## Supplementary Materials: Distribution and Predictors of Pesticides in the Umbilical Cord Blood of Chinese Newborns

Monica K. Silver, Jie Shao, Minjian Chen, Yankai Xia, Betsy Lozoff and John D. Meeker

Table S1. Additional results of generalized linear models for composite pesticide exposure variables, analyzing household, parental, and seasonal characteristics as predictors of exposure.

|  | Total Detects | Total Detects (No Metabolites) | Total Insecticide Detects | Non-Persistent Insecticide Detects | OP Detects | PYR Detects | Fungicide Detects | Herbicide Detects |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Predictor (Referent) | $\begin{gathered} \hline \text { Effect Estimate } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Effect Estimate } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Effect Estimate } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Effect Estimate } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Effect Estimate } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Effect Estimate } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ | Effect Estimate (95\% CI) | $\begin{gathered} \hline \text { Effect Estimate } \\ (95 \% \mathrm{CI}) \\ \hline \end{gathered}$ |
| \# Family in home | -0.12 (-0.63-0.39) | -0.05 (-0.44-0.33) | -0.07 (-0.39-0.24) | -0.08 (-0.36-0.20) | 0.03 (-0.12-0.17) | -0.12 (-0.30-0.05) | -0.02 (-0.10-0.06) | 0.04 (-0.04-0.11) |
| \# People in home | 0.04 (-0.42-0.50) | 0.05 (-0.31-0.40) | 0.02 (-0.26-0.31) | 0.00 (-0.26-0.26) | 0.08 (-0.05-0.21) | -0.08 (-0.24-0.08) | 0.02 (-0.05-0.10) | 0.00 (-0.07-0.07) |
| Living space | 0.00 (-0.01-0.00) | 0.00 (-0.00-0.00) | 0.00 (-0.00-0.00) | 0.00 (-0.00-0.00) | 0.00 (-0.00-0.00) | 0.00 (-0.00-0.00) | 0.00 (-0.00-0.00) | 0.00 (-0.00-0.00) |
| Residence (Urban) |  |  |  |  |  |  |  |  |
| Rural | -0.06 (-1.47-1.35) | 0.04 (-1.03-1.12) | 0.01 (-0.86-0.87) | 0.03 (-0.75-0.81) | -0.09 (-0.49-0.31) | 0.10 (-0.39-0.58) | -0.01 (-0.24-0.21) | 0.08 (-0.12-0.27) |
| Income ( $\geq 100,000$ Yuan) |  |  |  |  |  |  |  |  |
| <30,000 Yuan | -0.49 (-2.42-1.44) | -0.46 (-1.93-1.01) | -0.21 (-1.39-0.97) | -0.15 (-1.22-0.91) | -0.01 (-0.55-0.54) | -0.15 (-0.81-0.52) | -0.04 (-0.34-0.27) | $\begin{gathered} \hline-0.21(-0.49- \\ 0.06) \\ \hline \end{gathered}$ |
| 30,000-49,999 Yuan | 0.44 (-1.59-2.47) | 0.07 (-1.48-1.61) | 0.23 (-1.01-1.47) | 0.08 (-1.04-1.19) | 0.26 (-0.31-0.84) | -0.27 (-0.97-0.43) | 0.03 (-0.30-0.35) | $\begin{gathered} \hline-0.19(-0.47- \\ 0.10) \\ \hline \end{gathered}$ |
| 50,000-99,999 Yuan | 0.28 (-1.59-2.46) | 0.15 (-1.26-1.56) | 0.06 (-1.07-1.20) | 0.02 (-1.00-1.04) | -0.08 (-0.61-0.44) | 0.01 (-0.65-0.63) | 0.17 (-0.13-0.47) | $\begin{gathered} -0.08(-0.34- \\ 0.18) \\ \hline \end{gathered}$ |
| Maternal age | 0.05 (-0.13-0.24) | 0.02 (-0.13-0.16) | 0.00 (-0.11-0.12) | -0.01 (-0.12-0.09) | 0.02 (-0.04-0.07) | -0.02 (-0.09-0.04) | 0.02 (-0.01-0.05) | $\begin{gathered} \hline-0.01(-0.04- \\ 0.02) \\ \hline \end{gathered}$ |
| Paternal age | -0.06 (-0.22-0.10) | -0.05 (-0.18-0.07) | -0.04 (-0.14-0.05) | -0.03 (-0.12-0.05) | 0.00 (-0.05-0.04) | -0.02 (-0.07-0.03) | -0.00 (-0.03-0.02) | $\begin{gathered} \hline-0.01(-0.03- \\ 0.02) \\ \hline \end{gathered}$ |
| Maternal education (College) |  |  |  |  |  |  |  |  |
| Middle school or less | 0.14 (-1.42-1.70) | 0.14 (-1.06-1.33) | 0.26 (-0.70-1.22) | 0.25 (-0.62-1.11) | 0.04 (-0.40-0.48) | 0.13 (-0.41-0.66) | -0.03 (-0.27-0.22) | $\begin{gathered} \hline-0.10(-0.32- \\ 0.12) \\ \hline \end{gathered}$ |
| High school/secondary school | 0.12 (-1.58-1.82) | 0.32 (-0.98-1.62) | 0.37 (-0.67-1.41) | 0.42 (-0.53-1.36) | 0.20 (-0.29-0.68) | 0.12 (-0.47-0.70) | -0.05 (-0.32-0.22) | 0.00 (-0.24-0.24) |
| Paternal occupation (Prof./Tech./Admin.) |  |  |  |  |  |  |  |  |
| Manager | 0.21 (-1.77-2.19) | 0.04 (-1.47-1.56) | -0.15 (-1.36-1.07) | -0.13 (-1.23-0.97) | -0.06 (-0.63-0.49) | -0.03 (-0.71-0.65) | 0.03 (-0.28-0.35) | 0.16 (-0.12-0.43) |
| Factory worker | 0.50 (-1.44-2.45) | 0.31 (-1.18-1.80) | 0.15 (-1.05-1.34) | 0.02 (-1.06-1.10) | -0.05 (-0.61-0.50) | 0.10 (-0.57-0.76) | 0.09 (-0.22-0.40) | 0.08 (-0.20-0.35) |
| Other | -0.09 (-1.81-1.62) | -0.01 (-1.31-1.30) | -0.09 (-1.14-0.96) | -0.25 (-1.20-0.70) | -0.23 (-0.72-0.25) | -0.03 (-0.61-0.56) | 0.08 (-0.19-0.36) | 0.00 (-0.24-0.24) |

[^0]Table S2. Significant results of logistic regression models for pesticides with detection rates of $10 \%-50 \%$, analyzing household, parental, and seasonal characteristics as predictors of exposure.

|  | Dichotomous Pesticide Results |
| :---: | :---: |
| Predictor (Referent) | OR (95\% CI) ${ }^{1}$ |
| \# People in home | Mirex: $0.83(0.70-0.99)$ |
| Income ( $\geq 100,000$ Yuan) |  |
| $30,000-49,999$ Yuan | Omethoate: $0.44(0.22-0.90)$ |
| Maternal age | DEDTP: $0.92(0.86-0.98)$ |
|  | Carbophenothion sulfone: $0.91(0.84-0.99)$ |
| Paternal age | Mirex: $0.92(0.86-0.99)$ |
| Maternal education (College) | Metalaxyl: $0.92(0.86-0.99)$ |
| Middle school or less | o,p'-DDE: $1.08(1.01-1.15)$ |
| Paternal education (College) |  |
| High school/secondary school | 2,4 -Dichlorophenoxyacetic acid: 2.02 (1.09-3.75) |
|  |  |

Maternal occupation
(Housewife)

| Other | Fluvalinate-tau: $2.07(1.10-3.90)$ |
| :---: | :---: |
|  | Tetramethrin: $1.78(1.01-3.14)$ |
| Season of birth (Fall/Winter) |  |

Omethoate: 2.55 (1.37-4.74)
Chlorpyrifos: 0.41 (0.22-0.77)
DEDTP: 2.55 (1.37-4.74)
Cypermethrin: 0.36 ( $0.20-0.65$ )

| Spring | Fenvalerate: $0.32(0.10-0.98)$ |
| :---: | :---: |
|  | Tetramethrin: $2.95(1.42-6.13)$ |
|  | o,p'-DDE: $0.43(0.22-0.85)$ |
| p,p'-DDE: $2.07(1.16-3.69)$ |  |
| Prothiophos: $0.47(0.27-0.83)$ |  |
| Summer | Chlorpyrifos: $0.25(0.13-0.46)$ |
|  | Fenvalerate: $0.26(0.09-0.80)$ |
|  | o,p'-DDE: $0.48(0.24-0.95)$ |
| Month of birth (December) | Tetrahydrophthalimide: $0.45(0.21-0.95)$ |
| March |  |
| April | Cypermethrin: $0.12(0.02-0.71)$ |
|  | Cypermethrin: $0.23(0.07-0.76)$ |
|  | Tetramethrin: $6.50(1.71-24.75)$ |
|  | Chlorpyrifos: $0.15(0.04-0.55)$ |
|  | Tetramethrin: $8.25(1.46-46.60)$ |
| o,p'-DDE: $0.24(0.07-0.88)$ |  |

Chlorpyrifos: 0.10 (0.03-0.41)
2,4-Dichlorophenoxyacetic acid: 0.16 ( $0.03-0.82$ )

[^1]
[^0]:    $\mathrm{CI}=$ confidence interval.

[^1]:    ${ }^{1}$ Modeled the probability that pesticide <LOD, so a value $<1$ means higher odds of detection, while a value $>1$ means lower odds of detection. CI= confidence interval.

