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Abstract: Crocin is one of the most valuable components of the Chinese medicinal plant Crocus sativus
and is widely used in the food, cosmetics, and pharmaceutical industries. Traditional planting of
C. sativus is unable to fulfill the increasing demand for crocin in the global market, however, such
that researchers have turned their attention to the heterologous production of crocin in a variety of
hosts. At present, there are reports of successful heterologous production of crocin in Escherichia
coli, Saccharomyces cerevisiae, microalgae, and plants that do not naturally produce crocin. Of these,
the microalga Dunaliella salina, which produces high levels of β-carotene, the substrate for crocin
biosynthesis, is worthy of attention. This article describes the biosynthesis of crocin, compares the
features of each heterologous host, and clarifies the requirements for efficient production of crocin
in microalgae.

Keywords: synthetic biology; crocin; heterologous production; microalgae

1. Introduction

Crocin is a well-known aromatic substance produced by plants as a secondary metabo-
lite [1–4]. It has a polyunsaturated conjugated acid structure with four side-chain methyl
groups and seven conjugated double bonds in both cis- and trans-forms [5]. It is commonly
stabilized by esterification with gentiobiose, glucose, or other common sugar moieties [6].
In nature, depending on the number of glucose groups, crocin can be classified into five
different derivatives, i.e., crocin I, crocin II, crocin III, crocin IV, and crocin V (Figure 1) [7].
Crocin is a water-soluble carotenoid that is about 13.27 mM at 25 ◦C and is naturally en-
riched in the red part of the stigma of Crocus sativus L. [8–10]. Among the five derivatives,
crocin I and crocin II are found in the highest concentrations in the stigma [7,11]. Although
different derivatives may have different numbers of glucose groups in various structural
arrangements, resulting in diverse chemical properties and catabolic characteristics, their
pharmacological effects should be similar since they share the same core structure [7]. Apart
from C. sativus, crocin is also found at low levels in a few other plants, such as the flowers
of Buddleja davidii and the fruit of Gardenia jasminoides Ellis [5,12,13]. At present, in industry,
natural crocin is only extracted from C. sativus, which represents an obstacle to large-scale
production of crocin.

Crocin is produced naturally from the carotenoid biosynthesis pathway. Carotenoids
are an important group of pigments found in plants, algae, bacteria, and fungi that can
provide color from yellow to red, depending on their cellular accumulation levels, and
can also participate in multiple biological functions, such as light harvesting and photo-
protection [14,15]. One of the final products of carotenoid metabolism, crocin has been
used in cosmetics, dietary supplements, and medicines; in the latter case, it has been
used as an anticancer agent, to reduce the risk of atherosclerosis, and to help prevent
Alzheimer’s disease [5,16–19]. Crocin has become known as “red gold” and is reputed to
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provide beneficial health effects [20]. Since low yields and a scarcity of natural sources have
seriously hindered commercial crocin production, researchers have turned to more efficient
heterogeneous production methods using engineered hosts, which show promise for an
improved yield of crocin [18,21,22]. Heterologous synthesis of crocin may be a new hope
for large-scale industrial production of crocin in the future.

Mar. Drugs 2024, 22, x FOR PEER REVIEW 2 of 24 
 

 

 

Figure 1. The structures of five crocin variants (from PubChem). 

Crocin is produced naturally from the carotenoid biosynthesis pathway. Carotenoids 

are an important group of pigments found in plants, algae, bacteria, and fungi that can 

provide color from yellow to red, depending on their cellular accumulation levels, and 

can also participate in multiple biological functions, such as light harvesting and photo-

protection [14,15]. One of the final products of carotenoid metabolism, crocin has been 

used in cosmetics, dietary supplements, and medicines; in the latter case, it has been used 

as an anticancer agent, to reduce the risk of atherosclerosis, and to help prevent Alz-

heimer’s disease [5,16–19]. Crocin has become known as “red gold” and is reputed to pro-

vide beneficial health effects [20]. Since low yields and a scarcity of natural sources have 

seriously hindered commercial crocin production, researchers have turned to more effi-

cient heterogeneous production methods using engineered hosts, which show promise 

for an improved yield of crocin [18,21,22]. Heterologous synthesis of crocin may be a new 

hope for large-scale industrial production of crocin in the future. 

In this study, we review the latest progress on crocin biosynthesis in various host 

cells, which is a prerequisite for industrial production of crocin in large quantities. In ad-

dition, we also discuss the future development of crocin-related products using genetic 

engineering technology, such as cloning of the target gene, codon optimization, expres-

sion vector construction, and different transformation methods. To improve the manufac-

turing technology, the research of crocin metabolic engineering has attracted increasing 

attention, and the development of engineered microorganisms and biofortified plants to 

produce crocin in vivo is the main research direction. 

  

Figure 1. The structures of five crocin variants (from PubChem).

In this study, we review the latest progress on crocin biosynthesis in various host
cells, which is a prerequisite for industrial production of crocin in large quantities. In
addition, we also discuss the future development of crocin-related products using genetic
engineering technology, such as cloning of the target gene, codon optimization, expression
vector construction, and different transformation methods. To improve the manufacturing
technology, the research of crocin metabolic engineering has attracted increasing attention,
and the development of engineered microorganisms and biofortified plants to produce
crocin in vivo is the main research direction.

2. The Challenge of Crocin Production

The cultivation of C. sativus, the main source of crocin, is insufficient to support crocin
production. The flowers of C. sativus contain three stamens, three pistils, and six petals. In
particular, the pistil stigmas account for about 7% of the total mass of the flower and are the
main source of bioactive compounds such as crocin, picrocrocin, and safranal [15,23,24]. Af-
ter separation and drying, the stigmas can be processed into red, filament-like dry products
that are widely used as a dye, spice, and traditional medicine [23,25–27]. About 75,000 flow-
ers and 200 h of work are required to process one pound of C. sativus stigmas [3,28]. In
order to preserve the integrity of volatile substances in C. sativus as much as possible,
farmers have to manually pick the delicate flowers when the stigma is not fully exposed in
the bud [29]. Since no mechanical equipment can separate the filamentous pistil stigma, the
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harvesting and separation stages are the most time-consuming and labor-intensive steps in
the entire production cycle [3,30,31]. This greatly limits the yield of crocin and results in a
high price in the international market.

In recent years, global climate change has led to flowering problems in C. sativus [32]
and has been accompanied by desertification of farm land and a reduction in the cultivated
area [29]. Moreover, other factors including the lack of high-quality germplasm resources for
the improvement and breeding of C. sativus [33], damage to bulbs caused by pathogens [34],
and unscientific cultivation and management methods [35] have severely hindered the
practicability of large-scale production of C. sativus; as a result, the price of C. sativus has
reached an astounding level of USD 40–50 per gram [30]. Many botanists are working
to improve the breeding and cultivation techniques of C. sativus to increase production.
It has been documented that C. sativus shows higher heterozygosity owing to its three
homologous chromosomes, thus rendering efforts to alter its genome by traditional plant
breeding, which follows Mendelian principles, a major challenge [18,36,37]. The breeding
of polyploid plants requires the aggregation of each allele to achieve a state of polyploid
homozygosity, but achieving this ideal with C. sativus would require considerable acreage,
a great deal of manpower, and significant financial investment over a long period [37].
Therefore, vegetative reproduction using bulb propagation is traditionally used, with its
advantages of a loss of juvenility, rapid development, and a higher rate of growth, and it is
conducive to obtaining a large number of propagules with standardized characteristics [38].
However, long-term vegetative reproduction also brings some potential risks, such as
reduced genetic diversity of crops in the region and a susceptibility to large-scale infection
with diseases like potato late blight and banana bunchy top disease, which have caused
huge losses in parts of the agricultural industry [39]. Moreover, the preservation of bulbs is
a significant dilemma. Although its incubation at 25 ◦C is longer than 150 days, the number
and size of flowers formed and the yield of saffron per corm depend on the duration
and conditions of cold storage, between 0.5 to 2 ◦C to achieve longer storage time [32].
Traditional farming practices are struggling to sustain the growing consumer demand for
crocin until new farming and management technology innovations arrive.

Although the world market is far from being depleted of crocins, the continued adop-
tion of traditional C. sativus cultivation is unsustainable [29]. Some unscrupulous merchants
use synthetic compounds for dyeing and use other fibrous materials for counterfeiting and
doping to deceive consumers, resulting in the market being flooded with various inferior
and fake C. sativus products, seriously disrupting the normal market and causing great
damage to the health and property of consumers [15,40,41]. Due to the high price and
chaotic market of C. sativus at present, some researchers have proposed introducing several
key genes of the crocin biosynthesis pathway into Escherichia coli, yeast, or other organ-
isms, alongside optimizing C. sativus cultivation techniques and conducting large-scale
cultivation in other suitable areas.

3. Alternative Sources of Crocins

In China, large-scale cultivation of C. sativus has been carried out in Tibet, the most
famous plantation base of C. sativus in the country, but also in Zhejiang Province and
Shanghai City, which are leaders in C. sativus industry and technology nationally [42,43].
C. sativus contains 150 types of volatile and non-volatile compounds, of which more than
34 are aromatic substances such as volatile terpenes, terpene alcohols, and their esters [3,4].
Crocins, crocetin, picrocrocin, and flavonoids (quercetin and kaempferol) are the main
non-volatile components of C. sativus [4]. G. jasminoides is now commercially exploited
as a source of crocin because it represents an inexpensive alternative plant source [44–46].
The content of crocin derivatives in its ripe fruits can reach 2.4 mg/g (dry matter) [45,47].
However, some merchants sell cheap G. jasminoides material at a high price as if it derived
from C. sativus since the crocin obtained is similar from both plants, and it is difficult
to distinguish the two sources by conventional methods [41,48]. However, this practice
still does not meet existing demand because G. jasminoides produces far less crocin than
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C. sativus, and the ratio of planting input to output is low [49]. Recently, it was reported that
a certain amount of crocin is found in Freesia hybrida Klatt, which belongs to the same family,
Iridaceae, as C. sativus [50]. Of all the plants that are capable of producing crocin, only in
F. hybrida is there a UDP-glucose transferase capable of constructing a neapolitanosyl group
containing three glucose moieties [50]. This study opens the feasibility of freesia yellow
flowers as new edible flowers with beneficial functions for human health.

Although crocins are produced naturally in plants, they are very difficult to extract
in commercial quantities because of their low concentration, the multiple steps required
for isolation and purification, the environmentally unfriendly nature of the process, and
the seasonality of flower growth [51]. A huge range of yields are reported for crocins
from C. sativus in different studies, as shown as Table 1, which may partially depend on
production methods; for example, where methods involve a dehydration step by heating,
this causes the conversion of picrocrocin to safranal [52]. A comparatively high yield of
crocins can be produced by chemical synthesis, but this approach suffers from the formation
of many unwanted side products that make purifying the synthetic crocins complicated.
Contamination with such side products represents a high risk when using such crocins
as medicine or food ingredients [18,21,22]. Different biotechnological approaches, such as
tissue culture and genetic engineering, have been applied as alternative bio-sustainable re-
sources for the production of crocins [53,54]. Callus culture, plant culture, hairy root culture,
cell suspension culture, genetically modified transgenic plants, and recombinant microbes
are well-established methods. For a number of years, many high-value compounds have
been produced successfully in microorganisms [55]. In vivo production of natural products
in microorganisms has been widely used to address resource shortages for products such as
artemisinic acid [56], etoposide aglycone [57], breviscapine [58], and ginsenosides [59,60].
The synthetic biology of crocetin and crocins has attracted a great deal of attention, and
genetic engineering, involving the introduction of heterologous pathways from plants into
a host strain, has resulted in the bioproduction of crocins [61]. Crocetin and crocin V were
successfully produced in engineered E. coli and Saccharomyces cerevisiae, but these strains
showed low productivity [7,61–63]. Crocin has also been successfully synthesized in vitro
using an enzyme cascade [64]. The authors demonstrated an 80.8% conversion rate of
crocetin within 2 h with a yield of 1.48 mg/L/h by optimizing the ratio of enzymes in the
system and reducing the accumulation of intermediate byproducts [64]. Clearly, to address
the high demand for crocins, there is a need for alternative methods.

Table 1. Levels of crocins in C. sativus in different countries.

Countries Dry Weight Ref.

Spain 0.85–32.40 mg/g [65]
China 24.87 mg/g [66]
Greece 26.60 mg/g [66]

Morocco 29.00 mg/g [67]
Iran 32.60 mg/g [68]
Italy 49.80 mg/g [68]

Nepal 89.00 mg/g [69]

4. Biosynthesis of Crocin in C. sativus

The crocin biosynthesis pathway in C. sativus, from zeaxanthin to the crocins them-
selves, lies downstream of the methylerythritol phosphate (MEP) and mevalonate (MVA)
pathways, which supply precursors and metabolites to the midstream carotenoid pathway,
comprising GGPP to zeaxanthin (Figure 2) [14,70–84]. Apart from the astaxanthin synthesis
pathway, which is only present in a few specialized microalgae, most algal species in the
taxon Chlorophyta share the majority of steps in the carotenoid biosynthesis pathway with
higher plants [85]. The production of carotenoids by microorganisms under most conditions
uses the isoprenoid precursor isopentenyl pyrophosphate (IPP; C5) along with the allylic
isomer dimethylallyl pyrophosphate (DMAPP) [86]. These metabolites are primarily rec-
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ognized as derivatives of the MVA or 1-deoxyxylulose-5-phosphate (DXP) pathways [86].
Plants and microalgae principally exploit the MVA pathway, while the MEP pathway is
primarily used by eubacteria, e.g., E. coli, and fungi [77]. The conversion of IPP into DMAPP
through isomerization is governed by the enzyme IPP/DMAPP isomerase. Geranylger-
anyl diphosphate (GGPP) synthase catalases the reaction that produces the precursor of
carotenoid biosynthesis [77]. Altogether, carotenoid biosynthesis mainly consists of three
processes, i.e., (1) cyclization, (2) bond migration and hydrogenation followed by the break-
ing or formation of hydrocarbon chains, and finally (3) methylation or oxygenation; many
secondary metabolites are derived from these processes.

Lycopene is a natural carotenoid pigment and abundantly found in Solanum lycoper-
sicum L. and other vegetables and fruits [87]. It is simultaneously converted into α-carotene
and β-carotene in the carotenoid pathway, with the latter feeding into the crocin biosyn-
thesis pathway. In order to obtain more β-carotene to improve the efficiency of crocin
biosynthesis, strategies for genetic engineering have focused on lycopene β-cyclase (LCYB),
which catalyzes lycopene to β-carotene, and β-carotene hydroxylase (CHYB), which gen-
erates zeaxanthin (Figure 3) [88,89]. For example, Eu-CrtZ, a gene encoding LCYB from
the bacterium Pantoea ananatis (reclassified as Erwinia uredovora, hence Eu-CrtZ), can be
expressed in Yarrowia lipolytica to obtain 21.98 ± 1.80 mg/L zeaxanthin [89].

Zeaxanthin is a direct precursor in the synthesis of crocins [64]. The downstream
pathway mainly consists of three steps. In the first step, the 7, 8 and 7′, 8′ double bonds of
zeaxanthin are cleaved by CsCCD2L, which is located in the distal part of the C. sativus
stigma, to generate crocetin dialdehyde [90]. Zeaxanthin is widespread and abundant in
nature and is a cheap raw material for crocins synthesis.

Carotenoid cleavage oxygenases (CCOs) are a class of enzymes that can specifically
catalyze the oxidative cleavage of various unsaturated bonds in carotenoids to produce
secondary carotenoid metabolites. Depending on the substrate and double-bond specificity,
CCOs can be divided into 9-cis-epoxycarotenoid cleavage dioxygenases (NCEDs), which
generate abscisic acid, and carotenoid cleavage dioxygenases (CCDs), which are involved in
the biosynthesis of crocin and other carotenoids [91,92]. Zeaxanthin cleavage dioxygenase
(ZCD), which is considered to be the main CCD in C. sativus, can cleave zeaxanthin to
generate crocetin dialdehyde in the stigma of C. sativus [93]. The enzyme of Cs-ZCD can cut
the double bonds at the 7, 8 and 7′, 8′ positions of zeaxanthin to form crocetin dialdehyde,
which initiates biosynthesis pathways for various pigment and aromatic molecules, as
well as the crocins [93,94]. However, transcript levels of Cs-ZCD do not correlate with
changes in the apocarotenoid content of C. sativus [95]. Rubio et al. [96] found that Cs-
ZCD is unable to cleave zeaxanthin and apparently lacks domains that are important
for the dioxygenase activity. The same group introduced Cs-ZCD into E. coli and maize
endosperm also to confirm its inactivity [97]. Therefore, the structure of Cs-ZCD is similar
to the N-terminal moiety of Cs-CCD4a and Cs-CCD4b and thus represents only a partial
expression of the CCD4 enzyme rather than a complete CCD; this truncation is the reason
for the lack of zeaxanthin-cleaving activity [96]. The endogenous Cs-CCD2L of C. sativus
can only specifically cleave zeaxanthin to produce crocetin dialdehyde, while Gj-CCD4a
from G. jasminoides has broader substrate specificity and can directly convert β-carotene
and zeaxanthin to crocetin dialdehyde [97,98]. It reduced the pathway consumption of
β-carotene and increased the yield of crocetin dialdehyde.
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pyruvate; GAP, d-glyceraldehyde 3-phosphate; DXP, 1-deoxy-d-xylulose 5-phosphate; DXR, DXP-
reductoisomerase; lspD, 4-diphosphocytidyl-2C-methyl-d-erythritol synthase; lspE, 4-diphosphocytidyl-
2C-methyl-d-erythritol kinase; lspF, 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase; lspG, 1-
hydroxy-2-methyl-2(E)-butenyl-4-diphosphate synthase; lspH, 1-hydroxy-2-methyl-2(E)-butenyl-4-
diphosphate reductase; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl diphosphate; IPPI, IPP
isomerase; GGPPS, GGPP synthase; GGPP, geranylgeranyl diphosphate; PSY, phytoene synthase; PDS,
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phytoene desaturase; Z-ISO, ζ-carotene isomerase; ZDS, ζ-carotene desaturase; CrtlSO, carotenoid
isomerase; LCYB, β-cyclase; LCYE, ε-cyclase; CHYE, ε-carotene hydroxylase; CHYB, β-carotene hy-
droxylase; BKT, β-carotenoid ketolase; ZEP, zeaxanthin epoxidase; VDE, violaxanthin de-epoxidase;
NXS, neoxanthin synthase; ALDH, aldehyde dehydrogenase; AACT, acetoacetyl-coa thiolase; HMGS,
HMG-CoA synthase; HMG-CoA, 3-hydroxy-3-methylglutaryl-CoA; HMGR, HMG-CoA reductase;
MVA, mevalonate; MK, mevalonic acid kinase; PMK, phosphomevalonate kinase; MPDC, mevalonate-5-
diphosphate decarboxylase.
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The second step in the crocin pathway is the conversion of crocetin dialdehyde to
crocetin catalyzed by aldehyde dehydrogenase (ALDH). The enzymes of ALDH are a
protein superfamily of NAD(P)-dependent enzymes that oxidize a variety of aliphatic
and aromatic aldehydes to nontoxic carboxylic acid molecules [99]. According to reports,
among the six highly expressed ALDH enzymes in the stigma of C. sativus, only Cs-
ALDH3I1 is clearly able to convert crocetin dialdehyde into trans- and cis-crocin, while the
remaining five ALDH enzymes have no obvious activity [8]. The third step is catalyzed by
UDP-glucosyl transferases (UGTs), which glycosylate crocetin to produce the five types of
crocin (Figure 1), which have different degrees of glycosylation [64,100]. In higher plants,
glycosylation is a key process for converting insoluble secondary metabolites into soluble
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and stable storage forms [6]. In G. jasminoides, the carboxyl groups at each end of the
crocetin carbon chain are first glycosylated by Gj-UGT75L6; this generates crocin V, which
has a glycosyl group at one end, and crocin III, which has glycosyl groups at both ends [18].
The glycosyltransferase enzymes of Gj-UGT94E5 perform further glycosylation reactions on
the 6-hydroxyl of the glucose moiety to produce the remaining three crocins [18]. However,
in vitro experiments found that Gj-UGT75L6 has only weak glycosylation activity, while Gj-
UGT94E5 has no catalytic activity [7]. The conversion efficiency into crocin of both enzymes
in E. coli is low and results in different degrees of glycosylation. The Gj-UGT94E5 and Gj-
UGT75L6 also lack the ability to produce crocin with a specific level of glycosylation [7,101].
At the same time, the glycosyltransferases of Bc-GTA from Bacillus cereus WQ9-2 and
the glycosyltransferases of Bs-GT, Bs-YdhE, Bs-YjiC, and Bs-Yojk from Bacillus subtilis
168, i.e., a total of six microbially derived glycosyltransferases, can also produce low
levels of crocin [7,101]. Recent examples of key enzymes involved in heterologous crocin
biosynthesis are shown in Table 2.

In December of this year, crocin produced the highest heterologous yield on record.
Chai et al. [62] successfully introduced Ps-CrtZ, Cs-CCD2, and Sca-LD genes into Sac-
charomyces cerevisiae, resulting in a yield of 6.278 mg/L of crocetin via fermentation.
Wang et al. [7] introduced Cs-CCD2L and different UGTs genes into Escherichia coli and syn-
thesized crocetin of 4.42 mg/L. Xie et al. [102] for the first time transformed Gj-ALDH2C3
and glycosyltransferase Gj-UGT74F8 and Gj-UGT94E13 genes into Nicotiana benthamiana, re-
sulting in a yield of 105.8945 mg/g DW of crocins, of which crocin I and crocin II accounted
for 99%. It is the highest recorded heterologous synthesis of crocin.

Table 2. Key enzymes involved in heterologous crocin biosynthesis.

Enzymes Name Source Host Production Yield Year Ref.

CCDs ZCD1 C. sativus L. C. vulgaris Crocetin Detectable 2016 [103]
Cs-CCD2L C. sativus L. E. coli Crocetin 4.42 mg/L 2019 [7]
Fh-CCD7 F. hybrida E. coli Crocetin Detectable 2020 [104]

Cs-CCD2L C. sativus L. S. cerevisiae Crocetin 12.43 ± 0.62 mg/L 2020 [105]
Cs-ZCD C. sativus L. D. salina Crocetin Detectable 2020 [104]

Bd-CCD4.1 B. davidii N. glauca Crocins 2.18 ± 0.23 mg/g DW 2020 [52]
Bo-CCD4.3 B. orellana S. lycopersicum Crocins 0.1 mg/g DW 2021 [106]
Gj-CCD4a G. jasminoides N. glauca Crocins 1.6 mg/g DW 2022 [98]
Cs-CCD2L C. sativus L. S. lycopersicum Crocins 14.48 ± 0.18 mg/g DW 2022 [107]

ALDHs Syn-ALD Synechocystis
sp. PCC6803 S. cerevisiae Crocetin 6.278 mg/L 2017 [62]

pTrc-ALD8 N. crassa E. coli Crocetin 4.42 mg/L 2019 [7]
Gj-ALDH2C3 G. jasminoides N. benthamiana Crocins 105.8945 mg/g DW 2023 [102]

UGTs Cs-UGT2 C. sativus L. E. coli Crocetin 6.278 mg/L 2004 [62]
Cs-UGT74AD1 C. sativus L. E. coli Crocetin 6.278 mg/L 2018 [62]

Gj-UGT75L6 G. jasminoides E. coli Crocetin 4.42 mg/L 2019 [7]
Gj-UGT94E5 G. jasminoides E. coli Crocetin 4.42 mg/L 2019 [7]

Bs-YdhE B. subtilis E. coli Crocetin 4.42 mg/L 2019 [7]
Bs-YjiC B. subtilis E. coli Crocetin 4.42 mg/L 2019 [7]
Bs-Yojk B. subtilis E. coli Crocetin 4.42 mg/L 2019 [7]

Gj-UGT74F8 G. jasminoides E. coli Crocin III,
crocin V 33.05 mg/L (66.1%) 2020 [61]

Gj-UGT94E13 G. jasminoides E. coli Crocins 29.8 mg/L (59.6%) 2020 [61]
Bs-GT B. subtilis 168 E. coli Crocins 476.8 mg/L (81%) 2018 [101]

Cs-UGT74AD1 C. sativus L. S. lycopersicum Crocins 14.48 ± 0.18 mg/g DW 2022 [107]
Cs UGT709G1 C. sativus L. S. lycopersicum Crocins 14.48 ± 0.18 mg/g DW 2022 [107]
Gj-UGT74F8 G. jasminoides N. benthamiana Crocins 105.8945 mg/g DW 2023 [102]

Gj-UGT94E13 G. jasminoides N. benthamiana Crocins 105.8945 mg/g DW 2023 [102]
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5. Heterologous Production of Crocins in Different Species

As a high-value carotenoid, crocins have great potential in pharmacology. Nowadays,
many key enzymes in the crocins synthesis pathway have been widely revealed by tran-
scriptomic and dynamic metabolomics studies, while the traditional cultivation model
cannot solve the crocins production problem in a short time. It may be a new direction to
use genetic engineering technology to transform the key enzymes of the synthetic pathway
of crocetin to produce crocetin in species with a high yield of β-carotene or the poten-
tial to synthesize β-carotene or crocetin (Figure 4). According to available reports, many
microorganisms have been successfully transformed to synthesize crocetin or crocetin,
including E. coli [7], yeast [62], Nicotiana glauca [108], Chlorella vulgaris [109], and Dunaliella
salina [104]. Recently, the transient transformation of N. benthamiana to synthesize crocins
was reported [102]. The above cases provide solid theoretical support and practical basis for
further heterologous production of crocin. Below, these cases are divided into higher plant
hosts and microbial hosts, which are divided into E. coli, yeast, and microalgal (Figure 4).
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5.1. Biosynthesis of Crocins in Higher Plant Hosts

In plants, β-carotene can be converted into other carotenoids to meet particular needs,
especially in plants that utilize carotenoids to reduce photooxidative damage [14,107]. Het-
erologous production of crocins in plants has the advantage of requiring the introduction
of only one or two genes since the other genes from the carotenoid pathway are already
present [98]. Higher plant cells have abundant β-carotene storage capacity, a complete
carotenoid synthesis system, and a complete endomembrane system and thus are ideal
host cells for heterologous production of crocin [107]. In addition to C. sativus, crocin is
also found in a variety of plants outside the Iridaceae, such as the flowers of B. davidii
and the fruit of G. jasminoides [5,12]. However, such sources cannot meet the existing de-
mand [49]. Therefore, researchers are investigating how to produce crocin efficiently in
other higher plants.

In 1986, scientists first expressed human growth hormone in tobacco cells and pro-
posed the concept of using plant cells as a platform for recombinant protein production [88].
After more than 30 years of development, plant hosts have become extremely diversified
and include whole plants, various plant tissues, suspension cells, and other systems; in
addition, there are multiple expression methods within each system [110,111]. Whole-plant
cultivation requires special land and climatic conditions and is not suitable for rapid pro-



Mar. Drugs 2024, 22, 22 10 of 22

duction of specific metabolites [112,113]. However, similarly to E. coli and S. cerevisiae, an
isolated single-celled plant callus can be suspended and dispersed in liquid medium for
rapid propagation and expression of products [114]. Therefore, suspension culture of plant
cells has more prospects than whole-plant cultivation for large-scale industrial applica-
tions [115] and the production of high-value-added natural active products [110,116].

N. benthamiana is a plant that does not contain crocin itself, but when it is engineered
with the appropriate CCD enzyme, it can overexpress upstream or downstream carotenoid-
metabolizing genes, leveraging the crocin synthesis pathway. Zheng et al. [98] used a white
citrus callus as host cells with a co-expression system comprising three genes, i.e., Tp-CrtB,
Os-BCH, and Gj-CCD4a, and successfully constructed a non-green starch-rich tissue/organ
expression platform for effective production of crocin. When the platform was introduced
into the leaves of N. benthamiana, up to 1.6 mg/g dry weight crocin was obtained. It was
found that Gj-CCD4a had higher substrate specificity and catalytic efficiency in the leaves,
demonstrating that a single enzyme, Gj-CCD4a, could drive the synthesis of crocin [98].
Xie et al. [102] combined the strategy of fusion with the 2A polypeptide connection and
successfully constructed a multi-gene vector containing four genes to N. benthamiana, which
transformed GjCCD4a and two downstream glycosyltransferase genes Gj-UGT74F8 and
Gj-UGT94E13, to achieve higher substrate conversion efficiency that solved the problem of
the low proportion of the main active components crocin I and crocin II, especially crocin
I, as evidenced in previous research for synthesizing crocin in transgenic tobacco, and
transformed ALDH introduced into tobacco for the first time.

A related species, N. glauca, contains carotenoid pigments in its petals. Huang et al. [108]
expressed the Bd-CCD4.1 enzyme from B. davidii constitutively in its petals and leaves and
obtained 321.6 ± 21.3 µg/g and 302.7 ± 25.6 µg/g DCW crocin, respectively. Interestingly,
in their transgenic lines expressing CsCCD2L, the difference in the accumulation of crocin
between leaves and petals may have been due to the relatively higher accumulation of
zeaxanthin or the tissue specificity of CCD in leaves [108]. Martí et al. used tobacco etch
virus to drive the expression of Cs-CCD2L and Bd-CCD4.1 in N. benthamiana and found that
only Cs-CCD2L could produce 2.18 ± 0.23 mg of crocins and 8.24 ± 2.93 mg of picrocrocin
per gram (DCW) over 13 days. The study also found that CCD can intercept the metabolic
flux in leaves and reduce the synthesis of lutein, which sharply increases the expression
levels of phytoene and drives the carotenoid metabolic pathway in the direction of crocin
synthesis [52].

Frusciante et al. introduced CCD2 into zeaxanthin-rich maize endosperm by Agrobac-
terium-mediated transient expression and found that, unlike in E. coli, where only crocetin
dialdehyde could be detected, zeaxanthin was not only converted to crocin dialdehyde
but also further oxidized to crocetin. This is likely because maize endosperm possesses an
endogenous aldehyde dehydrogenase to facilitate the oxidation step.

Due to the presence of vacuoles, plant cells are large compared with those of E. coli
and S. cerevisiae. Accordingly, when using comparable culture volumes, it is difficult to
improve production with plant cell cultures by increasing the number of cells. As a result,
relatively low yields of recombinant protein product (0.01 to 10 mg/L) are achieved in
plant cell systems [110,111]. In addition, not all plant species can be adapted to suspension
cell culture in a fermenter due to the presence of exogenous plant enzymes [117].

5.2. Microbial Biosynthesis of Crocins

Another approach to the production of crocins is combinatorial biosynthesis, which
consists of combining enzyme-encoding genes from different species and designing a
new set of gene clusters to produce bioactive compounds in a heterologous host. The
commonly used microbial hosts for crocin production are E. coli among the prokaryotes
and the yeast S. cerevisiae among the eukaryotes [7,62]. It is very important to select a
suitable host organism for the optimization of product yield and quality, and there are
pros and cons for both bacteria and yeast in this context. Bacterial hosts have a short
life cycle, offer easy genetic manipulation and handling, and have a higher growth rate
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and excellent potential for protein and enzyme overexpression; however, they are not as
beneficial for large proteins and proteins requiring post-translational modifications, which
may be essential for correct folding and functional activity [115]. The S. cerevisiae is also
well characterized and easy to grow and manipulate like E. coli but in addition can express
proteins with appropriate post-translational modifications and offers better expression
of membrane proteins; moreover, it has food-grade status (generally recognized as safe;
GRAS) [118]. However, it results in lower yields than bacteria and can add a large number
of mannose residues to recombinant proteins, resulting in protein misfolding and problems
with activity [117].

All in all, heterologous production of crocins in microorganisms is highly advanta-
geous since they can grow on inexpensive substrates and, compared to plants, are easier to
manipulate and have very rapid production cycles, allowing crocins to be produced faster
and possibly in larger amounts [119]. Thus, taking into consideration all the pros and cons,
the commercial application of heterologous production of crocins by microorganisms is the
more attractive route.

5.2.1. Biosynthesis of Crocins in E. coli

Wild-type E. coli does not have the ability to synthesize carotenoids itself, but af-
ter metabolic engineering, it can successfully synthesize β-carotene and various other
carotenoids [120–122]. Therefore, E. coli has the potential to synthesize crocin after appro-
priate pathway modification.

These were the first reports to demonstrate functional expression of a carotene gene
cluster in E. coli: Perry et al. [123] and Tuveson et al. [124] introduced a 12.4 kb carotene
gene cluster from Erwinia herbicola (reclassified as Pantoea agglomerans) into E. coli and
successfully produced yellow pigmentation. Misawa et al. [125] isolated a 6.9 kb yellow-
pigment-producing gene cluster fragment from the above genome segment and found six
open reading frames: CrtE, CrtI, CrtB, CrtX, CrtY, and CrtZ. It was confirmed that the yellow
substance produced using this gene cluster was zeaxanthin and that the recombinant E. coli
could also synthesize phytoene, lycopene, β-carotene, zeaxanthin, and basic carotenoids
with GGPP as a substrate. In recent years, E. coli has often been used as a host strain
for the production of various carotenoids, which thus provides a theoretical basis for the
heterologous synthesis of crocin in prokaryotes.

In terms of crocins synthesis, Wang et al. [7] introduced the Cs-CCD2L gene of C.
sativus and the glycosyltransferases Gj-UGT94E5 and Gj-UGT75L6 of G. jasminoides into
E. coli, which was then capable of producing zeaxanthin and crocetin dialdehyde. This
strain was able to produce crocetin after further engineering with the pTrc-ALD8 gene
from Neurospora crassa. Finally, the glycosyltransferases of Bs-YjiC, Bs-YdhE, and Bs-YojK
were introduced into the expression system to obtain crocin V with a yield of 4.42 mg/L.
This was the first time that a heterologous crocetin and crocin synthesis pathway was
successfully constructed in E. coli [7]. Ding et al. [101] successfully mined two microbially
derived glycosyltransferases with higher heterologous production and catalytic efficiency
to improve crocin production. It was found that Bs-GT glycosyltransferase from Bacillus
subtilis 168 could achieve a maximum crocetin glycosylation conversion efficiency of 81.9%
and a yield of 476.8 mg/L crocin V and crocin III. Bc-GTA showed a much lower conversion
efficiency and specificity than Bs-GT [101]. Pu et al. [61] found that G.-jasminoides-derived
Gj-UGT74F8 and Gj-UGT94E13 gave whole-cell biotransformation rates as high as 66.1%
and 59.6% for 50 mg/L crocin, respectively, which was higher than was achieved using
UGTs from microorganisms. By precisely controlling the glycosylation time course, a high
concentration of crocin with a specific degree of glycosylation can be obtained. Further
optimization of gardenia UGTs may provide a valuable tool for the industrial production
of crocin [126]. At the same time, Pu et al. also found that the glucose content in the culture
environment is one of the key factors for obtaining crocin. When the endogenous UDPG
supply in engineered strains is insufficient for the efficient production of crocin, appropriate
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supplementation with a certain concentration of glucose can improve the catalytic activity
of heterologously expressed UGTs to maintain efficient and sustainable production [61].

The synthesis of crocin in E. coli has been well studied. However, like other prokaryotes,
the E. coli does not have a complex internal membrane system, as do eukaryotes. Thus,
heterologous production of various eukaryotic enzymes in E. coli may result in differences
in folding and functional group modification, which may in turn lead to reduced catalytic
efficiency or no enzyme activity. Since C. sativus is a eukaryote, the synthesis of crocin
involves the transfer of metabolites between multiple subcellular compartments, e.g., from
plastids to vacuoles, and the cooperation of various related enzymes [8]. Lack of these
enzymes or use of structurally defective enzymes may affect crocin production or produce
toxic byproducts. Zheng et al. [98] obtained crocetin dialdehyde in vitro by incubating
β-apo-8′-carotene as a substrate with crude lysates of E. coli cells that expressed Gj-CCD4a,
showing that Gj-CCD4a expressed in E. coli has enzyme activity. However, although E.
coli itself has no endogenous ALDs, it has been reported that the properties of ALDs from
microbial sources expressed in E. coli are better than those of endogenous C. sativus ALDs,
while other plant-derived ALDs are expressed at very low levels in E. coli [7]. Further
investigation and optimization of candidate ALDs is required.

5.2.2. Biosynthesis of Crocins in S. cerevisiae

On account of its GRAS status, S. cerevisiae is often used in the field of food processing.
Unlike the bacterial model of E. coli, S. cerevisiae is a eukaryotic microorganism and thus
has a complete set of intracellular membranes, including nuclear membranes and various
organelle membranes, which are similar to those in plant and mammalian cells and provide
a complete transcription, translation, and modification environment for foreign genes [127].
The various compartments in the cell interior can also provide transport and storage
space for gene expression products and metabolites. Since S. cerevisiae does not have
an endogenous biochemical pathway for the synthesis of carotenoids, it is necessary to
redesign the enzymes of crocin synthesis that initiate the MVA pathway to increase the
levels of substrates to those required by the downstream pathway [105,128]. Shimada et al.
redirected the ergosterol biosynthetic pathway in S. cerevisiae by introducing three genes
required for lycopene synthesis, namely CrtE, CrtB, and CrtI, and they were thus able to
synthesize lycopene with a yield of 1.1 mg/g dry cell weight (DCW). Ergosterol is a type
of isoprene that shares a precursor with β-carotene and can provide abundant substrate
for the production of crocin [129]. Lv et al. [130] designed a dual-metabolic pathway in S.
cerevisiae that simultaneously uses acetyl-CoA in the cytoplasm and mitochondria. In terms
of improving the utilization rate of precursors and expanding the production of isoprene, it
was shown that this dual-metabolic pathway has advantages over those that only use the
mitochondrial pathway or the cytoplasmic pathway in recombinant strains.

When Eu-CrtZ was introduced into S. cerevisiae, along with knock-out of the genes Lpp1
and Dpp1, which are responsible for directing farnesyl pyrophosphate towards ergosterol
synthesis, Mei et al. [131] initially found that zeaxanthin production was only increased
by a small amount, but a high yield of 96.2 mg/L of zeaxanthin was achieved when
three copies of the GAL1 high-strength promoter were used. Improvement of Zeaxanthin
Production by Multiple-Copy Integration of Eu-crtZ [89]. Enhancing zeaxanthin production
in Y. lipolytica was achieved by integrating the Eu-crtZ gene, in which the gene led to the
highest titer and content for producing the target molecule, the expression cassette, into
the 26S rDNA region. Xie et al. [89] achieved a 4.02-fold increase in the titer of zeaxanthin
and a 721% increase in the content of zeaxanthin than the single copy and achieved a
21.98 ± 1.80 mg/L zeaxanthin titer. This high-yield engineered strain was named SyBE-
Sc0123Z020. Chai et al. [62] selected three key enzymes, namely CrtZ, CCD, and ALD, from
different species for expression in the S. cerevisiae strain SyBE-SC0014CY06, which was
capable of producing β-carotene. The best combination of the three genes was Ps-CrtZ from
Pantoea stewartii, Cs-CCD2L from C. sativus, and Syn-ALD from Synechocystis sp. PCC6803,
which together produced 0.633 mg/L crocin. Tan et al. [66] designed, optimized, and
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synthesized a new Cs-ALD enzyme and introduced it into S. cerevisiae SyBE-Sc02070187-
189, which was then capable of producing zeaxanthin, obtaining a yield of 62.79 µg/g DCW
crocetin dialdehyde. Song et al. [105] knocked out CIT2 and MLS1, two genes that consume
acetyl-CoA in the cytoplasm, and increased the production of lycopene by 50%. They
then constructed a fusion enzyme composed of Ps-CrtZ and CsCCD2, which increased the
concentration of crocin by 44%, yielding 12.43 ± 0.62 mg/L crocin, which was twice as high
as that produced by the initial strain SyBE-Sc0123C050 [62]. The above examples suggest
that crocin production in S. cerevisiae is feasible, and this could provide a safe and efficient
route of crocin production in eukaryotes.

However, S. cerevisiae contains five characterized endogenous ALDH genes and a
large number of other endogenous ALDH genes that have not been fully characterized
and are difficult to remove. These endogenous ALDH genes will seriously interfere with
the expression and function of exogenous ALDH genes, significantly reducing crocin
productivity [63]. Amplifying the copy number of exogenous ALDH genes in S. cerevisiae
can competitively inhibit the expression and function of the endogenous ALDH genes,
improving the expression and specificity of the exogenous ALDH genes, thereby increasing
the production of crocetin [63]. When Chai et al. [63] used the multicopy plasmid pRS426 to
increase the copy number of Cs-CCD2L and Syn-ALD, the production of crocin was further
increased to 1.219 mg/L, which was twice the yield obtained with a single-copy plasmid.

5.2.3. Biosynthesis of Crocins in Microalgal Hosts

Microalgae are microscopic photosynthetic eukaryotes that live in aquatic environ-
ments [132]. As single-celled organisms and the ancestors of land plants originating about
100 million years ago, microalgae nevertheless have a carotenoid synthesis pathway simi-
lar to that of higher plants [85,133]. Thus, homologs of CCD1, CCD7, CCD8, and NCED
are present in microalgae such that heterologous synthesis of crocin from β-carotene is
possible [85,134]. Indeed, the complex carotenoid metabolism system in microalgae can
synthesize a variety of carotenoids that are found in land plants, such as lutein, astaxanthin,
fucoxanthin, and β-carotene [135]. Based on the background of Chlamydomonas β-carotene
synthesis pathway, it can greatly reduce the building line of the crocin synthesis pathway
module and workload.

Microalgae are characterized by a fast growth rate, relatively easy modification of
endogenous metabolic pathways, and a complement of silent genes or genes expressed at
low levels; this simplifies their metabolic engineering for use as a crocin bioreactor [136].
Carotenoids from microalgae have already been used for commercial purposes. For exam-
ple, C. vulgaris can use lycopene as a precursor for the synthesis of β-carotene, zeaxanthin,
astaxanthin, and other substances under different culture conditions [136]. D. salina, which
can survive in extremely high-salt environments, produces β-carotene naturally. One bene-
fit of the high-salinity culture environment is that it can effectively inhibit contamination
by other microorganisms, thereby reducing culture costs [137].

In the 1960s, C. vulgaris became the first single-celled green alga to be exploited on a
large scale because of its simple structure, fast growth, and low maintenance costs [138].
C. vulgaris has been used as a cell factory and can synthesize various nutrients through
photosynthesis; it is also capable of synthesizing proteins, carbohydrates, carotenoids, and
lipids. Its protein content can be as high as 68%, and it is widely used in human health foods
and additives as well as for animal feed in aquaculture [139–142]. However, unbalanced
cellular metabolic fluxes and competition between intermediate and precursor metabolites
are challenges for the heterologous expression of crocin in microalgae. Lycopene ε-cyclase
(LCYE) is a crucial enzyme that cyclizes lycopene to α-carotene and provides a large
pool of substrate for the synthesis of lutein [143]. The enzyme of LCYE is encoded by
the CvLCYE gene, whose nucleotide sequence is highly conserved in a variety of green
algae [109]. Overexpression of the CvLCYE gene can greatly improve lutein production in C.
vulgaris [109]. By blocking or silencing the expression of CvLCYE gene, more lycopene can
flow to β-carotene synthesis, thereby providing more substrate for the synthesis of crocin.
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Based on this characteristic of C. vulgaris, Lou et al. [103] used Agrobacterium-mediated
transient expression of the CrtRB gene from Haematococcus pluvialis and the ZCD1 gene from
the stigma of C. sativus in C. vulgaris and successfully detected the accumulation of crocin.
This was the first report to demonstrate crocin production in microalgae. ZCD1 is a 13-
amino-acid mutant of Cs-ZCD, which originally lacked the residues and domains necessary
for zeaxanthin dioxygenase activity; this modification restores the activity [96,103], which is
important for modifying the weak activity of CCD and increasing the production of crocin.

D. salina is a free-moving, single-celled green microalga with flagella but without
a rigid cell wall [144]. The intracellular glycerol content of D. salina is more than 50%
its weight, which allows it to regulate the osmotic pressure by changing the intracellular
glycerol concentration [145]. Therefore, it can survive in salt solutions of 0.5% to 35%, i.e., up
to nearly saturated solutions [145]. It is one of the most salt-tolerant eukaryotes known [146].
The optimal-growth salt concentration range for D. salina is 1.0–2.0 M NaCl [147]. Under
high salt-stress conditions, i.e., 3.0–4.0 M NaCl, the synthesis of chlorophyll and cell growth
are inhibited [148]. However, when operating at optimal salt concentrations, contamination
by most non-halotolerant bacteria or protists is minimal, thus reducing production costs
and helping to maintain an axenic environment [149]. Compared with higher plants,
microalgae grow fast. Most higher plants depend on photosynthesis for their growth and
reproduction [145,150]. On the other hand, D. salina has the highest known content of
β-carotene in the plant kingdom [151,152]. It is rich in lutein, zeaxanthin, and β-carotene,
the latter of which accounts for 14% of DCW [153]. D. salina is one of the most widely
used algal species for the commercial production of β-carotene, and it also has strong
potential for crocin synthesis [144,154–156]. Due to their versatility in adapting to a variety
of growing conditions and climates (e.g., glacial to tropical and freshwater to highly saline)
and different pH values, microalgae show distinct advantages over higher plants, reducing
the need for sophisticated culture equipment and thereby reducing costs. Microalgae
generally have higher carotenoid contents than higher plants. The major carotenoids in
D. salina include 9- or 9′-cis-β-carotene and all-trans-β-carotene, which is preferentially
absorbed compared to the 9-cis-β-isomer [151]. Nevertheless, the 9-cis-β-isomer has a
higher antioxidant activity due to the higher reactivity of the cis bond compared to the
trans bond [151]. Among all natural sources studied to date, D. salina possesses the highest
content of 9-cis-β-carotene, reaching levels of up to 100 g/kg of DCW [151,152]. This would
provide a large substrate pool for the production of crocin by D. salina [157]. The relative
carotenoid content (% of total carotenoids) of octahydro-lycopene increased more than 48-
fold in D. salina after treatment with mitogenic inhibitors (propyzamide and chlorpropham)
for 10 h [157]. The production of lycopene and β-carotene was also significantly increased
after exposure to red light. This is due to the accumulation of the more readily degraded 9-
cis β-carotene under high-intensity red-light conditions; such conditions are associated with
high rates of photooxidation, which in turn increases the activity of β-carotene isomerases,
the gene transcripts of which are induced by light stress [158]. These characteristics of D.
salina provide some conditions for the synthesis of crocin by transgenic technology.

By mining the transcriptome and genome of D. salina using deep sequencing,
Lou et al. [159] found that, under high-light and high-salinity stress, D. salina activates
an endogenous miRNA, m0533-3p, which in response to the stress signals inhibits malate
dehydrogenase. This is likely to lead to a reduced flow of acetyl-CoA into the tricarboxylic
acid cycle and instead greater participation of acetyl-CoA in the synthesis of GGPP, with
a concomitant increase in β-carotene levels. However, as salt concentration increases, D.
salina is more inclined to divert β-carotene to α-ionone and β-ionone synthesis to improve
stress resistance, resulting in a decrease in β-carotene reserves, thus affecting the conversion
efficiency of crocin [160–162]. Therefore, to balance these two opposing fluxes, the optimal
salt concentration for D. salina should be 1.5 M NaCl [160,161]. Hou [104] introduced CrtRB,
Cs-ZCD, and CCD2 as target genes into D. salina by the glass-bead method and successfully
detected trace amounts of crocetin dialdehyde.
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D. salina has many applications in the pharmaceutical, nutraceutical, and cosmeceutical
industries. However, although there are thorough and comprehensive research methods for
using microalgae to produce other carotenoid products, they are still in the initial stages as
hosts for the production of crocin; still, they have great potential for this application [42,163].
Nevertheless, it will not be enough to identify and modify the key enzymes in engineered
pathways; there will also be a requirement for increased investment in the optimization of
algal strains and for further investigation and optimization of culture conditions, methods
of exogenous gene transformation, and the selection of transcription and translation-related
factors [164].

6. Future Perspectives

Because of their potent biological activities with applications in the medical, food, and
nutraceutical sectors, crocins are in great demand. Recently developed biological tools and
techniques are helping to produce this bioactive plant product in microbial hosts at low cost
and with short production times. Despite the lack of crocin biosynthetic genes in microbial
hosts, they are an excellent alternative source for the large-scale production of crocins
because of the availability of metabolic engineering and synthetic biology approaches. In
the last decade, there have been remarkable advances in understanding the biosynthetic
pathway of crocin production in C. sativus and its heterologous production in E. coli. How-
ever, the overall crocin production level is still not adequate to meet demand despite all the
recent innovations. Therefore, further efforts aimed at exploiting new heterologous hosts
and finding the best synthetic enzymes and plasmids are needed. Each gene involved in
the biosynthetic pathway should be optimized to improve enzyme activity in the respective
hosts to supply sufficient precursors and regulate the concentration of crocins inside the cell,
all of which should help to increase production. In December of this year, crocin produced
the highest heterologous yield on record, which included the highest yield of 4.42 mg/L of
crocetin in E. coli, the highest yield of 6.278 mg/L of crocetin in S. cerevisiae, and the highest
yield of 105.8945 mg/g DW of crocetin in N. benthamiana. Microbial production of crocins
is still at an early stage and is limited by the identification of some crocin synthases. More
intense investigations should allow the identification of novel enzymes that produce high
yields of crocins that are found or not in nature and that may have significant commercial
value. The huge accumulation of genome information from a wide variety of organisms
and bioinformatic prediction of catalytic properties of gene products will allow the combi-
nation of the best enzymes to generate novel biosynthetic pathways for crocin production
in various host organisms. Therefore, there should be a focus on a combinatorial approach
where metabolites and precursors are directed towards crocin production. Moreover, a
comprehensive understanding of the synthetic and molecular biology of each component
involved in the biosynthesis of crocins—at the whole-genome, transcriptome, proteome,
and metabolome levels—will help to increase yields.

The crocin titers and yields obtained so far using microorganism are very promising,
and we believe that, using synthetic biology approaches and metabolic engineering tools in
D. salina, these can be further improved to make heterologous production competitive with
the current process of extraction from plants. As mentioned above, heterologous production
of crocins is preferable to extraction from plants, as the former can be easily controlled in a
bioreactor and is not subject to unpredictable factors such as adverse weather, which can
affect plant cultivation. Furthermore, in contrast to extraction from plants, heterologous
production in microorganisms is not seasonal. In summary, we believe that after adequate
optimization efforts, crocins can be produced by microorganisms in bioreactors, providing
the same or larger yields as plant extraction in a shorter period of time and with a smaller
footprint while using a process that is less expensive and more environmentally sustainable.

In conclusion, further research on crocin biosynthesis and metabolic engineering will
contribute to the industrial production of crocins, which will not only bring huge economic
benefits but also have beneficial effects on human health.
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