Pooling Bio-Specimens in the Presence of Measurement Error and Non-Linearity in Dose-Response: Simulation Study in the Context of a Birth Cohort Investigating Risk Factors for Autism Spectrum Disorders

Table S1. Number of stable replicates. For poole analysis: 1000 simulation realizations for each scenario ^a.

Cohort (Pool) Size	ohort (Pool) Size eOR ₁ (eβ ₁)		Linear Model	Threshold Model	Saturation Model		
		Truth ^b	997-1000	1000	1000		
	1.5 (0.15)	0.0625	998	999	1000		
		0.25	1000	1000	999		
		1	1000	1000	1000		
	2.0 (0.25)	Truth ^b	998–999	998-1000	999–1000		
225 (5)		0.0625	997	999	998		
		0.25	0.25 998 999		999		
		1	999	1000	1000		
	4.0 (0.5)	Truth ^b	951–964	979–987	987–992		
		0.0625	949	970	980		
		0.25	972	987	994		
		1	999	999	994		
450 (10)	1.5 (0.15)	Truth ^b	998–999	998-1000	999–1000		
		0.0625	996	999	1000		
		0.25	0.25 998 998		1000		
		1	997	1000	999		
	2.0 (0.25)	Truth ^b	990–996	993-1000	994–999		
		0.0625	983	999	993		
		0.25	0.25 993 995		994		
		1	997	997	998		
	4.0 (0.5)	Truth ^b	791-804	907–916	912–924		
		0.0625	736	906	887		
		0.25	839	839 929			
		1	955	971	968		
675 (15)		Truth ^b	997–999	997-1000	998–999		
	1.5 (0.15)	0.0625	992 991		993		
		0.25	994 996		993		
		1	994	996	997		
		Truth ^b	967–977	982–994	980–986		
		0.0625	947	977	969		
	2.0 (0.25)	0.25	970	987	979		
		1	1 978		989		

Cohort (Pool) Size	eOR1 (eβ1)	$ME_{X_1}(\sigma^2)$	Linear Model	Threshold Model	Saturation Model
675 (15)	4.0 (0.5)	Truth ^b	522-537	747–749	
		0.0625	458	722	685
		0.25	603	798	769
		1	769		879

Table S1. Cont.

Notes: (a) Number of replicates for which the OR_{x1}/OR_{w1} and OR_{w2} were between 0.1 and 10. (b) Models without measurement error. Values vary as a different viable population was selected for each measurement error scenario.

Table S2. Description of 533. Unstable replicates of size 675 (g = 15), eOR = 4 and variance, ME_{x1} = 0.0625, n and percent of total ^a.

		OR _{w1}							
		≤0.1		Between 0.1 and 10		≥10		Total	
		n	% of Total	n	% of Total	n	% of Total	n	% of Total
OR _{w2}	≤0.1	10	1.9	0		167	31.3	177	33.2
	Between 0.1 and 10	0		0		103	19.3	103	19.3
	≥10	4	0.7	4	0.7	245	46.0	253	47.5
	Total	14	2.6	4	0.7	515	96.6	533	100.0

Notes: (a) Excludes 9 replicates with convergences problems: 2 exceeded the iteration limit (50) and 7 had questionable convergence (The relative Hessian convergence criterion is greater than the limit of 0.0001).

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).