
Int. J. Environ. Res. Public Health 2014, 11, 4066-4077; doi:10.3390/ijerph110404066 

 
International Journal of 

Environmental Research and 
Public Health 

ISSN 1660-4601 
www.mdpi.com/journal/ijerph 

Article 

High-Resolution Mapping of Anthropogenic Heat in China from 
1992 to 2010 

Wangming Yang 1, Bing Chen 2 and Xuefeng Cui 1,* 

1 State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change 

and Earth System Science, Beijing Normal University, Beijing 100875, China;  

E-Mail: yangwm2012@gmail.com 
2 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, 

Chinese Academy of Sciences, Beijing 100101, China; E-Mail: chenbing@mail.iap.ac.cn 

* Author to whom correspondence should be addressed; E-Mail: xuefeng.cui@bnu.edu.cn;  

Tel.: +86-10-5880-2701; Fax: +86-10-5880-2165. 

Received: 11 February 2014; in revised form: 28 March 2014 / Accepted: 2 April 2014 / 

Published: 14 April 2014 

 

Abstract: Anthropogenic heat generated by human activity contributes to urban and 

regional climate warming. Due to the resolution and accuracy of existing anthropogenic 

heat data, it is difficult to analyze and simulate the corresponding effects. This study 

exploited a new method to estimate high spatial and temporal resolutions of anthropogenic 

heat based on long-term data of energy consumption and the US Air Force Defense 

Meteorological Satellite Program-Operational Linescan System (DMSP-OLS) data from 

1992 to 2010 across China. Our results showed that, throughout the entire study period, 

there are apparent increasing trends in anthropogenic heat in three major metropoli, i.e., the 

Beijing-Tianjin region, the Yangzi River delta and the Pearl River delta. The annual mean 

anthropogenic heat fluxes for Beijing, Shanghai and Guangzhou in 2010 were 17 Wm−2, 19 

and 7.8 Wm−2, respectively. Comparisons with previous studies indicate that DMSP-OLS 

data could provide a better spatial proxy for estimating anthropogenic heat than population 

density and our analysis shows better performance at large scales for estimation of 

anthropogenic heat. 
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1. Introduction 

Anthropogenic heat is wasted heat that is released into the atmosphere in sensible and latent  

forms [1]. It is released mainly through space heating and cooling, running appliances, transportation, 

industrial processes, and human metabolism [2–5]. Nearly 70% of energy is consumed within cities 

that occupy only 2% of the Earth’s surface area [6]. Therefore, the magnitude of the anthropogenic 

heat flux (AHF) in urban areas is much larger than that in rural areas. AHF has high spatial and 

temporal variations which are sensitive to climate zone, population density, economic development, 

season, time of day, and urban form or function [7–9]. In general, it is larger in winter than in summer, 

in downtown than in suburbs, in cold climates than in warm climates, in developed areas than in 

developing areas, in big cities than in small cities. AHF has been suggested as an important contributor 

for local urban warming [10], annual mean warming across western European [11], and even global 

surface warming through disruption of atmospheric circulation patterns [12]. 

AHF can be calculated using either observation or inventory approaches. Observations include 

surface energy budget measurements [13–15] and in situ eddy covariance observations [16]. Currently, 

inventory approaches (bottom-up or top-down) are more widely used to estimate AHF from global 

scale to single city [8,17]. The top-down approach is mapping energy consumption from coarse spatial 

and temporal resolutions to higher spatial and temporal grids [3,9,18]. While the bottom-up calculates 

detailed statistics of the sub-system, i.e., time and volume of traffic, building height and population 

density of the entire studied urban area [19]. The first global AHF data was released in 2009 (referred 

as Flanner study hereafter), and used the top-down inventory method to apportion non-renewable 

energy consumption in a 2.5-min spatial resolution (about 4–5 km at the equator) mainly based on 

global map of population density [20]. Flanner study shows unreliable information for some regions 

such as China, as spatial population density is not a good proxy for economic development or energy 

consumption in China [21]. The nighttime light data from the US Air Force Defense Meteorological 

Satellite Program-Operational Linescan System (DMSP-OLS) has been found to be highly correlated 

with AHF at the provincial level (R2 = 0.977) [22] and hence it provides a timely and inexpensive tool 

to monitor human settlements, GDP, energy consumption, carbon emissions, and spatial population 

density [23–25]. This encouraged us to produce AHF in China based on the method of Flanner’s  

study [20]. but replacing population density with nighttime light data. 

2. Data and Methods 

2.1. Multi-Temporal Dataset of DMSP-OLS 

The DMSP-OLS dataset was acquired from NOAA’s National Geophysical Data Center[26]. The 

dataset provides cloud-free composites of DMSP-OLS smooth resolution data from 1992 to 2010 [23]. 

The dataset for stable average nighttime lights are used in this paper, which are given on 30 arc second 

grids that span −180 to 180 degrees longitude and −65 to 75 degrees latitude. These data (range from 1 

to 63) contain the lights from cities, towns, and other sites with persistent lighting, including gas flares. 

Ephemeral events, such as fires, have been discarded. Areas with zero cloud-free observations were 

represented by the value 255 [27]. 
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2.2. Statistical Data 

National primary energy consumption data, including coal, petroleum and natural gas, in China 

from 1980 to 2012 were provided by the U.S. Energy Information Administration (EIA, available 

from) [28]. In this paper, we only consider non-renewable energy as this is currently the major 

resource. Renewable energy makes up only about 5% of energy consumption in China currently, so it 

is excluded in this study but should be included in future studies as the renewable energy fraction is 

increasing rapidly. Some primary energy is used to produce secondary energy (for example electricity) 

in rural areas which is then finally consumed in urban areas. However, it is difficult to calculate the 

production efficiency and track down the energy transfer. Energy consumption for some specific cities 

can be downloaded from database of yearly statistics [29]. The urban areas of some cities were 

provided by the urban statistical yearbook in China [30]. 

2.3. Methods for Calculating AHF 

As shown in Figure 1, we used four steps to calculate AHF: 

(1) Since larger DMSP-OLS digital number (DN) represents more active economic activities, areas 

where DN ≥ 12 were classed as urban areas while the remainder are classed as rural regions. 

(2) We divide energy consumption (petroleum, coal and natural gas) into two parts: energy used in 

urban areas and in rural areas. We use the 2009 consumption ratio from IEA (87% coal, 77% 

oil, and 81% gas for urban energy consumption). This ratio may change annually, but should 

not change dramatically during the study period. 

(3) There exists a strong exponential relationship between urban area and energy consumption  

(R2 = 0.9) from the available statistical data (Figure 2). Based on this relationship, energy 

consumption in the urban area obtained from step (2) is exploited in the urban map obtained in 

step (1). In China, most large factories or refineries are located in urban areas.Therefore, the 

energy consumed in urban area not only include the energy consumption for domestic use but 

also industrial usage. Human metabolism makes up a small share of the total heat released by 

human activies, and we exclude it here. We note that statistical errors in urban energy 

consumption are a function of urban area and energy consumption. In order to alleviate their 

effects, we can allocate total urban energy into patches based on percent-normalized urban 

energy from Figure 2. 

(4) Finally, AHF was calculated using energy data obtained for each urban patch in step (3) 

according to the percent-normalized DMSP-OLS data in every urban patch and rural region. As 

data of energy consumption allocated to each grid cell are total energy consumption for 

corresponding location, the sum consumption is converted to heat flux in each grid (Wm−2) by 

dividing by elapsed time. 
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Figure 1. Diagram of estimation for AHF. 

 

Figure 2. Exponential relationship between urban area and energy consumption by city 

scale (data of urban areas and energy consumption are provided by NBSC, which is used to 

fit energy consumption to urban area). 

 

3. Results 

3.1. AHF Temporal and Spatial Patterns 

Energy consumption from 1992 to 2010 increased greatly in China. Total energy consumption in 

China rose by nearly a factor of 3.42 from 1992 to 2010, and energy consumption in China exceeded 

the energy consumption in the United States in 2008 (Figure 3). China is projected to contribute the 

largest share of global energy use in the near future because the energy demand is expected to rise by 

60% in 2035 [31]. Non-renewable resources have always contributed the largest share of total energy 
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resources. Compared with clear trends of energy consumption in China during this period, there are  

no pronounced increasing trends in the United States. Moreover, the difference in average energy 

consumption between both countries during this period was 47.1 quadrillion Btu. 

Figure 3. Temporal trends of energy consumption from 1980 to 2010 in China  

(NR: non-renewable resources, data of energy consumption are provided by EIA. This 

figure shows temporal trends and differences of energy consumption in America and China 

from 1992 to 2010). 

 

Figure 4 shows that spatial correlation between AHF distribution and economically developed 

regions is very close since anthropogenic heat is emitted during the energy consumption process. High 

AHF is concentrated in megacities, e.g., Beijing, Shanghai and Guangzhou; furthermore, the spatial 

extent greatly expanded during the studied period. Most of anthropogenic heat concentrated on 

economical developed regions, while less distributed in developing regions. 

AHF in China changed greatly from 1992 to 2010. The increasing trend in anthropogenic heat was 

focused on three major metropolis: the Beijing-Tianjin region, the Yangzi River delta and the Pearl 

River delta. The Beijing-Tianjin and the Yangzi River delta had the largest changes during the studied 

period (Figure 4). The cities of Beijing, Shanghai and Guangzhou had the largest single-city AHF 

change in the three mega-metropolis. The annual mean AHF in Beijing, Shanghai and Guangzhou 

were 17, 19 and 7.8 Wm−2, respectively, in 2010. However, these values were only 9.0, 7.9 and  

6.19 Wm−2, respectively, in 1992. The AHF in Shanghai city in 2010 was 2.4 times its size in 1992.  

On the larger scale, the AHF across China changed obviously between 1992–2000 and 2000–2010;  

the annual mean AHF for China in 1992, 2000, and 2010 was 0.10, 0.14, and 0.34 Wm−2, respectively. 

Large changes were found during the latter half of the studied period; the AHF difference for China 

from 2000 to 2010 was 0.2 Wm−2. The increase in anthropogenic heat in China was primarily due to 

acceleration of economic growth. 
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Figure 4. Spatial patterns of AHF and spatial differences of distributions from 1992 to 

2010 (units: Wm−2). 

 

3.2. Validation 

It is very difficult to evaluate AHF with in situ measurements because identifying whether the sensible 

or latent heat was emitted from human activity or background conditions is very challenging [32]. 

Therefore, our data must be validated with other estimated results [33]. This study exploited AHF 

spatial distributions across China [20], annual average province-level AHF [18,22] and city-scale  

AHF [9,19] to assess the data. 

3.2.1. Comparison of Data for China 

We compare our data with global AHF data [20] (named Flanner’ data), which are estimated by 

allocating energy consumption by spatial population density. As there are different spatial resolutions 

for Flanner’s data and our data, we must resample these data to uniform resolution (2.5 × 2.5 min) to 

compare them. Figure 5 shows that the AHF spatial discrepancies between Flanner’s data and our data 

are obvious. In urban regions, our data are larger than Flanner’s results, and the largest anthropogenic 

heat release occurred in mega-cities, such as Shanghai and Beijing. In rural regions, our data are 

generally small compared with Flanner’s results. In some western and northwest regions in China, the 

AHF in Flanner’s data are non-zero. However, these regions, such as desert and mountain regions do 

not consume energy and should have no AHF. 
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The fact that our data are larger in urban than rural areas is a result of non-renewable energy 

resources that were allocated to rural regions in Flanner’s analysis and are larger than the actual rural 

energy consumption. Moreover, accuracy of the spatial population density proxy could result in errors. 

The annual average AHF estimated by Flanner used yearly energy consumption allocated into  

spatial population density distributions [20]. AHF data quality depends on the spatial proxy. Spatial 

population density data were calculated using areas and populations in administration units, resulting 

in no pronounced statistical spatial change between administration units. The AHF has significant 

relationships with cities. Moreover, the AHF is inversely proportional to the distances from cities [34]. 

Therefore, it is unreasonable that there is no change in AHF in certain areas. 

Figure 5. Flanner’s data of AHF, our data and spatial difference of AHF between Flanner 

and our data in 2005 (2.5 × 2.5 min). 

 

3.2.2. Comparison of Province-Level AHF Data 

Annual average province-level AHF from Chen et al. were estimated using the energy consumption 

per province and corresponding areas [18]. Figure 6 shows that there is good consistency between 

these data; the slope of the curve is 1.6 and correlation coefficient is 0.945. However, there are some 

deviations, e.g., the maximum AHF difference in Shanxi Province is 0.65 Wm−2 and the minimum 

discrepancy in Xinjiang Province is 0.03 Wm−2. Human metabolism was considered in estimating the 

annual average province-level AHF, which is a relatively small contribution in our data. Although the 

DMSP-OLS data have a strong linear relationship with energy consumption, the estimated  
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non-renewable resources from a linear model for DMSP-OLS and energy consumption are not 

equivalent to the actual energy consumptions due to statistical errors, which will produce deviations in 

some provinces. 

Figure 6. Comparison on AHF between chen’s data and data based on DMSP-OLS. 

 

3.2.3. Comparison of Single-City AHF Data 

The daily AHF for individual cities were acquired to validate our data. Because we used annual 

average AHF or yearly total energy per pixel, the AHF data needed to be converted to daily AHF  

using the yearly and daily weight curves of Flanner [17,20]. AHF in Beijing was estimated using the 

bottom-up method in which vehicles, building density and industry were modeled to estimate AHF. 

AHF in other cities was estimated using the top-down approach. Table 1 shows that our data have 

substantial inconsistencies with the AHF for individual cities reported in other studies. The largest 

difference is 70.23 Wm−2 in Beijing; The smallest difference is 25.9 Wm−2 in Guangzhou [19]. 

Comparing Flanner’s, Chen’s and single-city AHF data, our AHF are larger than Flanner’s and Chen’s 

and smaller than the single-city AHF. Moreover, single-city AHF is more accurate as they consider 

detailed information for individual cities at smaller scales. Since it is difficult to be access city-level 

social and economic statistics and the expense in estimating AHF, exploiting bottom-up methods to 

estimate AHF across China is unrealistic. 

Table 1. The differences of our data and results of other’s AHF. 

Regions 
Flanner 
(Wm−2) 

Chen 
(Wm−2) 

Our Data 
(Wm−2) 

AHF of Single City 
(Wm−2) 

Estimating Methods of 
Single City 

Beijing - 5.81 24.67 94.9 [19] Heat Emission Inventory 
Guangzhou 7.99 12 15.1 41 [9] Energy Based 
Hangzhou - 7.84 17.36 50 [35] Energy Based 
Xiaoshan - 4.62 14.9 40 [35] Energy Based 

The differences between single-city AHF and our data are primarily due to the rules used for 

allocating total urban energy consumption to individual cities, i.e., the amount of apportioned energy 
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that was consumed in some large cities was smaller than the actual demands. The other reason for this 

finding is that the daily and yearly weight curves do not depend on climate zones in China. Moreover, 

inconsistency in the urban areas selected by different authors may result in deviations, especially 

because too small of an urban area extent leads to high AHF in the corresponding city. 

4. Discussions 

Although anthropogenic heat is only about 0.3% of the total energy transport to the extra-tropics by 

atmospheric and oceanic circulations, human heat could disrupt the normal atmospheric circulation 

pattern and bring significant influences on surface temperature at global scales [12]. Therefore, 

incorporating anthropogenic heat into climate models could improve the performance of simulations  

of surface climate warming [12,36]. Increased urban heat could possibly reduce concentration of 

precursor species (e.g., NOx and CO), while increase concentration of surface ozone [36,37], and raise 

risks of morbidity and mortality [38]. 

Our analysis shows higher AHF than Flanner’s for urban regions, but smaller than values of studies 

in specific cities. The applied methodology could be improved in future in several ways. Firstly, our 

method assumes that all energy is converted into waste heat, which is unreasonable; Secondly, we use 

only non-renewable energy and the percentage of renewable energy is increasing; Thirdly, we use 

primary energy statistics not the final energy consumption in each location, which will exclude the 

waste heat released in the production process; Lastly, threshold and saturation in the DMSP-OLS data 

may make it difficult to monitor anthropogenic activity in mega-cities [39]. 

5. Conclusions 

We allocated annual fossil energy consumption to DMSP-OLS data from 1992 to 2010 in China 

using the following procedure: (1) divide total energy consumption into urban and rural components; 

(2) apply threshold (digital number ≥ 12) to distinguish urban and rural regions based on the  

DMSP-OLS data; (3) allocate energy consumption of urban area into each city based on the 

relationship between the urban area and energy consumption records from several specific Chinese 

cities; and (4) calculate AHF based on DMSP-OLS data for urban and rural areas separately. 

Our results show that AHF increased greatly in China from 1992 to 2010. The biggest changes 

occurred in the Beijing-Tianjin region, the Yangzi River delta and the Pearl River delta. During the 

latter half of the studied period, AHF across China increased due to booming economic development. 

Compared with other data, our results show reasonable performance with better spatial distribution and 

larger magnitude for large cities than that in Flanner data. This illustrates that the proxy of DMSP-OLS 

is better than population density for AHF studies as it represents economic activity. 
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