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Abstract: In this study of autoimmunity among a population of Gullah African Americans 

in South Carolina, the links between environmental exposures and autoimmunity (presence 

of antinuclear antibodies (ANA)) have been assessed. The study population included 

patients with systemic lupus erythematosus (n = 10), their first degree relatives (n = 61), 

and unrelated controls (n = 9) where 47.5% (n = 38) were ANA positive. This paper 

presents the methodology used to model ANA status as a function of individual 

environmental influences, both self-reported and measured, while controlling for known 

autoimmunity risk factors. We have examined variable dimension reduction and selection 

methods in our approach. Following the dimension reduction and selection methods, we fit 

logistic spatial Bayesian models to explore the relationship between our outcome of 

interest and environmental exposures adjusting for personal variables. Our analysis also 

includes a validation “strip” where we have interpolated information from a specific 

geographic area for a subset of the study population that lives in that vicinity. Our results 

demonstrate that residential proximity to exposure site is important in this form of analysis. 
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The use of a validation strip network demonstrated that even with small sample numbers 

some significant exposure-outcome relationships can be detected. 

Keywords: lupus; autoimmunity; African Americans; environmental metals; soil; 

groundwater; spatial 

 

1. Introduction  

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that, for unknown reasons, 

causes the immune system to attack the body’s own tissues and organs including joints, kidneys, heart, 

lungs, brain, blood, and skin. SLE is considered a prototypical autoimmune disease, characterized by 

multiple autoantibodies directed at self-antigens. Nearly 100% of patients with SLE will have 

antinuclear antibodies (ANA) present on serologic testing, making this a highly sensitive, albeit  

non-specific, screening test for SLE. Despite serious and potentially life-threatening effects, SLE is 

under-recognized and often goes undiagnosed for several months to years. SLE disproportionately 

affects young African American women [1,2]. Up to 1.5 million American are afflicted by some form 

of lupus, and more than five million people are known to be affected worldwide. 

Environmental factors are known to influence the onset of autoimmune disorders, including SLE, 

among genetically susceptible individuals, however our understanding of the details of those 

environmental factors is limited [3]. Although first degree relatives (FDRs) of patients with SLE 

overall have a higher prevalence of autoantibodies and a higher risk of SLE and other autoimmune 

diseases [4,5], some develop SLE-specific autoantibodies but never develop clinical disease [6], 

implying that there are protective factors as well as additional environmental triggers that may increase 

the lag-time between autoimmunity and development of disease. The multifactorial nature of the 

genetic risk of SLE and the low disease penetrance emphasize the potential influence and complexity 

of environmental factors and gene-environment interactions on the etiology of SLE [7]. 

The SLE in Gullah Health (SLEIGH) study is a longitudinal cohort of Gullah African Americans 

started in 2003 to investigate potential genetic and environmental factors in the development of 

autoimmunity [5]. The SLEIGH study is conducted in cooperation with and approval from the Sea 

Island Families Project Citizen Advisory Committee [8]. The African American Gullah population is 

estimated to be between 100,000 and 300,000 and largely resides in the Sea Islands of South Carolina 

and Georgia. It is a unique community for defining environmental factors for autoimmune diseases due 

to its low non-African genetic admixture, environmental-geographic homogeneity within the Sea 

Island region, and high prevalence of ANA positivity and families with multiple incidence of SLE [5]. 

SLEIGH study participants were recruited to take part in a detailed assessment of lifetime 

residential history and estimated environmental exposures. Additionally, environmental contaminant 

data from soil and groundwater measurements taken from areas of South Carolina corresponding with 

Sea Island residential locations were obtained. Taking advantage of the data on residential histories 

available from the subset of SLEIGH participants, we utilized sophisticated modelling techniques to 

explore potential environmental factors on the development of ANA positivity among Gullah African 
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Americans, who are known to be genetically at-risk for development of SLE. ANA is present years 

prior to the onset of SLE [9], thus ANA status is an ideal outcome of interest for this study. 

This paper presents the methodology used to model ANA status as a function of individual 

environmental influences, both self-reported and measured, while controlling for known autoimmunity 

risk factors such as age and gender. Below we describe the data set and sampling strategy used, the 

modeling development procedures using the first, longest, and last residential address, and we present 

the results of our analysis and conclusions.  

2. Data Sources 

2.1. Study Population and Exposure Questionnaires 

Gullah African Americans participating in the SLEIGH study were invited between April 2010 and 

July 2013 to participate in an additional one-time in-person study visit where detailed lifetime 

exposure assessments were performed. Eighty SLEIGH study participants (61 FDRs, 10 SLE patients, 

and 9 unrelated controls) completed the exposure assessment visit. In this sample 47.5% (n = 38) of 

subjects were ANA positive A greater recruitment effort was focused on FDRs, due to their known 

increased risk for developing SLE over that of the general population and therefore the relevance of 

ANA positivity as a potential biomarker predictive of future progression from silent autoimmunity to 

clinically significant autoimmune disease. The SLEIGH study and all the methodology described here 

were conducted with the approval of the MUSC Institutional Review Board for Human Subjects 

Research and the Sea Island Families Project Citizen Advisory Committee [5,8]. The residential 

addresses of these participants vary during the study period, and so to simplify the analysis of 

residency, we have examined three key addresses which could impact exposure windows:  

First recorded address (birth), longest address (address for which the participant resided longest), and 

last address (the most recent address currently reported). These addresses correspond to early 

exposure, extended or cumulative exposure and recent exposure, respectively. Additional personal 

participant variables have been included in the analysis based on in-person study visit assessments and 

questionnaire responses. The study questionnaires included a detailed residential and occupational 

history, questions about diet (including local seafood consumption), ascertainment of lifestyle factors 

(including well water use, smoking status, pesticide use) and health questions (including medication 

history). The survey was developed based on the experience of two prior studies of environmental 

exposures and SLE, the Buffalo Lupus Study and the Carolina Lupus Study, and validated for use 

within the Gullah African American community [7,10–13]. These variables are listed in Table 2.  

2.2. Environmental Contaminant Databases 

The ground water and soil chemical survey data were measured in 2005 and made available by the 

United States Geological Survey (USGS) [14]. The strip data used for validation were made available 

by Professor Claire Marjorie Aelion, of the University of Massachusetts Amherst. These data consist 

of metal concentrations measured in soil samples taken from a relatively dense network of sites which 

were originally established for the analysis of soil metals and childhood neurological outcomes 

withither study (NIEHS: ES012895-04A2). The strip was sampled in 2011. The accuracy of Kriged 
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estimates in the original study is discussed in [15]. With respect to participants in the strip, 8 people 

out of 14 people were diagnosed with the positive ANA status at the first address, 9 out of 15 and 6 out 

of 10 people were ANA positive at the longest and last addresses. Both the USGS and strip data made 

use of heavy metals, pesticides, and organochlorines in the ground water and/or soil. 

3. Data Quality 

While exposure assessment is ideally performed prospectively and at a local or individual level, it is 

not always possible to achieve this goal due to feasibility and cost and especially for rare outcomes 

such as autoimmunity. Instead, it is often necessary to use a retrospective study design and without 

direct measurement of intake, to use exposure surrogates. In our study, we have the location of 

different residential addresses for members of the cohort and control populations but we do not have 

precisely contemporaneous soil or groundwater metal measurements. In addition we do not have 

precise measurements of exposure to chemical measurements at residential locations. Instead, we have 

self-report addresses for different periods in the lifetime of the subjects, and measures of soil and 

groundwater chemicals made at a network of locations and at one time (2005). This 2005 measurement 

is considered an average over time since the measures could be varying either before or after.  

As addresses range across the measurement year we must assume a “window of risk” around that year. 

The network of sites measured does not closely correspond with address locations of participants.  

This misalignment of locations was allowed for by adopting a functional relationship between 

residential location and chemical measurement site. We have formed a set of distance-modified soil 

and groundwater chemical exposure measures. These are detailed more fully in the next section.  

4. Modeling Approaches 

Each of the participants in the study has a residential address at a given time. The number of 

different addresses varies across participants and so to simplify analysis we have examined three main 

addresses for each participant: birth address (first), the address where they resided the longest 

(longest), and current address (last). In our analyses we have used these addresses so that in all 

instances. Our analyses have been carried out for each of these addresses separately. Our outcome of 

interest was ANA status, a binary outcome denoting whether a participant is ANA positive  

(ANA titer > 1/40) or not.  

For discrete ANA status we assume a logistic spatial model as follows: 

            

             
        

     
    

where the fixed design matrix includes a range of parameters both personal and environmental with ith 

element    
  corresponding to the ith individual. The prior distributions for regression parameters,  , 

are assumed to be zero mean Gaussian such that         
    with a gamma prior distribution for the 

precisions,                for each   independently, except when variable selection is employed. 

Using first order random walks we also included smoothing of a subset of predictors      
  . For the 

random component, we assume that   represents an individual level random effect, and that   
  is a 

binary indicator vector of length m, the number of individuals. This is essentially a random intercept 
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per individual such that the prior distribution is          
    with a non-informative gamma prior 

distribution for the precision,               .  

Within the design matrix issues exist regarding the number of parameters with the limited sample 

size. Two approaches were implemented to resolve this issue: variable dimension reduction and 

variable selection. 

First, we considered a dimension reduction strategy whereby we focused on the set of chemical 

measures and their corresponding underlying components. The purpose of this was to derive a smaller 

set of components which could be used as regressors within any model. We conducted a Principal 

Component Analysis (PCA) [16] of the subset of chemical measures, both singly for soil chemicals 

and groundwater (GW), and also jointly with the soil and GW subset combined. This aided in reducing 

the number of parameters that reside within   by creating a score based on the correlations among the 

environmental metal measures to use in lieu of the set of chemical measures. We used the correlation 

matrix of the chemicals rather than the covariance in this PCA to allow for different variability in the 

measures. Often we found that only one or at most two components explained >80% of the variation, 

80% is the significance criterion [17]. In the candidate models used in all subsequent analyses we have 

considered either PCA scores for chemicals or the set of chemicals related to the individual through 

distance in a given model. 

Second, performing Bayesian variable selection with both optional linear and non-linear link 

functions in generalized additive mixed models [16] also leads to a reduction in the number of 

variables based on the significance of their relationship to the outcome of interest. This procedure 

employs a Normal-mixture of inverse Gammas (NMIG) prior to determining which covariates as 

factors, penalized B-splines, or linear effects should be used in the model without having to calculate 

marginal likelihoods. This NMIG results in a spike-slab like prior on the coefficients  , by supplying a 

bimodal prior on the variance,    , of those coefficients. The spike and slab posterior weights, , can 

then be interpreted to determine the inclusion or exclusion of the parameter. This application is 

specified as follows: 

                

                   
    

                            

where       represents an indicator function that is 1 in x and 0 elsewhere and    is a small, positive 

constant such that the indicator   is 1 with probability   and 0 with probability    . Thus if  

    , the variance is very small creating the spike component of the prior.     denotes an inverse 

Gamma prior for   . We have employed the R package spikeSlabGAM [17] (SSG) for this purpose. 

Additionally, SSG has the ability of including random effects [17]. Once the inclusion probability for a 

variable is derived an inclusion threshold for               
 

 
       

 
  

      from the converged 

sample of G parameter values is assumed. Usually a minimum value for inclusion is c = 0.5 [18]. 

5. Validation Study 

To provide a validation for the distance metric exposure models we decided to examine a dataset 

which involved exposure assessment via spatial interpolation. For the validation study we have used a 

sampling strip which consists of a network of 110 sites where a range of soil metals has been 
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measured. The strip was sampled in 2011. Figure 1 displays the map of the sampling sites.  

The sampling strip provides more detailed spatial coverage of an area close to many of the addresses of 

study participants. Because the strip has a relatively dense network of sites we can employ Bayesian 

Kriging [19] to interpolate chemical measures to the sites of participant addresses. A small number of 

participants lived on or near the strip. We also include those who were located within 1 km of the outer 

strip boundary as the interpolation error was found to remain small up to that range. Descriptive 

statistics of the subjects that fit these criteria are included in Table 1, and these statistics demonstrate 

that the validation sample well represented the full data set. 

Table 1. Descriptive statistics associated with the validation study sample compared to the 

full data set. 

Sample % ANA Positive % Male Median Age 

First address (n = 14) 57% 14.3% 54 

Longest address (n = 15) 60% <1% 54 

Last address (n = 10) 60% 10% 57.5 

Full Data Set 47.5% 15% 54 

In our modeling of the participant outcomes for the strip we employ a 2 stage approach. We first 

perform an interpolation of chemicals to the addresses. Then we include a random additive 

measurement error component in our health model (   ) so that  

              

              
            

    

where    
  is a fixed design matrix,    

   is a linear predictor, and   
    is a random effect assumed to 

have a zero-mean Gaussian prior distribution alike our previous model definitions. The definition of 

the predictor function is innovative as we assume that        can have a range of forms. In this study 

we limit the link functions to random walk smoothing akin to B-splines [20], to allow for flexible 

functional dependence on the measured chemicals and personal variables.  

6. Results 

Figure 2 displays the main sampling sites for soil and groundwater in the study. For  

confidentiality reasons we cannot display the residential addresses of the participants. Figure 3 

displays the histograms of the distance of participants from the mercury measures at soil sampling 

sites. Similar distributions are realized for other soil and groundwater chemicals measured at their 

respective sites also but are not shown. Predominantly distances within 15 km are displayed for all 

scenarios. Figure 1 displays the distribution of the 110 sample locations. The design of the sites in that 

study is detailed elsewhere [21,22]. 

Table 2 displays the variables, both chemical and personal, that were used in our model building 

process. The personal variables include demographics (age, gender, education level), lifestyle and 

behavioral survey responses (smoking, working status, well water consumption, fish consumption), 

and living conditions (termite treatment, replacement of walls, painting of house, kerosene or gasoline 

heating). Figure 4 displays the distribution for the personal variables listed in Table 2 with respect to 

ANA status.  
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Figure 1. Spatial distribution of sampling sites in the validation strip area. 

 

Figure 2. Spatial distribution of soil and groundwater sampling sites. 

 

Figure 3. Histograms of address distances to soil mercury sampling sites for first, last and 

longest addresses. 
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Figure 3. Cont. 

 

Figure 4. Distribution of personal variables with respect to ANA status. 
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Table 2. Individual level and chemical variables applied in the study with  

associated descriptions. 

Variable Definition 

tTermites Times the individual’s home was treated for termites 

tInsects Times the individual’s home was treated for insects 

tWalls Times the individual tore down walls 

tPaint Times the individual worked with paint 

education Number of years of education 

CurAge Current age of the individual 

dHeatK Exposure to a kerosene heater 

dHeatG Exposure to a gasoline heater 

Work Individual works more than 10 hours a week, binary 

Smoke Individual a smoker, binary 

gendernum Individual gender, binary 

Saltfin Individual fish consumption per year 

well_water Individual uses well water, binary 

Mercury Soil (µg/kg) and groundwater (µg/L) mercury sample measures 

Arsenic Soil (µg/kg) and groundwater (µg/L) arsenic sample measures 

Lead Soil (µg/kg) and groundwater (µg/L) lead sample measures 

triCE Soil (µg/kg) and groundwater (ug/L) 1,1,1-Trichloroethane sample measures 

tetraCE  Soil (µg/kg) 1,1,2,2-Tetrachloroethane sample measures 

triCE112  Soil (µg/kg) 1,1,2-Trichloroethane sample measures 

Phth  Soil (µg/kg) Chloronaphthalene sample measures 

Acetone Soil (ug/kg) and groundwater (µg/L) acetone sample measures 

Dintolu Soil (µg/kg) and groundwater (µg/L) 2,4-Dinitrotoluene sample measures 

Dintolu26  Soil (µg/kg) 2,6-Dinitrotoluene sample measures 

Endo2 Soil (µg/kg) and groundwater (µg/L) Endosulfan 2sample measures 

Endo1 Soil (µg/kg) and groundwater (µg/L) Endosulfan 1sample measures 

Toluene Soil (µg/kg) and groundwater (µg/L) toluene sample measures 

DDT Soil (µg/kg) and groundwater (µg/L) DDT sample measures 

Atrazine Soil (µg/kg) and groundwater (µg/L) atrazine sample measures 

Tribenz  Soil (µg/kg) and 1,2,4-Trichlorobenzene sample measures 

Dibenz  Soil (µg/kg) and 1,2-Dichlorobenzene sample measures 

Benz  Groundwater (µg/L) robenzene sample measures 

Biphen  Groundwater (µg/L) 1,1'-Biphenyl sample measures 

Endosulf  Groundwater (µg/L) Endosulfan sulfate sample measures 

Dinphth  Groundwater (µg/L) Di-n-butylphthalate sample measures 

Clphth  Groundwater (µg/L) Chloronaphthalene sample measures 

As Arsenic soil (mg/kg) sample measures from the strip validation study data 

Ba Barium soil (mg/kg) sample measures from the strip validation study data 

In the initial analysis we performed a PCA of distance weighted soil, groundwater (GW), and 

combination of soil + groundwater chemicals. The distance weighting was of the form    
          

and    
         

 , where     is the distance from the residential address of the participant to the 

sample site of the chemical calculated using the spherical law of cosines. Note that this distance can 

vary depending on whether the first, longest or last address is used. This transformation represents an 
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inverse linear and inverse quadratic weighting of the variables. Figure 3 displays the histograms of the 

distance distributions for each address class (first, longest, and last). All chemicals were transformed in 

this way prior to all subsequent analysis.  

Table 3 displays the PCA loadings as well as the direction of the loadings for each of the significant 

components broken down by first, longest and last addresses as well as soil only, ground water only, 

and the joint of soil and ground water. The direction of the loadings can aid in interpreting the PCA 

component if it is significant in the model. For example, if the chemical loads positively (+) and the 

parameter estimate associated with that component is also positive, then the chemical has a positive 

relationship with ANA status. In most instances only one component was found to explain over 80% of 

the variation (in soil and GW). In the joint analysis two components were often found. In all instances 

for the majority of the analyses, the same chemicals were selected across the analyses. Once the 

components were derived these were used in subsequent logistic regression modeling. 

The next stage in the analysis was to assess the importance of a variety of distance weighted 

chemicals, chemical Principal Component scores (PCs) and personal variables in the explanation of 

ANA status. Initially, we examined single predictor models (chemicals, PCs and personal variables), 

but decided for efficiency to employ variable selection algorithms to find the most important 

contributions to models. To this end, we employed Bayesian variable selection using spike and slab 

prior distributions (Stochastic Search Variable Selection) [23]. In our full models we included all 

personal variables with either PCs or the set of individual chemicals. These models were fitted for each 

of the address variants (first, longest, and last) separately.  

Table 4 displays the variable selection results depicting the variables that were found to have a  

c > 0.25; the variables that are considered “important” satisfy the c = 0.5 inclusion criterion [18].  

Many of the variable selection runs resulted in choosing either the null or random intercept-only 

models. None of the personal variable, chemical, or PCs covariates met the inclusion criterion. 

Furthermore, the variables that do appear in the table have quite large standard deviations meaning that 

they are not even well estimated to be above 0.25. Notice also that typically, when a chemical appears 

in the table, it appears in the longest address section. This suggests that exposure time to the chemical 

could be important. Based on these results, after the implementation of PCA and variable selection, no 

covariates met the inclusion criterion. Thus, the analysis of soil and GW did not present any covariates 

to be included in a predictive model for measuring associations with ANA status. 

Finally, Table 5 displays the results of the Kriging validation. This displays the variables that met 

the inclusion criterion of “important” where c = 0.5 as seen previously [18]. Notice that many of these 

variables also have fairly large standard deviation values, but are still better estimated than the models 

presented in Table 4. The table shows their mean inclusion probability and standard deviation as well 

as the associated parameter estimates and 95% credible interval. The analysis of ANA status in relation 

to Kriged soil chemicals demonstrates that the soil measures used in this part of the analysis are better 

at capturing the true association of the selected variables to ANA status. Here, lead and chromium 

related positively to ANA status while copper related negatively. We did not find any well estimated 

personal variables in the strip analysis. 
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Table 3. PCA loadings and directions (+/−) for the first, longest, and last addresses in that 

order broken down by soil only (S), ground water only (W), and the joint of soil and 

ground water (S+G). See Table 2 for description of the variable names. 

 Distance Distance Squared 

 
No. of 

Comps 
Loading 

No. of 

Comps 
Loading 

First Address 

S  1 

1: mercury(−), lead(−), dintolu(−), 

dintolu26(−), atrazine(−), tribenz(−), 

dibenz(−) 

1 
1: mercury(−), dintolu(−), dintolu26(−), 

atrazine(−), tribenz(−), dibenz(−) 

W 1  1: Arsenic(−), Lead(−) 1  1: Arsenic(−), Lead(−) 

S+W 2 

1: all negative except leadW didn’t load at all 

2: mercury S(−), arsenicS(−), triCES(−), 

tetraCE(−), triCE112(−), acetone(−),  

endo2S(−), endo1S(−), tolueneS(−), 

DDTS(−), mercuryW(+), arsenicW(+), 

leadW(+), endo2W(+), endo1W(+), 

DDTW(+), endosulfW(+) 

2 

1: all negative except leadW didn’t load at all 

2: mercury S(−), arsenicS(−), leadS(−), 

tetraCES(−), triCES(-), triCE112S(−), 

acetoneS(−), endo2S(−), endo1S(−),  

tolueneS(−), DDTS(−), mercuryW(+), 

arsenicW(+), leadW(+), endo2W(+), 

endo1W(+), DDTW(+), endosulfW(+) 

Longest Address 

S  2 

1: mercury(−), dintolu(−), atrazine(−),  

tribenz(−), dibenz(−) 

2: mercury(−), lead(−), dintolu(+),  

dintolu26(−), atrazine(−), tribenz(−), 

dibenz(−) 

2 

1: mercury(−), lead(−), dintolu(−),  

dintolu26(−), atrazine(−), tribenz−), 

dibenz(−) 

2: lead(−), dintolu(−), dintolu26(−), 

atrazine(−), tribenz(−), dinbenz(−) 

W 1 1: Arsenic(−), Lead(−) 1 1: Arsenic(−), Lead(−) 

S+W 2 

1: all negative except leadW didn’t load at all 

2: mercury S(−), tetraCES(+), triCES(+), 

dintoluS(−), endo2S(+), endo1S(+), 

tolueneS(−), DDTS(+), mercuryW(−), 

arsenicW(−), leadW(−), acetoneW(+), 

endo2W(−), endo1W(−), DDTW(−), 

endosulfW(−) 

1 1: all negative except leadW didn’t load at all 

Last Address 

S  2 

1: mercury(−), lead(−), dintolu(−), 

atrazine(−), tribenz(−), dibenz(−) 

2: mercury(−), lead(−), dintolu(+), 

atrazine(−), tribenz(−), dibenz(−) 

2 

1: mercury(−), lead(−),dintolu(−), 

atrazine(−), tribenz(−), dibenz(−) 

2: mercury(−), lead(−),dintolu(+), 

atrazine(−), tribenz(−), dibenz(−) 

W 1 1: Arsenic(−), Lead(−) 1 1: Arsenic(−), Lead(−) 

S+W 2 

1: all negative 

2: mercuryS(−), arsenicS(−), leadS(−), 

dintoluS(+), tolueneS(+), 

artrazineS(−),dibenzS(−), mercuryW(+), 

arsenicW(+), leadW(+), acetoneW(−), 

endo2W(+), endo1W(+), tolueneW(−), 

DDTW(+),endosulfW(+) 

2 

1: all loaded negative 

2: mercury S(−), arsenicS(−), leadS(−), 

triCES(−), tetraCES(−), acetoneS(+), 

dintoluS(+),endo2S(+), endo1S(+), 

tolueneS(+), DDTS(+), mercuryW(+), 

arsenicW(+), leadW(+), acetoneW(−), 

endo2W(+), endo1W(+), tolueneW(−), 

DDTW(+), endosulfW(+) 
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Table 4. The posterior mean and standard deviation of the inclusion probability for 

variable selection algorithms applied to first, longest, and last addresses presented in that 

order. Rnd (id2) here indicates the random intercept component of the model.  

 Distance Distance Squared 

 Parameter 
Inclusion Probability  

Mean (sd) 
Parameter 

Inclusion Probability  

Mean (sd) 

First Address 

PCA 

Soil Rnd(id2) 0.326 (0.469) Rnd(id2) 0.334 (0.472) 

GW Rnd(id2) 1.000 (0.000) Educ 0.337 (0.473) 

 --- --- Rnd(id2) 0.668 (0.471) 

Joint Rnd(id2) 0.334 (0.472) Rnd(id2) 0.667 (0.471) 

Chemical 

Soil  NULL Rnd(id2) 0.667 (0.471) 

GW Rnd(id2) 0.334 (0.472) Rnd(id2) 0.334 (0.472) 

Joint Rnd(id2) 0.667 (0.471) Rnd(id2) 0.667 (0471) 

Longest Address 

PCA 

Soil Rnd(id2) 0.667 (0.471) Rnd(id2) 0.667 (0.471) 

GW Rnd(id2) 0.334 (0.472) Rnd(id2) 0.334 (0.472) 

Joint Rnd(id2) 0.667 (0.471) Rnd(id2) 1.000 (0.000) 

Chemical 

Soil Rnd(id2) 1.000 (0.00) tetraCE 0.346 (0.476) 

 --- --- Educ 0.334 (0.472) 

 --- --- Rnd(id2) 0.334 (0.472) 

GW Biphen 0.294 (0.456) Rnd(id2) 0.667 (0.471) 

 Rnd(id2) 0.334 (0.472) --- --- 

Joint AtrazineW 0.334 (0,472) tribenzS 0.334 (0.472) 

 Rnd(id2) 0.334 (0,472) Educ 0.334 (0.472) 

 --- --- Rnd(id2) 0.334 (0.472) 

Last Address 

PCA 

Soil Rnd(id2) 0.334 (0.472) Rnd(id2) 0.667 (0.471) 

GW Rnd(id2) 1.000 (0.000) Rnd(id2) 0.334 (0.472) 

Joint Rnd(id2) 0.667 (0.471) Rnd(id2) 0.667 (0.472) 

Chemical 

Soil Atrazine 0.334 (0.472) Rnd(id2) 0.667 (0.471) 

 Rnd(id2) 0.334 (0.472) --- --- 

GW Rnd(id2) 0.334 (0.472) Rnd(id2) 1.000 (0.000) 

Joint Rnd(id2) 0.667 (0.471) NULL NULL 
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Table 5. Inclusion probability posterior mean and standard deviation as well as mean 

parameter estimate and 95% credible interval from Kriging broken down by first, longest, 

and last address from the validation strip. 

 Birth Address Longest Address Last Address 

Parameter 

Inclusion 

probability 

Mean  

(sd) 

Parameter 

Estimate 

Mean  

(95% CI) 

Inclusion 

probability 

Mean  

(sd) 

Parameter 

Estimate 

Mean  

(95% CI) 

Inclusion 

probability 

Mean  

(sd) 

Parameter 

Estimate 

Mean  

(95% CI) 

Age --- --- --- --- 
0.5585 

(0.4966) 

−3.049 

(−10.56, 0.203) 

dheatG --- --- --- --- 
0.5540 

(0.4971) 

−3.575 

(−14.94, 3.881) 

tPaint --- --- --- --- 
0.5796 

(0.4936) 

−2.413 

(−15.5, 6.809) 

tTermites 
0.5664 

(0.4956) 

−2.507 

(−15.31, 8.914) 

0.7076 

(0.4549) 

−4.307 

(−18.04, 8.093) 
--- --- 

Cr 
0.6298 

(0.4829) 

4.739  

(0.005, 15.81) * 
--- --- --- --- 

Cu 
0.6426 

(0.4792) 

−2.377 

(−8.386, −241) * 
--- --- --- --- 

As --- --- 
0.6166 

(0.4862) 

0.862 

(−13.76, 14.56) 
--- --- 

Mn --- --- 
0.7096 

(0.4540) 

0.116 

(−650, 1.054) 
--- --- 

Pb --- --- --- --- 
0.6098 

(0.4878) 

2.844  

(0.320, 9.006) * 

Note: * Indicates a well estimated variable. 

7. Discussion and Conclusions 

Many lines of evidence point to environmental factors playing a significant role in triggering 

autoimmunity in individuals with a genetic predisposition. Although the role of specific environmental 

factors and the mechanisms by which they act remain poorly understood, identification of influential 

environmental exposures, including soil and groundwater contaminants, will help inform future studies 

and exposure evaluation methods.  

There are several limitations to the complex methodology presented here including distance 

estimations and the large distances between the sample sites. If these data were more finely collected, 

we may be able to get a better measure of the associations to ANA status by employing Kriging 

methods presented in our validation study. Furthermore, if we could get chemical data measures from 

the actual participant addresses, we might have even greater confidence in establishing associations 

between exposure and outcome. Another issue with all studies based on survey data is bias from many 

different sources though random effect methods were employed to reduce the influence of these biases. 

The greatest limitation for this study is the small sample size. If we were able to apply more subjects to 

the study methodology, we may have been able to find even more association with ANA status.  



Int. J. Environ. Res. Public Health 2014, 11 2777 

 

 

This limited sample size and the fact that our subjects are all Gullah African American also hinders our 

generalizability to other populations that might have more of a genetic admixture present. 

The misalignment of locations could have been allowed for via interpolation of chemicals to 

residential addresses [19,24] rather than allowing a functional relationship between residential location 

and chemical measurement site. The first approach is appropriate when a reasonably fine network of 

sites covers the study area. We do not have a large number of sites, and they are irregularly distributed. 

Thus, we adopted a distance-based approach to exposure modeling. 

Although sensitive and specific biomarkers of exposure and disease continue to be discovered and 

utilized, the majority of environmental risk studies to date rely on questionnaires to ascertain exposure 

and/or outcomes of interest. Advantages of utilizing data from the SLEIGH study include the use of 

questionnaires and other assessments which were designed and validated to formally assess 

environmental exposures of interest and autoimmune disease outcomes. However, these current 

methods of estimating environmental exposure are limited by an excessively long lag-time between 

time of exposure of interest and time of assessment, particularly problematic in light a long pre-clinical 

phase in SLE and in today’s rapidly changing environment. 

In this study we have examined a range of possible methods that can be applied to environmental 

data that have variable temporal and spatial resolutions. These approaches are quite innovative and 

could be applied in a variety of settings using longitudinal data with spatial characteristics.  

The methodology presented here demonstrates how meticulously collected exposure data can be used 

in conjunction with even a relatively small well-characterized population to discover potential 

environmental influences on the development of ANA positivity among genetically at-risk individuals. 

Comparing the final model to the validation study shows how important meticulous exposure data 

collection can be. With the more meticulously collected exposure data we were able to find chemicals 

associated with ANA status.  

Our findings emphasize the importance of efforts to continue refining these sophisticated modeling 

techniques and to include larger numbers of well-characterized individuals with both detailed exposure 

and outcome data available. These efforts could ultimately lead to novel prediction tools to identify 

individuals most likely to develop SLE-related autoimmunity and could inform efforts to prevent 

progression to autoimmune disease. 
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