, H-2), 7.43 (s, H-5), 6.98 (s, H-8), 3.87 (s, 6-OMe), 13C (100 MHz, DMSO-d6, Figure S7);
δC 160.1 (C-4), 153.0 (C-7), 148.0 (C-2), 144.9 (C-6), 143.6 (C-9), 114.7 (C-10), 111.3 (C-8), 105.5
(C-5), 55.7 (6-OMe), LR-ESI-MS m/z 193.1 [M + H]+.

7-methoxy-8-hydroxy cycloanthranilylproline (3): [α]25
D = +275 (c 0.22, MeOH); IR (KBr)

vmax 3214, 1693, 1607, 1519, 1437, 1274, 1201, 1179, 786 cm−1; UV (MeOH) λmax (log ε) 220
(7.76), 260 (3.79), 300 (3.31) nm, 1H (500 MHz, CD3OD, Figure S8); δH 7.36 (s, H-6), 6.58
(s, H-9), 4.16 (m. H-11a), 3.91 (s, 7-OCH3), 3.72 (m, H-3), 3.57 (m, H-3), 2.67 (m, H-1), 2.05
(m, H-1), 2.02 (m, H-2), 13C (125 MHz, CD3OD, Figure S9); δC 171.2 (C-11), 166.6 (C-5),
151.1 (C-8), 145.4 (C-7), 131.4 (C-9a), 117.9 (C-5a), 111.8 (C-6), 107.7 (C-9), 57.2 (C-11a), 55.4
(7-OCH3), 47.1 (C-3), 25.8 (C-1), 23.4 (C-2), HR-FAB-MS m/z 263.1029 [M + H]+ (calcd for
C13H14N2O4, 263.1029).

3.5. Cell Culture

Cell lines A549 (lung cancer), AGS (gastric cancer), and Caco-2 (colorectal cancer) were
cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium or Dulbecco’s Modified
Eagle Medium (DMEM) (Gen Depot, Barker, TX, USA), supplemented with 10% FBS and
1% penicillin–streptomycin solution C in a humid environment with 5% CO2 [85].

3.6. MTT Assay

A549 (3× 103 cells/well), AGS (3× 103 cells/well), and Caco-2 (2.5× 103 cells/well) were
seeded on 96-well plates for gown overnight, and then treated with DMSO (Sigma-Aldrich) or
various concentrations of actinoquinazolione (1), 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-
4-one (2), and 7-methoxy-8-hydroxy cycloanthranilylproline (3) for 48 h. MTT was added to
the cultures for 4 h after treatment. In the final step of MTT, the cells were lysed with 150 µL of
DMSO and the absorbance was measured using a spectrophotometer (Bio Tek Instruments,
Winooski, VT, USA) [86,87].

3.7. Invasion Assay

Transwell containing polycarbonate membranes with 8 µm pores coated with 1%
gelatin-coated polycarbonate was used to measure the invasion ability of AGS cells. The
AGS cells were seeded in media containing 0.2% bovine serum albumin (BSA), then
treated with 1 and 5 µM concentrations of compound 1 for 24 h and DMSO as a control.
The lower chamber was filled with 600 µL RPMI containing 0.2% BSA and 6 µg/mL
fibronectin (EMD Millipore Corp., Billerica, MA, USA) as a chemoattractant. Diff-Quik
kit (Sysmex, Kobe, Japan) was used for the fixation and dying of AGS cells after 24 h
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treatment, the cells in the upper chambers were quantified using a K1-Fluo Confocal
Microscope (Nanoscope Systems, Republic of Korea) and i-Solution FL Auto Software
(IMT i-Solution Inc., Vancouver, QC, Canada) [88,89].

3.8. qPCR

Total RNA of AGS cells was extracted by RNAiso Plus (Takara, Otsu, Japan) according
to the manufacturer’s suggestions. Using a Moloney Murine Leukemia Virus (M-MLV) kit,
total RNA (1 µg) from DMSO as well as 1 and 5 µM of treatment with compound 1 groups
were converted to cDNA. SYBR Green (Enzynomics, Seoul, Republic of Korea) was used to
evaluate relative gene expression and CFX (Bio-Rad, Hercules, CA, USA) was applied for
analysis [90,91].

3.9. Western Blots

The AGS cells were seeded in 6-well plates for gown overnight, and then treated with
DMSO as well as 1 and 5 µM concentrations of 1. After 24 h treatment, rinsed with PBS,
then extracted using lysis buffer. The extracted protein was separated by SDS-PAGE. The
membranes were incubated in blocking buffer (20 mmol/l Tris-HCl, 137 mmol/l NaCl,
pH 7.6, 492 containing 0.1% Tween and 3% nonfat dry milk) for one hour and antibodies
against E-cadherin and N-cadherin (BD Bioscience, San Jose, CA, USA); Snail/Slug and
Twist (Abcam, London, UK); α-tubulin, STAT3, and p-STAT3 (Cell Signaling Technology,
Danvers, MA, USA) were detected by horseradish peroxidase-conjugated secondary an-
tibodies (Thermo Fisher Scientific, Waltham, MA, USA) using the Immobilon Western
Chemiluminescent HRP Substrate Kit (Millipore, Billerica, MA, USA). The Multi Gauge 3.0
(Fujifilm, Tokyo, Japan) software was used for analyzing the density of the bands [92,93].

3.10. Statistical Analysis

Data is represented as means ± standard deviation. All statistical analyses were
carried out using the Sigma Plot software. Student’s t-test was used to compare statistically
significant differences between two groups. A p-value less than 0.05 was considered
statistically significant.

4. Conclusions

In summary, the exploration of marine natural products from marine sediment-derived
Streptomyces sp. CNQ-617 has led to the discovery of a novel compound, actinoquina-
zolinone (1), along with two previously reported compounds, 7-hydroxy-6-methoxy-3,4-
dihydroquinazolin-4-one (2) and 7-methoxy-8-hydroxy cycloanthranilylproline (3). Fur-
thermore, compound 1 exhibited moderate antibacterial activity against the Gram-positive
bacteria K. rhizophila KCTC 1915 and weak inhibitory activities against B. subtilis KCTC
1021 and S. aureus KCTC 1927. In addition, compound 1 showed higher activity than
compounds 2 and 3 in decreasing the cell viability of cancer cells. Moreover, compound
1 suppressed the invasion ability of the EMT and STAT3 signal pathways, and some of
the cell motility-related genes. These findings highlight the potential of marine sediment-
derived Streptomyces sp. CNQ-617 as a source of novel bioactive compounds that may
have therapeutic applications. Further studies are required to determine the potential
therapeutic effect and the potential side effect of 1.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/md21090489/s1, Figures S1–S5 NMR spectra of actinoquinazolinone (1) in DMSO-d6; Figures S6
and S7 NMR spectra of 7-hydroxy-6-methoxy-3,4-dihydroquinazolin-4-one (2) in DMSO-d6; Figures
S8 and S9 NMR spectra of 7-methoxy-8-hydroxy cycloanthranilylproline (3) in CD3OD; Figures S10
and S11 IR and HRMS spectra actinoquinazolinone (1).
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