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Abstract: Changes in ecological vulnerability were analyzed for Northern Shaanxi, China 
using a geographic information system (GIS). An evaluation model was developed using a 
spatial principal component analysis (SPCA) model containing land use, soil erosion, 
topography, climate, vegetation and social economy variables. Using this model, an 
ecological vulnerability index was computed for the research region. Using natural breaks 
classification (NBC), the evaluation results were divided into five types: potential, slight, 
light, medium and heavy. The results indicate that there is greater than average optimism 
about the conditions of the study region, and the ecological vulnerability index (EVI) of the 
southern eight counties is lower than that of the northern twelve counties. From 1997 to 
2011, the ecological vulnerability index gradually decreased, which means that 
environmental security was gradually enhanced, although there are still some  
places that have gradually deteriorated over the past 15 years. In the study area, 
government and economic factors and precipitation are the main reasons for the changes in  
ecological vulnerability. 

Keywords: ecological vulnerability index; geographic information system (GIS); spatial 
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1. Introduction 

The Northern Shaanxi agropastoral areas in the hilly-gully region of the Loess Plateau are typical of 
ecologically fragile areas where water and wind erosion are very serious problems. In recent years, 
energy exploitation and utilization have seriously affected the ecological balance of the area and made 
it sensitive to change. The ecological environment in Northern Shaanxi is more sensitive to stress or 
interference, and its geographical location means that its environment is unique on the Loess Plateau. 
A comprehensive eco-environment evaluation of the Northern Shaanxi region is urgently needed to 
improve ecological and environmental protection and governance because it would not only reveal the 
forces driving eco-environmental change but also shape land use policies to restore and expand 
ecosystem services and mitigate the ecological effects of radiation [1]. In other words, a 
comprehensive eco-environment evaluation would be the basis for taking effective measures to control 
the deterioration of the ecological environment and effectively prevent the unreasonable destruction of 
the socio-ecological environment due to the effects of human activities as well as protect China's 
energy and chemical resources and ensure the safety of the Yellow River downstream. It also provides 
the theoretical and scientific basis for regional eco-environmental development in ecologically fragile 
areas [2,3]. 

As an important aspect of environmental assessment, the concept of ecological vulnerability has 
been developed in recent years. The concept of vulnerability is derived from the social sciences, but 
there is no general agreement over how to define vulnerability as part of an environmental impact 
assessment [4]. Research into ecological vulnerability, which originated from a basic definition by the 
IPCC, has become an important aspect of research on global environmental change and sustainable 
development [5]. Although the assessment of ecological vulnerability is a relatively new field that has 
developed rapidly in recent years, ecological restoration continues to be a source of useful  
information [6,7]. A variety of evaluation methods has been developed, such as the Integrated 
Assessment Act (IAA) [8], the analytical hierarchy process (AHP) [9] and the forecast weighting 
method (IWM) [10]. However, these methods have been established for experts to assess the 
importance of the factors under consideration that will directly lead to the results of the final  
evaluation [4,10,11]. This paper selected spatial principal component analysis (SPCA) to evaluate the 
ecological vulnerability of the Northern Shaanxi region. 

Recently, remote sensing (RS) and geographic information systems (GIS) have emerged as 
powerful tools to support ecological vulnerability assessments [12]. Satellite images are especially 
valuable because they provide frequently updated maps of inaccessible areas or areas with rapidly 
changing landforms [13–15]. The integration of RS with GIS provides an excellent framework for data 
capture, storage, synthesis, measurement, and analysis, all of which are essential to eco-environmental 
analysis [1]. An evaluation system includes natural environmental factors, social factors and human 
factors, and in this study, GIS was used in the eco-environmental evaluation model to provide an 
objective assessment of ecological vulnerability [16–18]. The objectives of this study were:  
(1) to develop a relatively reasonable evaluation system using GIS; (2) to establish a regional 
ecological vulnerability assessment model based on spatial principal component analysis (SPCA);  
(3) to analyze changes in ecological vulnerability since the implementation of the policy to return 
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farmland to forest, and (4) to analyze and improve our understanding of the factors driving  
eco-environmental changes so that a sustainable land use strategy can be established. 

2. Study Area and Data 

2.1. Study Area 

The Northern Shaanxi region was selected as the study area to conduct this research. It is located in 
the middle reaches of the Yellow River, which marks the border between the Loess Plateau and the 
southern zone of the Mu Us Desert (see Figure 1). The study area is confined by 35°34′~39°58′ N 
latitude and 107°33′~111°24′ E longitude. According to the administrative boundaries, the study area 
involved two regions, namely, the Yulin Region (including Yuyang District, Fugu County, Shenmu 
County, Dingbian County, Jingbian County, Hengshan County, Mizhi County, Jiaxian County, Zizhou 
County, Wubu County, Suide County and Qingjian County) and the Yan’an Region (including Baota 
District, Ansai County, Zichang County, Yanchuan County, Ganquan County, Fuxian County, 
Luochuan County, and Huangling County). 

 

Figure 1. The location of the study area. 
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2.2. Data and Selection 

The core data consisted of Landsat-5 TM remote sensing images from a specific time in June of 
1997, 2004 and 2011, which have a spatial resolution of 30 meters, and serial numbers 127, 33; 127, 
34 and 128, 34, respectively. The remote sensing data were obtained from the United States Geological 
Survey (USGS), and the map projection coordinates were in Universal Transverse Mercator (UTM). 
Meanwhile, in addition to the remote sensing data, we also acquired natural, economic and social data 
from the 1997, 2004 and 2011 Statistical Yearbooks and relevant government departments. 

Land use type, altitude, vegetation cover and forest area were interpreted from Landsat resource 
thematic mapper (TM) images, and industrial output, agricultural output, population density, soil 
erosion area and per capita GDP were obtained from the Statistical Yearbook of Shaanxi Province of 
the corresponding year. Moreover, rainfall, hours of sunshine and average annual temperature were 
obtained from the Shaanxi Meteorological Bureau of the Agricultural Remote Sensing Center. 

The selection of evaluation criteria plays a key role in a regional ecological assessment.  
The evaluation factors should be operational, indicative, and representative [19,20]. Various factors 
influencing the ecological vulnerability of the Loess Plateau are considered. Based on some previous 
qualitative analyses of ecological features in the study area, we considered all possible environmental 
variables for the present assessment. All variables were submitted to principal component analysis 
(PCA) to reduce data dimensionality by performing a covariance analysis between factors. The 12 
independent variables representing the principal trait of the environmental variability are selected to 
assess the ecological vulnerability for the study area. Natural conditions including topography, altitude, 
climate, and vegetation cover form an important determinant of vulnerability evaluation [21]. Soil 
erosion, land use and forest are considered because the study area is severely suffering from these earth 
surface processes and environmental problems [22]. The regional environmental vulnerability is also 
strongly related to local socio-economic factors since human activities can greatly influence the 
evolution of numerous environmental characteristics [23]. Population density, per capita GDP and 
cultivation and exploitation disturbances are therefore selected to evaluate the impacts of human 
activities. Generally, cultivation and exploitation disturbances can be reflect by agricultural and output 
and industrial output. In this region, the impact of industrial or agricultural plays a major role.  

3. Methods 

3.1. Evaluation Factors and Data Standardization 

In the ecological vulnerability assessment system, the choice of evaluation criteria is crucial; criteria 
should be representative and adaptable. Meanwhile, the ecological environment is a dynamic, balanced 
system that is constantly affected by changing energy and material cycles. Therefore, the factors used 
for assessment in the quantitative study should consider natural environmental variables and the 
impacts of human activity. The evaluation system in this study included 12 variables: land use, rainfall, 
annual sunshine time, average annual temperature, population density, per capita GDP, altitude, 
vegetation cover, forest area, industrial output, agricultural output, and soil erosion area. 

Because of the different units used for the values of the assessment factors, it is difficult to directly 
evaluate the status of the eco-environment as these values must be standardized to reflect a uniform 
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measurement system across all factors. The original values of each variable were standardized using 
SPSS18.0 software by the following equation:  
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Y  (1) 

where Yij represents the standardized value of factor j of unit i and varies from 0 to 10; xij represents 
the measured value of factor j of unit i, and xmin,j and xmax,j represent the minimum and maximum 
values of factor j of unit i. 

3.2. Evaluation Model 

Converting the factors into an integrated evaluation index is a key step in environmental evaluation 
and remains difficult. Generally, the observed data for each variable presents a problem in that certain 
variables will correlate, i.e., the observation data and the information they reflect will have a certain 
amount of overlap [24,25]. Through different dimensions of data standardization, principal component 
analysis (PCA) can compress the data set and transform the index data into a variety of representative, 
comprehensive data [21,26]. The characteristics of each variable that reflect this comprehensive feature 
can then be analyzed. The principal components provide information about the most meaningful 
parameters, which are those that describe the whole data set and allow for data reduction with minimal 
loss of the original information. PCA can be expressed as follows: 

m2211 ... xnxnxnY m+++=  (2) 

where Y is the component score; n is the component loading; x is the measured value of a variable;  
i is the component number, and m is the total number of variables. 

PCA can therefore be used as descriptive, statistical approach to data transformation as a means of 
overcoming variable incommensurability. The ranking of the PCs in order of their significance (based 
on how much of the variability in the data they capture) is denoted by the eigenvalues associated with 
the vector for each PC. In the case of a spatially explicit analysis each data point for each variable is 
related to a specific point in space and the PCs derived from a PCA can be assigned scores (synthetic 
variable values) for each of these points in space. Demšar [26] had a very detailed analysis on 
operational processes and applications of the PCA. In the “Raster Data PCA” section, it is actually the 
SPCA method by using ArcGiS software. Therefore, SPCA also is a modified PCA method. 

This study used an ecological environmental vulnerability evaluation model based on the SPCA 
method. Spatial principal component analysis (SPCA) transforms the attributes in multiband spatial 
data into a new multivariate attribute space whose axes are rotated with respect to the original space so 
that the axes in the new space are uncorrelated. The result of SPCA is a new multilane spatial data set 
with the same number of bands as the original data. SPCA has certain advantages over conventional 
orthogonal functions because the resulting data are not of any predetermined form but are developed as 
unique functions from the data matrix. This is particularly useful if nothing is known in advance about 
the existence or nature of the patterns of the components [27], so SPCA was used to evaluate 
ecological vulnerability in this study. 

The higher the EVI value, the more vulnerable the ecological environment is. The EVI is defined as 
the sum of a couple of weighted principal components as shown below: 
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m2211 ... FnFnFnEVI m+++=  (3) 

where EVI is the eco-environmental synthetic evaluation index; n is the contribution ratio of the 
principal component; F is the principal component, and m is the number of principal components retained: 
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where ni is the contribution ratio of the ith principal component, and ri is the eigenvalue of the ith 
principal component. 

3.3. Vulnerability Gradation 

The EVI was computed from the SPCA assessment model, and it was then classified into several 
ranks to represent the different levels of ecological vulnerability. The natural breaks classification 
(NBC) is an objective and rational measure to explore the statistical distribution of classes and clusters 
in an attribute space using ArcGIS 9.3 software [28]. The NBC can identify the break points that group 
similar values and maximize the differences between classes, and the features are then divided into 
classes whose boundaries are the relatively large gaps between values. In this study, the NBC was used to 
divide the ecological vulnerability assessment into five levels: potential, slight, light, medium, and heavy. 

4. Results 

4.1. Eco-Environmental Vulnerability Assessment of 1997, 2004 and 2011 

According to the correlation analysis, all 12 of the factors selected for the ecological vulnerability 
assessment represent important aspects of the environment, and the SPCA identified four principal 
components. The cumulative contribution results of the principal components are shown in Table 1. 

Table 1. The results of spatial principal component analysis 

 Principal Component 1997a 2004a 2011a 

Eigenvalue(n) 

I 4.032 3.109 3.583 
II 2.657 2.571 2.392 
III 2.002 2.087 1.363 
IV 1.129 1.042 1.075 

Contribution (%) 

I 33.602 28.261 32.569 
II 22.144 23.375 22.749 
III 16.687 18.973 14.392 
IV 9.412 9.469 9.775 

Cumulative contribution (%) 

I 33.602 28.261 32.569 
II 55.746 51.636 55.318 
III 72.433 70.608 69.709 
IV 81.845 80.077 79.485 
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As derived from Table 1 and Equations (3) and (4), the ecological vulnerability assessment index 
(EVI) of the northern Shaanxi region is defined as the sum of a couple of weighted principal 
components as follows: 

43211997 1150.02039.02706.04106.0 AAAAEVI +++=  (5) 
43212004 1183.02369.02919.03529.0 BBBBEVI +++=  (6) 
43212011 1278.01620.02843.04259.0 CCCCEVI +++=  (7) 

In the equations, the EVI is the synthetic ecological vulnerability evaluation index, and A1~A4 are 
the four principal components from the twelve initial spatial variables in 1997. Likewise, B1~B4 are 
the four principal components in 2004, and C1~C4 are the four principal components in 2011. 

Using Equations (5‒7), the synthetic ecological vulnerability index of the study area was calculated 
(see Figure 2). In 1997, the EVI of Yuyang District, Jingbian County and Baota District was larger 
than the EVI of the other counties, and in 2004, the EVI of Yuyang District and Jingbian County was 
still larger than the EVI in the other counties. In 2011, the trend was similar to 2004. From 1997 to 
2011, the EVI of Ganquan County, Fuxian County and Huangling County was smaller than the EVI in 
the other counties. Overall, the EVI in the Yulin Region is larger than the Yan’an Region. 
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Figure 2. The ecological vulnerability of Northern Shaanxi in 1997, 2004 and 2011. 

4.2. Distribution of the Ecological Vulnerability Grades 

The natural breaks classification method divided the ecological vulnerability data from the study 
area into five grades: potential, slight, light, medium and heavy (see Table 2). The results of the 
assessment and grading can be used to reflect the actual local eco-environmental conditions in 
Northern Shaanxi (see Figure 3). The ecological vulnerability in most of the counties was at the level 
of potential, slight or light, but some counties were at medium or heavy levels.  

In 2000, the heavily vulnerable zones were mainly distributed in the Yuyang District, Jingbian 
County, and Baota District, and the potentially vulnerable areas were mainly distributed in Fuxian 
County and Ganquan County. In 2004, the potentially vulnerable areas were mainly distributed in 
Ganquan County, Fuxian County and Huangling County, and the heavily vulnerable areas were mainly 
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distributed in the Yulin Region. In 2011, the distributions of the potential and heavy areas were 
consistent with their distributions in 2004. 

Table 2. Classification of ecological vulnerability in Northern Shaanxi. 

Evaluation Level EVI Feature Description 
Potential −1.8000~−0.8800 Stable ecosystem, extremely high anti-interference ability, rich soil, 

abundant water and heat, and good vegetation cover 
Slight −0.8799~−0.3394 Relatively stable ecosystem, high anti-interference ability, rich soil, 

abundant water and heat, and relatively good vegetation cover 
Light −0.3393~0.0947 Relatively stable ecosystem, relatively high anti-interference ability, 

infertile soil, and relatively poor vegetation cover 
Medium 0.0948~0.4507 Relatively unstable ecosystem, low anti-interference ability, poor-quality 

soil, and poor vegetation cover 
Heavy 0.4508~0.9546 Unstable ecosystem, low anti-interference ability, deteriorated soil, and 

poor vegetation cover 

  

Figure 3. Cont. 
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Figure 3. The ecological vulnerability of Northern Shaanxi in 1997 (a), 2004 (b) and 2011 (c). 

5. Discussion 

5.1. Analysis of the Changes in Ecological Vulnerability 

From 1997 to 2011, the overall ecological vulnerability index decreased in Northern Shaanxi, which 
means that the ecological environment was gradually stabilizing, but the ecological vulnerability index 
gradually increased in some counties, specifically in the Yulin Region (see Figure 4). However, 
Hengshan County, Dingbian County and Qingjian County were abnormal because the EVI in later 
years was larger. The EVI of Baota District, Ansai County, Zichang County, Yanchuan County, 
Ganquan County, Fuxian County, Luochuan County and Huangling County gradually decreased from 
1997 to 2011, so ecological security gradually increased. From 1997 to 2004, the ecological 
vulnerability index decreased in southern area, but most northern areas of ecological vulnerability 
index has gradually increased. From 2004 to 2011, the ecological vulnerability index decreased in the 
central region of the study area, and other areas of ecological vulnerability index had a small increase. 

Spatially, the range of the ecological vulnerability index values of the study area gradually 
decreased from north to south (see Figures 3 and 4). The EVI of the twelve northern counties 
(including Yuyang District, Fugu County, Shenmu County, Hengshan County, Jingbian County, 
Dingbian County, Suide County, Mizhi County, Jiaxia County, Qingjian County, Wubu County and 
Zizhou County) was significantly higher than that for the eight southern counties (including Baota 
District, Ansai County, Zichang County, Yanchuan County, Ganquan County, Fuxian County, 
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Luochuan County and Huangling County). In other words, ecological security gradually became 
stronger from north to south. 

  

 

Figure 4. The changes in EVI difference between 1997 and 2004 (A); between 2004 and 
2011 (B); between 1997 and 2011 (C). 

The ecological vulnerability index of Ganquan County and Huangling County was the lowest, 
which illustrates the ecological security and stability of the region. In the research region, the 
ecological vulnerability index of Yuyang District, Shenmu County, and Jingbian County was higher 
than that of the other counties, and the exploitation of oil and coal was one of the important factors. 
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5.2. Evaluation of the Model and the Results 

The use of GIS technology can provide more accurate results when assessing environmental 
vulnerability at regional or national scales as well as easily create graphics to display the spatial 
distribution of complex environmental characteristics. Moreover, the contribution of this study is that 
we added some of the socio-economic factors that influence environmental vulnerability to the model. 
Our case study demonstrated that the proposed method is effective, and it can also be used to assess the 
environmental vulnerability of other regions. The study area is typical of the hilly-gully region in the 
Loess Plateau, and the general ecological vulnerability grade of the study region is light, which is 
consistent with local ecological conditions. Meanwhile, the EVI in Northern Shaanxi varies 
geographically; it gradually decreases from north to south, which demonstrates that the evaluation 
results represent regional features and status. 

5.3. The Analysis of the Driving Factors 

In the Northern Shaanxi area, the ecological vulnerability index gradually decreased over time, 
which reflects that eco-environmental quality improved throughout most of the area. However the 
ecological vulnerability index of some counties increased from 1997 to 2000, and there are many 
factors that can affect eco-environmental stability. In general, energy development and the policy of 
returning farmland to forest and natural vegetation were the main forces driving the changes in 
ecological vulnerability. 

Northern Shaanxi is China’s national energy and chemical base, so economic development mainly 
depends on energy development. Energy exploitation directly causes soil erosion in ecologically 
fragile areas, and it can directly affect the environment [29]. In recent years, the Chinese government 
has paid more attention to the control of energy exploitation and sustainable development in the Loess 
Plateau of Northern Shaanxi. More slopes have been converted from fields to grassland and woodland 
in past decade [30], and in 1999, the Chinese government began to implement a policy of returning 
farmland to forest, which is one of the largest conservation projects in the word. The policy requires 
farmland with slopes greater than 25° to be converted to woodland and grassland and as more and 
more slopes have been converted, the quality of the environment has improved. Therefore, in recent 
years, the ecological vulnerability index has decreased in most of Northern Shaanxi. 

Vegetation is an important factor affecting the ecological balance, especially in ecologically fragile 
areas. Many areas in Northern Shaanxi have serious soil and water erosion problems, and the 
vegetation has been degraded. The mining of coal and oil also seriously damages the vegetation. Due 
to the limitations of natural ecological recovery, the effect of returning farmland to forests is not 
obvious in some places, such as in Shenmu County, Fugu County and Jingbian County. Therefore, 
developing a reasonable vegetation restoration program is the focus of future work as it directly affects 
the degree of ecological vulnerability. 

6. Conclusions 

Using Northern Shaanxi as a case study, this paper analyzed long-term (from 1997 to 2011) 
ecological vulnerability. Moreover, by incorporating a measure of ecological stability, changes in 
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ecological vulnerability were analyzed following the implementation of a policy to return farmland  
to forest. 

By comparing the ecological vulnerability in 2004 and 2011 with that of 1997, the potentially 
vulnerable, slightly vulnerable and lightly vulnerable areas all increased from 1997 to 2011, and these 
results reflect a gradual improvement in eco-environmental quality in most places. However, there are 
still some places that have gradually deteriorated over the past 15 years. There are many factors that 
affect ecological vulnerability, but energy development, policy and vegetation were the main driving 
forces affecting ecological vulnerability. 

Finally, this study considered multiple factors in its assessment of regional environmental 
vulnerability and used an SPCA model to closely reflect the real situation of the study area. Compared 
to traditional estimation methods, this approach allows us to integrate various types of spatial 
information and socio-economic data. However, due to limited data and technical problems, this study 
did not evaluate the environment in specific energy exploitation areas. Therefore, more attention 
should be paid to this region in future research to provide reasonable suggestions for ecological 
recovery and sustainable development in this ecologically vulnerable region. 

Acknowledgments 

We would also like to thank the anonymous reviewers for their constructive comments on earlier 
versions of the manuscript. The language of manuscript was revised by American Journal Experts 
(AJE). Thanks are also due to Zhou Jing at Xi’an Jiao tong University for editing English of  
this manuscript. 

Author Contributions 

Hou Kang conceived the SPCA model and analyzed the data. Zhang Jing performed data collection 
and pre-processing. Hou Kang and Li Xuxiang wrote the paper. All authors contributed to the 
manuscript and approved the final version. 

Conflicts of Interest 

The authors declare no conflict of interest.  

References 

1. Li, X.; Liu, X. Embedding sustainable development strategies in agent-based models for use as a 
planning tool. Int. J. Geogr. Inf. Sci. 2008, 22, 21–45. 

2. Ivits, E.; Koch, B.; Blaschke, T.; Jochum, M.; Adler, P. Landscape structure assessment with 
image grey-values and object-based classification at three spatial resolutions. Int. J. Remote Sens. 
2005, 26, 2975–2993. 

3. Si, H.; Bi, H.; Li, X.; Yang, C. Environmental evaluation for sustainable development of coal 
mining in Qijiang, Western China. Int. J. Coal Geol. 2010, 81, 163–168. 

 



Int. J. Environ. Res. Public Health 2015, 12 4304 
 
4. Kvarner, J.; Swensen, G.; Erikstad, L. Assessing environmental vulnerability in EIA— 

The content and context of the vulnerability concept in an alternative approach to standard EIA 
procedure. Environ. Impact Assess. Rev. 2006, 26, 511–527. 

5. George, C.S.L.; Samuel, P.S.H. China’s land resources and land-use change: Insights from the 
1996 land survey. Land Use Policy 2003, 20, 87–107. 

6. Matthies, M.; Giupponi, C.; Ostendorf, B. Environmental decision support systems:  
Current issues, methods and tools. Environ. Model. Softw. 2007, 22, 123–127. 

7. Honnay, O.; Piessens, K.; Landuyt, W.V. Satellite based land use and landscape complexity 
indices as predictors for regional plant species diversity. Landsc. Urban Plan. 2003, 63, 241–250. 

8. Li, X.L.; Min, M.; Tan, C.F. The functional assessment of agriculture ecosystems in Hubei 
Province, China. Ecol. Model. 2005, 187, 352–360. 

9. Malczewski, J. GIS-based multicriteria decision analysis: a survey of the literature. Int. J. Geogr. 
Inf. Sci. 2006, 20, 703–726. 

10. Li, X.J.; Jim, P.; Liu, G.J. Assessing regional sustainability: The case of land use and land cover 
change inthe middle Yiluo catchment of the Yellow River Basin, China. Appl. Geogr. 2001, 21, 
87–106. 

11. De Chazal, J.; Rounsevell, M.D.A. Land-use and climate change within assessments of 
biodiversity change: A review. Glob. Environ. Chang. 2009, 19, 306–315. 

12. Leitao, A.B.; Ahern, J. Applying landscape ecological concepts and metrics in sustainable 
landscape planning. Landsc. Urban Plan. 2002, 59, 65–93. 

13. Luo, J.; Wei, Y.H.D. Modeling spatial variations of urban growth patterns in Chinese cities: the 
case of Nanjing. Landsc. Urban Plan. 2009, 91, 51–64. 

14. Wilson, K.; Pressey, R.L.; Newton, A.; Burgman, M.; Possingham, H.; Weston, C. Measuring and 
incorporating vulnerability into conservation planning. Environ. Manag. 2005, 35, 527–543. 

15. Leal Neto Ade, C.; Legey, L.F.L.; Gonzalez-Araya, M.C.; Jablonski, S. A System Dynamic 
Model for the Environmental Management of the Sepetiba Bay Watershed, Brazil. Available 
online: http://www.researchgate.net/publication/6792094_A_system_dynamics_model_for_ 
the_environmental_management_of_the_Sepetiba_Bay_Watershed_Brazil (accessed on 14 
February 2015). 

16. Lu, L.; Li, X.; Cheng, G.D. Landscape evolution in the middle Heihe River Basin of north-west 
China during the last decade. J. Arid Environ. 2003, 53, 395–408. 

17. Hezri, A.A.; Dovers, S.R. Sustainability indicators, policy and governance: Issues for ecological 
economics. Ecol. Econ. 2006, 60, 86–99. 

18. Park, Y.-S.; Chon, T.-S.; Kwak, I.-S.; Lek, S. Hierarchical community classification and 
assessment of aquatic ecosystems using artificial neural networks. Sci. Total Environ. 2004, 327, 
105–122. 

19. Wolfslehner, B.; Vacik, H. Evaluating sustainable forest management strategies with the analytic 
network process in a pressure-state-response framework. J. Environ. Manag. 2008, 88, 1–10. 

20. Alewell, C.; Manderscheid, B. Use of objective criteria for the assessment of biogeochemical 
ecosystem models. Ecol. Model. 1998, 107, 213–224. 

 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Burgman%20M%5BAuthor%5D&cauthor=true&cauthor_uid=15920667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Possingham%20H%5BAuthor%5D&cauthor=true&cauthor_uid=15920667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Weston%20C%5BAuthor%5D&cauthor=true&cauthor_uid=15920667
http://www.ncbi.nlm.nih.gov/pubmed/?term=Leal%20Neto%20Ade%20C%5BAuthor%5D&cauthor=true&cauthor_uid=17001508
http://scholar.google.com/citations?user=e76Wh8IAAAAJ&hl=zh-CN&oi=sra


Int. J. Environ. Res. Public Health 2015, 12 4305 
 
21. Li, A.N.; Wang, A.S.; Liang, S.L. Ecological vulnerability evaluation in mountainous region 

using remote sensing and GIS—A case study in the upper reaches of Mingjiang River, China. 
Ecol. Model. 2006, 192, 175–187. 

22. Wang, X.D.; Zhong, X.H.; Fan, J.R. Spatial distribution of soil erosion sensitivity in the Tibet 
Plateau. Pedosphere 2005, 15, 465–472. 

23. Basso, F.; Bove, E.; Dumontet, S.; Ferrara, A.; Pisante, M.; Quaranta, G.; Taberner, M.  
Evaluating environmental sensitivity at the basin scale through the use of geographic information 
systems and remotely sensed data: an example covering the Agri basin (Southern Italy). Catena 
2000, 40, 19–35. 

24. Deng, X.Z.; Liu, J.Y.; Zhuang, D.F. Modeling the relationship of land use change and some 
geophysical indicators for the interlock area of farming and pasturing in China. J. Geogr. Sci. 
2002, 12, 397–404. 

25. Anselin, L.; Getis, A. Spatial statistical analysis and geographic information systems. In 
Perspectives on Spatial Data Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 35–47. 

26. Demsar, U.; Harris, P.; Brunsdon, C.; Fotheringham, A.S.; McLoone, S. Principal component 
analysis on spatial data: An overview. Ann. Assoc. Am. Geograph. 2013, 103, 106–128. 

27. Ding, C.R. Land policy reform in China: Assessment and prospects. Land Use Policy 2003, 20, 
109–120. 

28. Apan, A.A. Land cover mapping for tropical forest rehabilitation planning using remotely-sensed 
data. Int. J. Remote Sens. 1997, 18, 1029–1049. 

29. Zhou, Z.Z. Landscape changes in rural area in China. Landsc. Urban Plan. 2000, 47, 33–38. 
30. Shi, H.; Shao, M.G. Soil and water loss from the Loess Plateau in China. J. Arid Environ. 2000, 

45, 9–20. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 
distributed under the terms and conditions of the Creative Commons Attribution license 
(http://creativecommons.org/licenses/by/4.0/). 

 


	1. Introduction
	2. Study Area and Data
	2.1. Study Area

	3. Methods
	3.1. Evaluation Factors and Data Standardization
	3.2. Evaluation Model
	3.3. Vulnerability Gradation

	4. Results
	4.1. Eco-Environmental Vulnerability Assessment of 1997, 2004 and 2011
	4.2. Distribution of the Ecological Vulnerability Grades

	5. Discussion
	5.1. Analysis of the Changes in Ecological Vulnerability
	5.2. Evaluation of the Model and the Results
	5.3. The Analysis of the Driving Factors

	6. Conclusions
	Acknowledgments
	Author Contributions
	References

