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Abstract: Chitosan (CH) shows great potential as an immunostimulatory feed additive in aquaculture.
This study evaluates the effects of varying dietary CH levels on the growth, immunity, intestinal
morphology, and antioxidant status of Nile tilapia (Oreochromis niloticus) reared in a biofloc sys-
tem. Tilapia fingerlings (mean weight 13.54 ± 0.05 g) were fed diets supplemented with 0 (CH0),
5 (CH5), 10 (CH10), 20 (CH20), and 40 (CH40) mL·kg−1 of CH for 8 weeks. Parameters were as-
sessed after 4 and 8 weeks. Their final weight was not affected by CH supplementation, but CH at
10 mL·kg−1 significantly improved weight gain (WG) and specific growth rate (SGR) compared
to the control (p < 0.05) at 8 weeks. Skin mucus lysozyme and peroxidase activities were lower in
the chitosan-treated groups at weeks 4 and 8. Intestinal villi length and width were enhanced by
10 and 20 mL·kg−1 CH compared to the control. However, 40 mL·kg−1 CH caused detrimental
impacts on the villi and muscular layer. CH supplementation, especially 5–10 mL·kg−1, increased
liver and intestinal expressions of interleukin 1 (IL-1), interleukin 8 (IL-8), LPS-binding protein (LBP),
glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione S-transferase (GST-α)
compared to the control group. Overall, dietary CH at 10 mL·kg−1 can effectively promote growth,
intestinal morphology, innate immunity, and antioxidant capacity in Nile tilapia fingerlings reared in
biofloc systems.

Keywords: by-product; feed additive; growth performance; immune response; mRNA expression

1. Introduction

The rapid growth of aquaculture has led to an increased demand for improved diets
and feed supplements for farmed fish [1]. Feed represents one of the largest costs for
aquaculture producers. Determining the specific nutritional requirements, optimal feeding
strategies, and nutrient utilization of each fish species is, therefore, critical to enable sus-
tainable and scalable production [2]. Nile tilapia (Oreochromis niloticus) has become one of
the most widely farmed aquaculture species because of its rapid growth, ability to adapt
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to different environments, disease resistance, and high protein content in the flesh [3,4].
Recently, tilapia farming practices have shifted from extensive to intensive commercial
production systems [5,6]. However, disease outbreaks have emerged as the main obstacle
to sustainable intensive tilapia farming globally. Finding ways to prevent diseases will be
crucial to address this challenge as tilapia production continues to intensify [6]. Antibiotics
have traditionally been used in commercial fish farms to prevent disease transmission.
However, concerns over antibiotic usage in aquaculture have led to investigating replace-
ments to reduce reliance on these treatments [7,8]. This has sparked great interest in finding
new, innovative feed additives for tilapia, such as probiotics [9,10], prebiotics [11–13], and
synbiotics [14,15]. These additives have been reported to enhance growth performance,
health status, immune function, antioxidant defenses, and immune-related gene expression
in tilapia. Such improvements could positively impact overall production. Replacing
antibiotics with alternative feed supplements, particularly bioactive compounds derived
from seafood products, may provide health benefits for tilapia while addressing issues
surrounding antibiotic use in aquaculture.

Shrimp, one of the many varieties of seafood, is a popular and healthful dietary choice
globally. Its output reached 8.25 million metric tons in 2015 and reached 9.66 million metric
tons in 2019, with an annual growth rate of 2–3% [16], resulting in 6–8 million tons of
waste [17,18]. The majority of shrimp waste is discarded publicly in landfills [19], burned,
or dumped into the oceans [20,21]. Only a small portion is utilized as food and feed for
animals and aquaculture [22,23]. The shrimp disposal sites could be major sources of
offensive odors, as well as dust, gases, and fumes [18,24]. The rapid breakdown of shrimp
waste can result in the appearance and spread of infections by flies, mosquitoes, and rats,
endangering human health [25,26]. Nonetheless, this waste stream also includes beneficial
natural substances, chief among them being chitin, which is an essential component in the
production of chitosan [27–29]. Chitosan (CH) has been shown to have anti-cancer [30,31],
anti-inflammatory [32,33], and neuroprotective [34] activities, in addition to having antioxi-
dant, anti-diabetic, anti-hypertensive, and wound-healing [35] properties. Additionally,
chitosan has antibacterial properties against the majority of bacteria, molds, and yeasts [36].
Furthermore, chitosan is a nontoxic, biodegradable, and biocompatible biopolymer. These
characteristics make chitosan and its derivatives suitable for usage in a wide range of
sectors, including the food, pharmaceutical, and agricultural industries [37–39].

Biofloc technology (BFT) has emerged as a sustainable aquaculture practice that
enables fishponds to self-nitrify without water exchange [40,41]. In BFT systems, flocs
formed from organic particulate matter and diverse microorganisms serve as an in situ
food source. Fish can directly consume these protein-rich flocculants, reducing the need
for fishmeal and soybean meal in feeds [42–45]. By substituting commercial diets with
biofloc, the risks of mycotoxin and antinutrient exposure are also decreased, lowering
feed costs [46,47]. Tilapia is especially well-suited for biofloc farming, as the species
can effectively utilize biofloc for nutrition [48,49]. Given the benefits of BFT for tilapia
production, this study aimed to evaluate how chitosan feed supplementation influences the
growth, immune function, intestinal histology, and expression of key immune-antioxidant
genes in Nile tilapia reared in a biofloc system. The overarching goal was to assess the
potential of CH as a feed additive for enhancing tilapia health and productivity under
sustainable BFT conditions.

2. Results
2.1. Growth Performance

The growth performance of Nile tilapia fingerlings fed the chitosan supplemented
diets is shown in Table 1. After 4 weeks, FW was significantly higher (p < 0.05) in the CH10
group compared to the control group, while no significant differences were detected among
groups at 8 weeks (p > 0.05). Weight gain did not differ significantly between the control
and treatments at 4 weeks (p > 0.05). However, at 8 weeks, fish fed the CH10 diet showed
significantly increased weight gain compared to the control group (p < 0.05) (Table 1). The
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CH10 group also exhibited the highest SGR at both 4 weeks (2.83 ± 0.07) and 8 weeks
(2.29 ± 0.03) (Table 1). No significant differences in FCR were observed between groups
at any time (Table 1). The survival rate exceeded 95% in all treatments after the 8-week
feeding trial.

Table 1. Growth performances and feed efficiency in Nile tilapia (Oreochromis niloticus) fingerlings fed
diets with increasing chitosan (CH) levels for 4 and 8 weeks. Data is shown as mean ± SEM. Different
letters (a–b) indicate significant differences between dietary groups. Diets: CH0, 0 mL·kg−1 COS
(control); CH5, 5 mL·kg−1; CH10, 10 mL·kg−1; CH20, 20 mL·kg−1; CH40, 40 mL·kg−1 of chitosan.

CH0 CH5 CH10 CH20 CH40 p-Value

IW (g) 13.48 ± 0.03 13.66 ± 0.05 13.55 ± 0.03 13.56 ± 0.08 13.47 ± 0.05 0.499

FW (g)

4 weeks 29.45 ± 1.33 28.97 ± 0.98 31.72 ± 0.28 29.06 ± 0.38 28.87 ± 1.27 0.470

8 weeks 50.44 ± 0.67 b 50.23 ± 0.62 b 50.69 ± 0.54 a 50.60 ± 1.20 b 50.29 ± 1.95 b 0.049

WG (g)

4 weeks 15.97 ± 1.26 15.30 ± 0.93 18.17 ± 0.44 15.49 ± 0.45 15.40 ± 1.20 0.228

8 weeks 36.96 ± 1.30 b 36.56 ± 0.04 b 40.14 ± 0.83 a 37.03 ± 0.85 b 36.81 ± 0.47 b 0.050

SGR (%/day)

4 weeks 2.60 ± 0.13 ab 2.50 ± 0.10 b 2.83 ± 0.07 a 2.54 ± 0.06 ab 2.54 ± 0.13 ab 0.032

8 weeks 2.20 ± 0.04 b 2.17 ± 0.00 b 2.29 ± 0.03 a 2.19 ± 0.04 b 2.19 ± 0.01 b 0.047

FCR

4 weeks 0.76 ± 0.03 a 0.76 ± 0.01 a 0.75 ± 0.03 a 0.75 ± 0.02 a 0.75 ± 0.02 a 0.479

8 weeks 1.02 ± 0.01 a 1.07 ± 0.04 a 1.08 ± 0.04 a 1.02 ± 0.03 a 1.07 ± 0.08 a 0.855

SR (%)

4 weeks 96.67 ± 1.67 a 95.00 ± 2.89 a 98.33 ± 3.33 a 98.33 ± 1.67 a 98.33 ± 1.67 a 0.046

8 weeks 96.67 ± 1.67 a 95.00 ± 2.89 a 98.33 ± 3.33 a 98.33 ± 1.67 a 98.33 ± 1.67 a 0.046

IW (g) = initial weight; FW (g) = final weight; WG (g) = weight gain; SGR (%) = specific growth rate; FCR = feed
conversion ratio; SR (%) = survival rate.

2.2. Immunological Response

Lysozyme and peroxidase activities of skin mucus in Nile tilapia after 4 and 8 weeks
of feeding are shown in Table 2. At both time points, skin mucus lysozyme activity (SMLA)
and skin mucus peroxidase activity (SMPA) were significantly higher in the control group
compared to all dietary CH treatments (p < 0.05). No significant differences were detected
between the various CH-supplemented diets for either enzyme activity (p > 0.05).

Table 2. Skin mucus lysozyme and peroxidase activities in Nile tilapia (Oreochromis niloticus) finger-
lings fed diets with increasing chitosan (CH) levels for 4 and 8 weeks. Data is shown as mean ± SEM.
Different letters (a–b) indicate significant differences between dietary groups. Diets: CH0, 0 mL·kg−1

(control); CH5, 5 mL·kg−1; CH10, 10 mL·kg−1; CH20, 20 mL·kg−1; CH40, 40 mL·kg−1 of chitosan.

CH0 CH5 CH10 CH20 CH40 p-Value

4 weeks
SMLA 0.217 a ± 0.01 0.205 b ± 0.01 0.211 ab ± 0.01 0.195 b ± 0.01 0.201 b ± 0.01 0.048
SMPA 0.313 a ± 0.02 0.287 b ± 0.01 0.304 ab ± 0.01 0.261 b ± 0.02 247 b ± 0.03 0.050

8 weeks
SMLA 0.249 a ± 0.01 0.215 b ± 0.01 0.220 ab ± 0.01 0.201 b ± 0.01 0.215 b ± 0.01 0.001
SMPA 0.213 a ± 0.04 0.193 b ± 0.06 0.204 ab ± 0.06 0.181 b ± 0.02 147 b ± 0.02 0.036

SMLA (µg mL−1) = skin mucus lysozyme activity; SMPA (µg mL−1) = skin mucus peroxidase activity.
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Serum lysozyme and peroxidase activities are illustrated in Table 3. Serum lysozyme
activity (SL) was higher in the control group at 4 weeks. Serum peroxidase activity (SP)
was significantly higher in CH 10 at week 4 (p < 0.05). However, this difference was not
significant at 8 weeks. In contrast, the CH20 and CH40 groups exhibited notably reduced
SP at both sampling times.

Table 3. Serum lysozyme and peroxidase activities in Nile tilapia (Oreochromis niloticus) fingerlings
fed diets with increasing chitosan (CH) levels for 4 and 8 weeks. Data is shown as mean ± SEM.
Different letters (a–c) indicate significant differences between dietary groups by one-way ANOVA and
Duncan’s test (p < 0.05). Diets: CH0, 0 mL·kg−1 COS (control); CH5, 5 mL·kg−1; CH10, 10 mL·kg−1;
CH20, 20 mL·kg−1; CH40, 40 mL·kg−1 of chitosan.

CH0 CH5 CH10 CH20 CH40 p-Value

4 weeks
SL 0.297 a ± 0.01 0.275 bc ± 0.01 0.289 ab ± 0.01 0.258 c ± 0.01 0.286 b ± 0.01 0.038
SP 0.443 b ± 0.02 0.449 b ± 0.02 0.501 a ± 0.01 0.388 c ± 0.01 0.392 c ± 0.01 0.015

8 weeks
SL 0.248 a ± 0.01 0.225 bc ± 0.01 0.240 ab ± 0.01 0.212 c ± 0.01 0.231 b ± 0.01 0.049
SP 0.477 b ± 0.05 0.438 abc ± 0.04 0.522 a ± 0.03 0.377 c ± 0.02 0.392 bc ± 0.03 0.041

SL: serum lysozyme activity (µg mL−1); SP: serum peroxidase activity (µg mL−1).

2.3. Histological Analysis

Intestinal morphology and related parameters of Nile tilapia fingerlings are presented
in Figures 1 and 2. Villus length and width were significantly increased in the CH10 treat-
ment group compared to the control group and the other treatment groups (p < 0.05). Fish
fed the CH20 diet also exhibited greater villus length and width compared to the control.
Additionally, the muscularis layer was the thickest in the CH10 group among all diets
(p < 0.05). In contrast, the CH40 diet resulted in noticeable morphological alterations, in-
cluding decreased villus length, villus width, and reduced muscularis thickness (p < 0.05).
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Figure 1. Intestinal morphology in Nile tilapia (Oreochromis niloticus) fingerlings fed diets with
increasing chitosan (CH) levels after 8 weeks compared to the non-supplemented control diet. (A) A
comparison of the length and width of the villus and thickness of the muscularis layer. (B) The cross-
section through the microanatomy of the anterior intestine. Diets: CH0, 0 mL·kg−1 COS (control);
CH5, 5 mL·kg−1; CH10, 10 mL·kg−1; CH20, 20 mL·kg−1; CH40, 40 mL·kg−1 of chitosan. The tissue
was stained with hematoxylin and eosin (H&E). The bars in the pictures are 100 µm.
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Figure 2. The measurements of the intestinal morphology of Nile tilapia (Oreochromis niloticus)
fingerlings fed diets with increasing chitosan (CH) levels. Diets: CH0, 0 mL·kg−1 COS (control); CH5,
5 mL·kg−1; CH10, 10 mL·kg−1; CH20, 20 mL·kg−1; CH40, 40 mL·kg−1 of chitosan. Five sections
were randomly selected for measurement for each fish, with three fish per treatment. Values are
means ± SEM (n = 15, microfields). Values in the same row with different superscripts indicate a
significant difference between the CH-containing groups (p < 0.05).

2.4. Immune and Antioxidant-Related Gene Expressions

The effects of dietary CH-supplemented on the expression of immune-related (IL-1,
IL-8, LBP) and antioxidant-related (GSR, GPX, GST-α) genes in the liver and intestine of
tilapia are shown in Figures 3 and 4. In both tissues, all supplemented diets appeared to
upregulate these genes compared to the control. In the liver, the CH5 diet induced the
greatest increase in most of the genes, with IL-8 expression being significantly higher than
the control and the other diets (p < 0.05). For IL-1, GSR, and GST-α, there were no significant
differences among supplemented groups (p > 0.05). GPX expression was significantly
higher in the CH5 compared to the CH40 group (p < 0.05). Additionally, the CH5 and CH10
diet groups elicited increased LBP expression compared to the control and CH20 and CH40
groups (p < 0.05).
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Figure 3. Expression transcript levels of interleukin-1 (IL-1), interleukin-8 (IL-8), lipopolysaccharide-
binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione
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S-transferase-α (GST-α) in the liver of Nile tilapia (Oreochromis niloticus) fingerlings fed diets with
increasing chitosan (CH) levels for 4 and 8 weeks (n = 6). Data is shown as mean ± SEM. Different
letters (a–c) indicate significant differences between dietary groups by one-way ANOVA and Duncan’s
test (p < 0.05). Diets: CH0, 0 mL·kg−1 COS (control); CH5, 5 mL·kg−1; CH10, 10 mL·kg−1; CH20,
20 mL·kg−1; CH40, 40 mL·kg−1 of chitosan.
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Figure 4. Expression transcript levels of interleukin-1 (IL-1), interleukin-8 (IL-8), lipopolysaccharide-
binding protein (LBP), glutathione reductase (GSR), glutathione peroxidase (GPX), and glutathione
S-transferase-α (GST-α) in intestine of Nile tilapia (Oreochromis niloticus) fingerlings fed diets with
increasing chitosan (CH) levels for 4 and 8 weeks (n = 6). Data is shown as mean ± SEM. Different
letters (a–c) indicate significant differences between dietary groups by one-way ANOVA and Duncan’s
test (p < 0.05). Diets: CH0, 0 mL·kg−1 COS (control); CH5, 5 mL·kg−1; CH10, 10 mL·kg−1; CH20,
20 mL·kg−1; CH40, 40 mL·kg−1 of chitosan.

In the intestine, expression of IL-1 and GPX was significantly higher in all dietary
CH-treated groups compared to the control group (p < 0.05), with no statistically significant
differences among supplemented diets (p > 0.05). Interestingly, the highest LBP expression
occurred in the CH10 group, which was significantly different from the control and other
treated groups (p < 0.05). GSR expression was significantly higher in the CH5 and CH10
groups compared to the control and CH20 and CH40 groups (p < 0.05). Additionally,
CH5 and CH10 diets elicited clear increases in IL-8 and CH-5 increased GST-α expression
compared to the control and the other CH-supplemented groups.

3. Discussion

The current study demonstrated the beneficial effects of dietary-supplemented CH on
the growth of Nile tilapia (Oreochromis niloticus) fingerlings cultured in a biofloc system.
Influences of dietary chitosan on growth have been evaluated in various aquatic species
with variable results [10,50–52]. Specifically in Nile tilapia, previous findings on chitosan’s
effects as a feed additive have been heterogeneous. Shiau and Yu [53] found that 2–10% of
dietary chitosan inhibited tilapia growth, while Romana-Eguia et al. [54] showed no impact
on growth. However, other studies [55,56] reported improved growth and meat quality
with chitosan supplementation in Nile tilapia. Interestingly, this study indicated that only
the 10 mL·kg−1 CH diet significantly increased FW, WG, and SGR of Nile tilapia fingerlings,
suggesting that the benefits are dose-dependent, with excessive amounts conferring no
added growth effects. Indeed, multiple studies have evidenced the detrimental impacts
of immunostimulant over-supplementation on aquaculture species, including immune
exhaustion and slowed growth [57,58]. Shiau and Yu [53] reported decreased weight gain in
Nile tilapia with chitosan, potentially due to reduced nutrient digestibility and absorption.
Chitosan particle size may also influence Nile tilapia growth [59]. Several lines of evidence
suggest that chito-oligosaccharides can improve growth performance in tilapia through
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various interrelated mechanisms. As prebiotics, CH can modify intestinal microbial commu-
nities in a beneficial manner, supporting gut health and likely enhancing nutrient digestion
and absorption [60]. The immunostimulatory effects of chito-oligosaccharides are also
thought to play a key role by reducing the susceptibility to infectious diseases, allowing
tilapia to allocate more energy towards growth rather than mounting inflammatory re-
sponses [61]. Chito-oligosaccharides have additionally been shown to increase the activities
of digestive enzymes like protease, lipase, and amylase in tilapia, which could lead to
greater utilization of feed for growth [62]. Finally, mitigation of oxidative stress by the
antioxidant properties of CH enables available energy to be used for anabolism rather than
neutralizing reactive oxygen species, supporting growth [63,64]. The growth-promoting
effects of immunostimulants like CH are influenced by numerous factors, including dosage,
molecular weight, feeding duration, temperature, administration route, and species differ-
ence [65]. Our results demonstrated that the benefits of CH on growth were dose-dependent
in Nile tilapia, with 10 mL·kg−1 being the optimal supplementation level for improving
performance. While the precise modes of action have yet to be elucidated, this study
provides valuable insights into appropriate CH dosing strategies for maximizing growth
in tilapia aquaculture. Further research is still needed to fully understand the biological
pathways and key factors mediating the effects of CH on increasing fish growth rate.

Innate immunity serves as the first line of defense against pathogens in fish [66].
The body’s surface mucosa provides a physical and immunological barrier, playing cru-
cial roles in protection, sensory function, and ion regulation [67,68]. Mucosal responses
are key in early infection control, as many pathogens initially adhere to mucosal sur-
faces during invasion [69]. Lysozyme, found in mucus, fluids, and tissues, is an im-
portant component of teleost innate immunity due to its bactericidal and opsonizing
effects [70,71]. Serum lysozyme can indicate the innate status of the host by initiating
the complement cascade [69,70]. CH’s free radical scavenging amino groups can boost
unstable lysozyme [72], and oral chitosan has been shown to increase lysozyme activity
in various fish species [73,74]. Peroxidase, another key innate immune enzyme, helps to
maintain redox homeostasis in immune cells and acts as a microbicidal agent by destroying
H2O2 [75,76]. In this study, our results demonstrated that dietary CH supplementation
at 5–40 mL·kg−1 significantly decreased peroxidase and lysozyme activities in the skin
mucus after 4 weeks, declining further by 8 weeks. Interestingly, 10 mL·kg−1 CH increased
blood serum peroxidase activity at 4 and 8 weeks of the feeding trial. These results align
with Yu et al. [58], who showed 10 g/kg CH reduced lysozyme in golden pompano (Tra-
chinotus ovatus). The contrasting blood and mucus enzyme responses reveal the complex
immunomodulatory effects of CH in fish. Achieving optimal benefits likely requires careful
dosage optimization. Our findings highlight the need for further research into appropri-
ate CH supplementation strategies to support mucosal and systemic innate defenses in
aquaculture species.

Oligosaccharide supplementation in fish diets promotes feed conversion and enhances
intestinal microanatomy, improves mucosal epithelium health, and defends against oppor-
tunistic bacterial infections [77]. This optimization of intestinal morphology may increase
the absorption area of the intestine, facilitating efficient nutrient absorption [78]. In the
present study, it was observed that the treatment with CH resulted in an increase in villus
height and width, along with an increase in the thickness of the muscularis layer, which
was particularly pronounced in the CH10 and CH20 groups. Since the proportion of villi
is related to the ability to absorb nutrients through the available surface area, the surface
increase could potentially improve nutrient utilization and storage [79]. Our results are
consistent with previous studies, such as those showing an increase in villus length fol-
lowing supplementation of hybrid grouper diets with CH oligosaccharides [80] or after
supplementation of hybrid catfish diets with mannan oligosaccharides [81]. It has also
been reported that various other oligosaccharides can significantly increase villus length in
numerous fish species, as shown by 1% galacto-oligosaccharide in the diet for red drum [82]
or 2% fructo-oligosaccharide in the diet for bluntnose seabream [83]. However, it is worth
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noting that the effects of oligosaccharides on the villi structure may vary depending on the
fish species, oligosaccharide type and concentration, and the fish species’ own microbiota.
In this study, the CH40-containing treatments resulted in some undesirable changes in the
intestinal morphology of the fish, including degeneration of the villi and morphological
disorders. This outcome may be attributed to an imbalance of amino acids in the diet, pos-
sibly triggered by an incorrect ratio when replacing fish meal with CH, which is consistent
with previous studies [80,84]. Since dietary amino acids are primarily used to meet growth
requirements and build fish tissue, an imbalance of these amino acids may lead to dysplasia
in fish intestinal morphology [85,86]. Overall, our results indicate that CH supplementation
at 10–20 mL·kg−1 may beneficially enhance the intestinal morphology and the absorptive
capacity in tilapia, yet higher doses could negatively impact the intestine structure.

Pro-inflammatory cytokine IL-1 is essential for innate immunity, stimulating lympho-
cytes, phagocytes, and infection resistance in fish [87]. IL-8, released during inflammation,
activates inflammatory cells as a neutrophil chemoattractant and mediator [88]. IL-1 and
IL-8 coordinate innate inflammatory defenses and pathogen clearance by phagocytes [89,90].
The acute-phase protein lipopolysaccharide-binding protein (LBP) also has key innate im-
mune functions, binding lipopolysaccharides and eliciting responses to Gram-negative bac-
teria [91]. In our study, all CH doses markedly increased hepatic and intestinal expression
of the immune genes IL-1, IL-8, and LBP compared to the control, indicating activation of in-
nate immune responses in tilapia. These results align with previous observations reporting
IL-1 and IL-8 upregulation following immunostimulant feeding in tilapia [92]. However, in
golden pompano, CH reduced IL-8 expression [57], highlighting species-specific differences.
Antioxidant supplements can improve fish health by reducing oxidative stress. Glutathione
peroxidase (GPX) and glutathione reductase (GSR) remove hydrogen peroxide using glu-
tathione [13,93]. Glutathione S-transferase (GST) detoxifies electrophiles, enhancing their
elimination [94]. In this study, we found dietary CH-supplemented significantly increased
antioxidant gene (GSR, GPX, GST-α) expression in tilapia liver and intestine, similar to
previous tilapia studies [13] and golden pompano [57]. This suggests that CH may mitigate
oxidative damage. Overall, our gene expression analyses indicate that CH can stimulate
innate immune and antioxidant responses in tilapia.

The growth benefits of CH in this study may have been enhanced by using a biofloc
production system [95], which consists of suspended microbial biomass that acts as a
natural food source [46,96–98]. This seems to stem from the fact that the prebiotic effects of
CH selectively enriched beneficial biofloc species, maximizing natural productivity. Their
immunostimulatory properties likely complemented immune activation by biofloc mi-
crobes. The combination of bioavailable nutrients from biofloc consumption and improved
digestibility and gut health from CH may have synergistically augmented tilapia growth.

The limitations of this study include the absence of a priori power analysis and
the use of non-standard reporting of chitosan concentration in volume units (mL/kg
diet) instead of mass units (g/kg diet). The lack of a priori power analysis may serve to
hide the true effects of chitosan supplementation, potentially leading to underpowered
circumstances that are unable to identify statistically significant results. To address these
issues, we propose the use of power analysis in the study design phase as a mean to
precisely ascertain the necessary sample sizes. Furthermore, standardizing the reporting of
chitosan concentrations in mass units will greatly enhance the reproducibility of research
findings and streamline the process of comparing them across different investigations.

4. Materials and Methods
4.1. Nile Tilapia Husbandry

Healthy Nile tilapia fingerlings were acquired from a tilapia farm in Chiang Mai Province,
Thailand. The fish were first acclimated for two weeks under standard aquaculture conditions
and fed on commercial diets twice daily. The tilapia was then moved into fifteen 150 L
fiberglass tanks for the feeding trials. Water quality parameters, including temperature (◦C),
pH, dissolved oxygen (mg·L−1), and ammonium, were maintained within optimal ranges
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for Nile tilapia [99] throughout the experiment as follows: T◦ = 28.5 ± 0.07; pH = 7.81 ± 0.03;
dissolved oxygen = 5.76 ± 0.02 mg·L−1, and ammonium = 0.12 ± 0.002 mg·L−1.

4.2. Diet Preparation and Experimental Design
4.2.1. Preparation of Chitosan (CH)

The CH supplement used in this study was obtained from Olizac Technologies Co.,
Ltd., Khlong Nueng, Khlong Luang District, Pathum Thani, Thailand. It was extracted
from shrimp shell via enzymatic hydrolysis as described previously [100]. Briefly, shrimp
shells underwent deproteinization, demineralization, and depigmentation before being
deacetylated with 50% sodium hydroxide to achieve over 90% degree of deacetylation.
The CH was then precipitated and lyophilized. A mixture of chitinase and chitosanase
enzymes was applied to produce CH with a molecular weight of approximately 10 kDa, as
determined by gel permeation chromatography.

4.2.2. Experimental Design

Five experimental diets containing different levels of CH were prepared. The diet
formulations are shown in Table 4 The dry ingredients were thoroughly mixed and then
pelletized with the addition of oil and water into 2 mm pellets. Feeds were stored at 4 ◦C
until use. After a two-week acclimation, 300 healthy tilapia fingerlings (13.54 ± 0.05 g)
were randomly distributed into the following treatment groups (n = 20 fish per tank,
3 replicate tanks per treatment): CH0, 0 mL·kg−1 CH as control; CH5, 5 mL·kg−1; CH10,
10 mL·kg−1; CH20, 20 mL·kg−1; and CH40, 40 mL·kg−1. Fish were fed the experimental
diets twice daily for 8 weeks while water quality parameters were monitored daily as
described previously [99].

Table 4. The formulation and proximate composition of the experimental diets (g/kg of the basal diets).

CH0 CH5 CH10 CH20 CH40

Fish meal 200 200 200 200 200
Corn meal 150 150 150 150 150

Soybean meal 390 390 390 390 390
Wheat flour 70 70 70 70 70

Rice bran 150 150 150 150 150
Soybean oil 2 2 2 2 2

Chitosan solution (mL) 0 5 10 20 40
Binder 20 20 20 20 20

Premix 1 10 10 10 10 10
Vitamin C 98% 8 8 8 8 8

Total (g) 1000 1000 1000 1000 1000

Proximate composition of the experimental diets (%)

Crude protein 32.80 32.00 32.60 32.40 32.50
Crude lipid 2.85 2.75 2.63 2.78 2.88

Fiber 3.68 3.74 3.44 3.72 3.55
Ash 7.59 7.86 7.75 7.35 7.91

Dry matter 99.16 98.40 98.35 97.77 97.54
Gross Energy (cal/g) 4273.00 4261.50 4253.90 4262.00 4245.00

1 Vitamin and trace mineral mix supplemented as follows (IU kg−1 or g kg−1 diet): retinyl acetate 1,085,000 IU;
cholecalciferol 217,000 IU; D, L-a-tocopherol acetate 0.5 g; thiamin nitrate 0.5 g; pyridoxine hydrochloride 0.5 g;
niacin 3 g; folic 0.05 g; cyanocobalamin 10 g; Ca pantothenate 1 g kg−1; inositol 0.5 g; zinc 1 g; copper 0.25 g;
manganese 1.32 g; iodine 0.05 g; sodium 7.85 g.

4.3. Biofloc Water Preparation

Biofloc was established in the experimental tanks 3 weeks prior to starting the feeding
trial. Coarse salt (400 g), molasses (5 g), dolomite (5 g), and control feed (2 g) were added
to each tank to initiate floc formation. The carbon-to-nitrogen (C:N) ratio was maintained
at 15:1 by supplementing with molasses (40% carbon) 2 h after each feeding [40]. The C/N
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ratio was monitored by measuring residual nitrogen levels in the tanks and determining
the carbon and nitrogen content of the feed.

4.4. Growth Performance

After 4 and 8 weeks of feeding the experimental diets, all fish were weighed to assess
growth performance. Parameters were calculated as follows:

Weight gain (WG, g) = final weight (FW) − initial weight (IW);
Specific growth rate (SGR, %) = 100 × (ln FW − ln IW)/number of experimental days;
Feed conversion ratio (FCR) = amount of feed given (dry weight)/WG (wet weight);
Survival rate (SR, %) = (final number of fish/initial number of fish) × 100.

4.5. Immunological Analysis
4.5.1. Sample Collection

Skin mucus and serum samples were collected to analyze immunological parameters.
For skin mucus, 3 fish were randomly selected from each tank and anesthetized with
clove oil (200 ppm) to minimize stress and discomfort. Following anesthesia, the fish were
humanely euthanized in accordance with ethical guidelines for the collection of skin mucus
and serum samples. Individuals were placed in plastic bags containing 10 mL of 50 mM
NaCl. The fish were gently rubbed for 1 min to collect skin mucus. The mucus–salt mixture
was centrifuged at 1500× g for 10 min at 4 ◦C. The supernatant was stored at −80 ◦C
until analysis.

Blood samples were collected as previously described [99]. Briefly, 1 mL of blood was
drawn from the caudal vein of each fish using a 1 mL syringe and immediately transferred
into new sterilized tubes (without anticoagulants). Blood samples were kept at room
temperature for 1 h and then incubated for 4 h at 4 ◦C. Serum samples were collected after
centrifugation (15 min, 4 ◦C at 10,000× g) and stored at −80 ◦C until analysis.

4.5.2. Immunological Parameter Analysis

Lysozyme and peroxidase activities in undiluted serum and skin mucus samples were
performed according to the previously described method [101]. Briefly, 25 µL of serum or
100 µL of skin mucus from each fish was added in triplicate to 96-well plates, followed by
175 µL of a 0.3 mg.mL−1 Micrococcus lysodeikticus suspension (in 0.1 M citrate phosphate
buffer, pH 5.8). Plates were rapidly mixed, and the decrease in turbidity was measured
every 30 s for 10 min at 540 nm using a microplate reader (Synergy H1, BioTek, Santa Clara,
CA 95051, USA). A standard curve was generated using known concentrations of hen egg
white lysozyme (0–20 µg.mL−1, Sigma-Aldrich Inc., St. Louis, MO 68178, USA).

4.6. Histopathology Analysis

To examine intestinal morphology, the anterior intestine from 3 fish per treatment was
sampled at the end of the trial. Tissues were fixed in 10% neutral buffered formalin for
24 h, then transferred to 70% ethanol. Samples were processed using an automated tissue
processor, involving dehydration in graded ethanol, clearing with xylene, and embedding
in paraffin wax. The tissues were sectioned at 4–5 µm thickness using a microtome (Leica
Biosystems, Deer Park, IL 60010, USA) and stained with hematoxylin and eosin (H and E).
Slides were viewed and photographed using a light microscope (BX51 Olympus, Tokyo,
Japan). Morphometric analysis was performed by measuring villus length, villus width,
and muscularis thickness on 5 randomly selected microfields per fish.

4.7. Quantitative Real-Time PCR (qPCR)
4.7.1. Tissue Sampling, Total RNA Isolation, and cDNA Synthesis

Expressions of immune-related (IL-1, IL-8, and LBP) and antioxidant-related (GST-α,
GPX, and GSR) genes were analyzed in the liver and intestine after 8 weeks. Examined
organs (20–40 mg) were collected from two fish in each tank (n = 6) and stored in sterilized
tubes supplemented with 500 µL Trizol (Invitrogen, Waltham, MA, USA) at −80 ◦C for



Mar. Drugs 2024, 22, 150 11 of 16

further analysis. Total RNA was isolated using the PureLinkTM RNA Mini Kit (Invitrogen,
Thermo Fisher Scientific, Waltham, MA, USA) following the manufacturer’s protocol. RNA
quantity and quality were assessed by spectrophotometry (NanoDropTM 2000, Thermo
Scientific, Waltham, MA, USA). One µg of total RNA was used for cDNA synthesis with
the iScriptTM cDNA kit (BIO-RAD, Hercules, CA, USA).

4.7.2. Quantitative Real-Time PCR

Gene expression was quantified by qPCR using the primer sequences listed in Table 5.
Reactions contained 1 µL cDNA (100 ng), 0.4 µL each primer (10 µM), 10 µL 2× SYBR
Green Mastermix (BIO-RAD, USA) and nuclease-free water to 20 µL total volume. qPCR
was performed on a CFX ConnectTM system (BIO-RAD, USA) as described previously [13].
Relative mRNA levels were calculated using the 2−∆∆Ct method [102] with 18S rRNA as
the internal reference gene.

Table 5. Primer sequences used for quantitative real-time PCR.

Genes Primer Sequence (5′-3′) Tm (◦C) Product Size (bp) Reference

18S-rRNA GTGCATGGCCGTTCTTAGTT
CTCAATCTCGTGTGGCTGAA 60 150 XR_003216134

IL-1 GTCTGTCAAGGATAAGCGCTG
ACTCTGGAGCTGGATGTTGA 59 200 XM_019365844

IL-8 CTGTGAAGGCATGGGTGTG
GATCACTTTCTTCACCCAGGG 59 196 NM_001279704

LBP ACCAGAAACTGCGAGAAGGA
GATTGGTGGTCGGAGGTTTG 59 200 XM_013271147

GST-α ACTGCACACTCATGGGAACA
TTAAAAGCCAGCGGATTGAC 60 190 NM_001279635

GPX GGTGGATGTGAATGGAAAGG
CTTGTAAGGTTCCCCGTCAG 60 190 NM_001279711

GSR CTGCACCAAAGAACTGCAAA
CCAGAGAAGGCAGTCCACTC 60 172 XM_005467348

4.8. Statistical Analyses

The Shapiro–Wilk test was used to assess the normality of the data. One-way analy-
sis of variance (ANOVA) was performed to determine statistically significant differences
among the dietary treatment groups. The distribution of the sample variables was consid-
ered normal (p > 0.05) and was evaluated using a one-way ANOVA. Statistical significance
among groups (p < 0.05) was compared using post hoc LSD analysis and non-normal
distribution (p < 0.05). All data were analyzed using Statistix (Analytical Software, v10.0
Tallahassee, FL 32312, USA) statistical software.

5. Conclusions

In summary, this study demonstrates that dietary supplementation with 10 mL·kg−1

CH can effectively improve the growth, health, and productivity of Nile tilapia fingerlings
reared in biofloc systems. CH also stimulated innate immunity, as shown by increased
serum peroxidase activity at 4 weeks. Most notably, CH feeding markedly upregulated
the expression of immune and antioxidant genes in the liver and intestine. This indicates
that CH can beneficially modulate the immune status and oxidative stress resistance in
Nile tilapia. Our findings highlight the potential of CH as a feed additive to improve Nile
tilapia fingerlings’ health and productivity in sustainable biofloc aquaculture.
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