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Abstract:



Echinococcosis, which can seriously harm human health and animal husbandry production, has become an endemic in the Xinjiang Uygur Autonomous Region of China. In order to explore an effective human Echinococcosis forecasting model in Xinjiang, three grey models, namely, the traditional grey GM(1,1) model, the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)), and the Modified Grey Model using Fourier Series (FGM(1,1)), in addition to a multiplicative seasonal ARIMA(1,0,1)(1,1,0)4 model, are applied in this study for short-term predictions. The accuracy of the different grey models is also investigated. The simulation results show that the FGM(1,1) model has a higher performance ability, not only for model fitting, but also for forecasting. Furthermore, considering the stability and the modeling precision in the long run, a dynamic epidemic prediction model based on the transmission mechanism of Echinococcosis is also established for long-term predictions. Results demonstrate that the dynamic epidemic prediction model is capable of identifying the future tendency. The number of human Echinococcosis cases will increase steadily over the next 25 years, reaching a peak of about 1250 cases, before eventually witnessing a slow decline, until it finally ends.
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1. Introduction


Echinococcosis is a globally distributed parasitic infection of humans and livestock. It can threaten human health and seriously hinder the development of animal husbandry. The worldwide prevalence of cystic Echinococcosis has fallen dramatically over the past several decades. However, Echinococcosis has increased dramatically in the Xinjiang Uygur Autonomous Region of China in the last 10 years, partially due to the nomadic nature of some minorities, the poor understanding of the transmission dynamics, and the lack of effective disease control measures.



Between 2004 and 2010, a total of 4768 human Echinococcosis cases were reported in Xinjiang, accounting for 32.55% of the total number of cases in China [1]. Data presented at the Xinjiang Center for Disease Control and Prevention (Xinjiang CDC) indicated that 2843 new cases were found in Xinjiang between 2011 and 2012. Echinococcosis continues to be a substantial cause of morbidity and mortality in Xinjiang. The large number of published reports on various aspects of Echinococcosis in Xinjiang clearly suggests that the disease is of major public health concern. At present, infection with Echinococcus remains a major public health issue, and it is regarded as one of the most serious endemic diseases in Xinjiang.



To understand the epidemic spreading phenomena of Echinococcosis and the designing of appropriate strategies to control infections, many scholars have studied different aspects of Echinococcosis [2,3,4,5,6,7]. To obtain a reliable forecast, certain laws governing the phenomena of system development must be discovered on the basis of either natural principles or real observation.



Traditional statistical model- and artificial intelligence-based approaches are the two main techniques for time series forecasting [8]. In these approaches, the predictor is built on the assumption of realizing the structure of the system to be forecasted. However, because of the limitation of information and knowledge, only part of the system’s structure can be fully realized. Grey theory was first proposed by Professor Deng [9], mainly for a system with incomplete or uncertain information, in order to construct a grey model for forecasting and decision-making. As an emerging multiple attribute, decision-making tool, which requires a limited knowledge and understanding of an unascertained system to solve problems, producing good estimations or predictions, the grey theory has caught the attention of scholars and practitioners from various disciplines and scientific fields.



The grey model, which is an effective method for modeling and forecasting small sample time series, is one of the best features of grey system theory. Generally, the grey model is written as GM(m,n), where m is the order and n is the number of variables of the modeling equation. The first-order one-variable grey model, GM(1,1), is the most widely used, and is successfully demonstrated in many applications. The GM(1,1) model is a special modeling approach based on grey exponential law, resulting from accumulated generation operations. It has an ideal fitting prediction effect for the data sequence, with homogeneous exponential characteristics. Compared with the classical statistical model and neural network model, the grey model needs a smaller sample size and data distribution is not necessary.



In recent years, the grey prediction model has been successfully utilized in many fields and has demonstrated satisfactory results [10]. Wang et al. used the grey prediction model to predict the energy consumption of a building’s heat-moisture system, and the accuracy of the prediction was high [11]. Lei et al. proposed a novel grey model PGM(1,2,a,b) to predict the price of electricity [12]. Dong et al. presented a hybrid prognosis approach, combining the age-dependent hidden Markov model (HMM) and the grey model, for prediction of engineering asset health [13]. Huang et al. created an automatic stock market forecasting and portfolio selection mechanism, based on the moving average autoregressive exogenous (ARX) prediction model, combined with grey system theory and rough set (RS) theory [14]. In these studies, it is seen that the grey prediction models can obtain satisfactory results for short-term predictions, and that grey predictors are more robust with respect to noise and to the lack of modeling information, when compared to conventional methods [12].



Using information on epidemic dynamics is also an important method of studying the spread of infectious disease, both qualitatively and quantitatively. It is based on the specific property of population growth, the spread of infectious diseases, and the related social factors, etc. It is used to construct mathematical models reflecting the dynamic properties of infectious diseases, to analyze these properties, to analyze the dynamic behavior of infectious diseases, and to pursue further simulations [15]. It is an important method for understanding the prevalence and distribution of a species, together with the factors that determine their incidence, spread, and persistence. In contrast with classic biometrics, dynamic methods can slow the transmission rules of infectious diseases from the mechanism of transmission of the disease, so that people can understand the global dynamic behavior of the transmission process. The research results are helpful for predicting the developing tendency of the infectious disease, to determine the key factors of the spread of infectious disease, and to seek the optimum strategies for preventing and controlling the spread of infectious diseases.



The traditional GM(1,1) is easy to understand and simple to calculate, with a satisfactory accuracy, but it also lacks the flexibility for adjusting the model, in order to acquire a higher forecasting precision. To improve the feasibility and effectiveness of GM(1,1), researchers have proposed many new high precision combinational prediction models, by combining different theories with grey theory [13,14]. These practical results show that the combinational prediction methods have a higher forecasting accuracy than the GM(1,1) method. In this study, the autoregressive process is combined with the grey system theory (Grey-Periodic Extensional Combinatorial Model, PECGM(1,1)), to create a human Echinococcosis forecasting model. A residual correction model based on Fourier (FGM(1,1)) is also presented for short-term forecasting. In order to verify the suitability of the FGM(1,1) model for forecasting the number of Echinococcosis cases in the short-term, a seasonal time series ARIMA model (ARIMA(1,0,1)(1,1,0)4) is also established for comparison. Furthermore, an epidemic dynamic model is built to evaluate the long-term trend of human Echinococcosis cases. The results of the grey predicting models show that the human Echinococcosis cases will increase in the short-term. However, the approximate estimated value of the basic reproduction number [image: there is no content] in the epidemic dynamic model, indicates that, with the current control measures, human Echinococcosis cases will decrease in the future and eventually die out.



The remainder of this paper is organized as follows. In Section 2, the methods and theories are briefly introduced. The simulation results of the different models are carefully investigated in Section 3. Finally, conclusions are made in Section 4.




2. Materials and Methods


2.1. Short-Term Prediction Models


2.1.1. Original GM(1,1) Model


Although various types of grey models can be mentioned, most of the previous researchers have focused their attention on GM(1,1) models in their predictions, because of its computational efficiency. One can create a grey model to describe the behavior of a few outputs by using fewer (at least four) data points, and by using predictions to analyze future situations. Three basic operations, including accumulated generation, inverse accumulated generation, and grey modeling, are used to build a grey forecasting model. The use of an accumulated generating operator, which plays an extremely important role in grey system theory, is a method employed to make a grey process turn white. Through accumulation, one can potentially uncover a development tendency, so that the characteristics and laws of integration hidden in the chaotic original data can be sufficiently revealed.



The whitening differential equation of the GM(1,1) is a first-order differential equation. It can be established on the basis of a monotonically increasing series [image: there is no content], as follows:


[image: there is no content]



(1)




where, [image: there is no content] is the development coefficient, which reflects the development trend of the original series; [image: there is no content] is the driving coefficient, which reflects the changes in the relationships between system data. [image: there is no content] and [image: there is no content] can be obtained by the least squares estimation.



The time response function of GM(1,1) is as follows:


[image: there is no content]



(2)







The simulation and forecasting values of GM(1,1) can be evaluated as follows:


[image: there is no content]



(3)







The procedures involved when using the GM(1,1) model are given in the first part of Supplementary Materials.



The GM(1,1) model hads been widely adopted in many fields. However, the effectiveness of the residual series of GM(1,1) depends on the number of data points with the same sign, which is generally low when the observations are few [16,17,18,19]. To make the grey forecasting model more adaptive and precise, some studies have developed improved residual sign estimators for the GM(1,1) model. Many scholars have worked diligently, to propose hybrid grey models that incorporate the grey prediction theory and theories or discourses in other fields of algorithm, in order to enhance the forecasting precision [14,20,21,22,23,24,25,26,27]. The above research results play an important role in promoting the development of grey system theory.



To reduce the periodic and stochastic residual errors of GM(1,1), we establish two residual error modification models, i.e., the Grey-Periodic Extensional Combinatorial Model (PECGM(1,1)) and the Modified Grey Model Using Fourier Series (FGM(1,1)), respectively.




2.1.2. Grey-Periodic Extensional Combinatorial Model (PECGM(1,1))


The Grey-Periodic Extensional Combinatorial Model can be modeled as:


[image: there is no content]



(4)




where [image: there is no content] is the fitting sequence of GM(1,1),


[image: there is no content]











[image: there is no content] is the fitting sequence of one-time residual sequence, and [image: there is no content] is the sum of values at the same moment of different preferred periods,


[image: there is no content]



(5)







[image: there is no content] is the simulate value of the two-time residual sequence by an ARIMA time series model. The procedures involved for using the PECGM(1,1) model are given in the second part of Supplementary Materials.




2.1.3. Modified Grey Model Using Fourier Series (FGM(1,1))


Besides the variation tendency, the tendency for periodic and stochastic phenomena also commonly exist in time series. The forecasting precision of the GM(1,1) model for a data sequence with large random fluctuations, is always low. In this study, the Fourier series is always adopted to improve the prediction performance of the original grey model [28].



Assume [image: there is no content] is a non-negative time sequence. A Fourier series correction can be obtained as follows:


[image: there is no content]



(6)






[image: there is no content]



(7)




where [image: there is no content] is the fitting sequence of GM(1,1),


[image: there is no content]



(8)







The procedures involved when using the FGM(1,1) model are also given in the third part of Supplementary Materials.



The PECGM(1,1) and the FGM(1,1) are two error-modified grey models in which the residual is adjusted by GM(1,1). The grey-periodic extensional combinatorial model belongs to an error periodic extensional model based on GM(1,1), with a preferred period to contrast new data sequences and to add the values at the same moment of different periods. In the FGM(1,1) model, the Fourier series is employed to modify the implied periodic phenomena in the one-time residual series. Note that the Fourier series is only used to increase the prediction capability from the considered input data set, and thus, does not change the local characteristics of GM(1,1). These two models overcome the unpredictability due to the monotonicity and periodical fluctuation of the time series.




2.1.4. The ARIMA Model


The ARIMA model is one of the most popular univariate time series models, which is widely used in infectious disease modeling [29,30,31]. The ARIMA model is based on the ARMA models, linearly expressing the current human Echinococcosis cases with its previous cases (autoregressive) and the residual series (moving average). The ARMA model can be expressed as:


[image: there is no content]



(9)




where [image: there is no content] refers to the value of the time series at time [image: there is no content] and [image: there is no content] is the residual at time [image: there is no content]. [image: there is no content] and [image: there is no content] are their corresponding coefficients, respectively.



The ARIMA model deals with a non-stationary time series, using a differencing process based on the ARMA model. The model can be expressed as ARIMA (p,d,q) × (P,D,Q)s, where p, d, and q are non-negative integers, which refer to the order of the autoregressive, integrated, and moving average parts of the model, respectively; whereas P, D, and Q represent the order of the seasonal autoregressive, differencing, and moving average, respectively (not shown in the above equation). The subscripted letter “s” shows the seasonal period length. The ARIMA modeling procedure introduced by Box and Jenkins, consists of three iterative steps: identification, estimation, and diagnostic checking [32]. To test the validity of FGM(1,1), an autoregressive integrated moving average is also used to fit the univariate time series model of human Echinococcosis cases in Xinjiang.




2.1.5. Model Accuracy Examination


To compare the accuracy of the proposed forecasting models, three evaluation criteria are used here: the mean absolute deviation (MAD), the mean absolute percentage error (MAPE), and the root mean square error (RMSE). They are expressed as follows:


[image: there is no content]



(10)






[image: there is no content]



(11)






[image: there is no content]



(12)




where [image: there is no content] is the actual value at time [image: there is no content], [image: there is no content] is its fitting value, and [image: there is no content] is the number of data points used for the prediction.





2.2. Long-Term Prediction Model


The grey models, which demonstrate an optimal and unique ability for performing fitting predictions using small data sets and limited information, often obtain a higher precision in short-term predicting. However, because of the inherent bias in the traditional grey-forecasting FGM(1,1) model and the fixed choice of its parameter, the forecast precision is relatively low and unsuitable for long-term forecasting. To catch the long-term tendency of a time series, the transmission mechanism implied in the time series must be considered. The epidemic dynamic model, based on the transmission mechanism of Echinococcosis, is adapted in this study after Wang et al. [1], and is described below:


[image: there is no content]



(13)







For the dog population, assume the annual recruitment rate and the natural death rate are [image: there is no content] and [image: there is no content], respectively; The recovery rate of transition from infected to non-infected dogs, including the natural recovery rate and recovery due to anthelmintic treatment, is [image: there is no content]; let [image: there is no content] describe the transmission of Echinococcosis between susceptible dogs and infectious livestock after the ingestion of cyst-containing organs of the infected livestock. For the livestock population, suppose the annual recruitment rate is [image: there is no content] and the death rate is [image: there is no content]; the transmission of Echinococcosis to livestock by the ingestion of Echinococcus eggs in the environment is described as [image: there is no content]. For Echinococcus eggs, assume the released rate from infected dogs is [image: there is no content] and the mortality rate is [image: there is no content]. For a human population, suppose the annual recruitment rate is [image: there is no content], the natural death rate is [image: there is no content], and the disease-related death rate is [image: there is no content]; the incubation period of infected individuals is denoted by [image: there is no content] and the recovery rate is denoted by [image: there is no content]. The transmission of Echinococcosis to the human population by the ingestion of Echinococcus eggs in the environment is described as [image: there is no content]. All parameters are assumed to be positive.



The population of dogs is divided into two classes: the susceptible population and the infected population, denoted by [image: there is no content] and [image: there is no content], respectively. The livestock population is divided into two classes: susceptible and infectious, denoted by [image: there is no content] and [image: there is no content], respectively The density of Echinococcus eggs is denoted by [image: there is no content]. The human population is divided into three classes: susceptible, exposed, and infectious, denoted by [image: there is no content], [image: there is no content], and [image: there is no content], respectively.



The basic reproductive number [image: there is no content] is defined as:


[image: there is no content]



(14)







The basic reproductive number [image: there is no content] determines the dynamics of the model [1]. The disease-free equilibrium is globally asymptotically stable when [image: there is no content]. The disease-free equilibrium is unstable and the endemic equilibrium is globally asymptotically stable if [image: there is no content].





3. Results


3.1. Short-Term Prediction Results


Data on the epidemiological cases in humans were obtained from the quarterly report of Xinjiang CDC. The 33 observations from the first quarter of 2004 (2004(Q1)) to the first quarter of 2012 (2012(Q1)), are used to establish the fitting models and the remaining observations from the second quarter (2012(Q2)) to the fourth quarter (2012(Q4)), which are utilized as test objects to compare their performance. In this section, to present a short-term prediction of the Echinococcosis transmission in Xinjiang, the GM(1,1), PECGM(1,1), FGM(1,1), and seasonal time series model ARIMA(1,0,1)(1,1,0)4, are established for comparison. The results are listed in Table 1.



Table 1. Forecasting results and performance evaluation of original values, GM(1,1) model, PECGM(1,1) model, FGM(1,1) model, and ARIMA(1,0,1)(1,1,0)4.







	
Time

	
Original Values

	
GM(1,1)

	
PECGM(1,1)

	
FGM(1,1)

	
ARIMA(1,0,1)(1,1,0)4






	
2004-Q1

	
29

	

	

	

	




	
2004-Q2

	
54

	
94.1602

	
43.2064

	
66.6371

	
53.9460




	
2004-Q3

	
53

	
98.5481

	
56.6699

	
40.3629

	
52.9470




	
2004-Q4

	
37

	
103.1405

	
46.8164

	
49.6371

	
36.9630




	
2005-Q1

	
75

	
107.947

	
104.9348

	
62.3629

	
56.0506




	
2005-Q2

	
80

	
112.9774

	
80.6936

	
92.6371

	
88.8068




	
2005-Q3

	
85

	
118.2423

	
81.1441

	
72.3629

	
75.6675




	
2005-Q4

	
90

	
123.7525

	
75.6184

	
102.6371

	
68.5544




	
2006-Q1

	
171

	
129.5195

	
148.0873

	
158.3629

	
130.5286




	
2006-Q2

	
159

	
135.5552

	
152.8614

	
171.6371

	
184.2488




	
2006-Q3

	
163

	
141.8722

	
142.374

	
150.3629

	
155.4327




	
2006-Q4

	
163

	
148.4836

	
136.5795

	
175.6371

	
148.7839




	
2007-Q1

	
234

	
155.403

	
206.1309

	
221.3629

	
208.9408




	
2007-Q2

	
181

	
162.645

	
204.6812

	
193.6371

	
228.0572




	
2007-Q3

	
181

	
170.2244

	
167.3362

	
168.3629

	
182.2278




	
2007-Q4

	
151

	
178.157

	
159.3529

	
163.6371

	
181.2402




	
2008-Q1

	
238

	
186.4593

	
209.4171

	
225.3629

	
227.2463




	
2008-Q2

	
230

	
195.1485

	
219.1547

	
242.6371

	
211.5525




	
2008-Q3

	
187

	
204.2426

	
212.3443

	
174.3629

	
229.9090




	
2008-Q4

	
192

	
213.7605

	
176.2863

	
204.6371

	
177.1743




	
2009-Q1

	
281

	
223.7219

	
250.2797

	
268.3629

	
266.3309




	
2009-Q2

	
246

	
234.1475

	
261.9837

	
258.6371

	
239.4284




	
2009-Q3

	
239

	
245.059

	
237.8308

	
226.3629

	
230.8546




	
2009-Q4

	
199

	
256.479

	
226.4649

	
211.6371

	
216.9646




	
2010-Q1

	
260

	
268.4312

	
271.189

	
247.3629

	
284.9956




	
2010-Q2

	
257

	
280.9403

	
264.9865

	
269.6371

	
243.4996




	
2010-Q3

	
244

	
294.0324

	
262.9642

	
231.3629

	
223.7910




	
2010-Q4

	
289

	
307.7346

	
248.4205

	
301.6371

	
233.6549




	
2011-Q1

	
328

	
322.0753

	
350.6532

	
315.3629

	
365.3474




	
2011-Q2

	
349

	
337.0843

	
330.7005

	
361.6371

	
300.1962




	
2011-Q3

	
352

	
352.7928

	
345.6146

	
339.3629

	
335.7246




	
2011-Q4

	
289

	
369.2333

	
342.7292

	
301.6371

	
332.4649




	
2012-Q1

	
431

	
386.4399

	
374.0377

	
418.3629

	
340.5767




	
MAD

	

	
31.9641

	
19.2301

	
12.6371

	
22.9506




	
MAPE (%)

	

	
25.0438

	
10.4278

	
8.6256

	
11.7100




	
RMSE

	

	
37.448

	
23.1066

	
12.4442

	
30.2869




	
2012-Q2

	
418

	
404.4483

	
423.8045

	
376.9253

	
428.4281




	
2012-Q3

	
342

	
423.296

	
421.0678

	
365.1108

	
413.7626




	
2012-Q4

	
334

	
443.02

	
415.5579

	
389.5186

	
420.2279




	
MAD

	

	
67.96

	
47.3842

	
28.1548

	
56.1395




	
MAPE (%)

	

	
19.8847

	
16.3088

	
11.0688

	
16.4300




	
RMSE

	

	
78.906

	
65.6686

	
42.0458

	
65.0483










Table 1 demonstrates that the performance of FGM(1,1) is better than GM(1,1), PECGM(1,1), and ARIMA(1,0,1)(1,1,0)4, based on the MAD, the MAPE, and the RMSE.



The fitting curves are shown in Figure 1, Figure 2 and Figure 3, respectively. For short-term forecasting, the results clearly indicate that the values forecasted by these models are very close to the real values.


Figure 1. The comparison between the real values and the simulation values of the GM(1,1) model.



[image: Ijerph 14 00262 g001]





Figure 2. The comparison between the real values and the simulation values of the PECGM(1,1) model.



[image: Ijerph 14 00262 g002]





Figure 3. The comparison between the real values and the simulation values of the FGM(1,1) model.



[image: Ijerph 14 00262 g003]






As we can see from Table 1 and Figure 1, the traditional GM(1,1) model exhibits a better performance in trend prediction. However, the GM(1,1) model has over-shooting phenomena on the change-points, and further causes the delay effects among the whole prediction line, so the prediction precision is not very satisfactory.



Figure 2, Figure 3 and Figure 4 demonstrate the other three models (PECGM(1,1), FGM(1,1), and ARIMA(1,0,1)(1,1,0)4 models), which demonstrate a better adaptability to structural change than the GM(1,1) model. Fitting curves show that the prediction results of the PECGM(1,1), FGM(1,1), and ARIMA(1,0,1)(1,1,0)4 models can synchronously vibrate with the actual curve, and there are obvious seasonal and periodic features in Echinococcosis cases in Xinjiang; for example, spring is the epidemic season for Echinococcosis. The fitting results of the four models shown in Table 1 indicate that, using present control methods, the number of Echinococcosis cases will increase in the short-term.


Figure 4. The comparison between the real values and the simulation values of the ARIMA(1,0,1)(1,1,0)4 model.



[image: Ijerph 14 00262 g004]






Table 1 and Figure 3 illustrate that the prediction accuracy of the FGM(1,1) model for 2012(Q2)–2012(Q4) is significantly higher than the other models, and that the simulation errors from 2004(Q1) to 2012(Q1) are also notably smaller. In contrast to the PECGM(1,1) and the ARIMA(1,0,1)(1,1,0)4 models, the FGM(1,1) model produces better simulations and predictions. By using Fourier techniques to transform the one-time residual series into frequency spectra, the low-frequency terms can be selected and the FGM(1,1) model can filter out the noise at the high-frequency modes, to obtain better performance of the prediction. As shown in Equation (3), we note that GM(1,1) and FGM(1,1) are based on the exponential function and may have unsatisfactory results when employed in the modeling and predicting of non-smooth curves for a long period of time.




3.2. Long-Term Prediction Results


3.2.1. Fitting Results


The prevention and treatment of Echinococcosis action plan for 2010–2015 was formulated by the Ministry of Health of the People’s Republic of China, on 24 December 2010. Recent technological advances may facilitate the implementation of improved control programmes and reduce the time frame required for elimination. We expect that this will significantly reduce the incidence of Echinococcosis infection in Xinjiang. In this section, we use the epidemic dynamic model proposed by Wang et al. [1] to give a prediction of Echinococcosis in the long-term.



We select and calculate the main model parameters by fitting the model to quarterly data of Echinococcosis [1]. The parameter list is as follows [33].



Based on the parameter values listed in Table 2, we chose the initial values of the model as follows:


[image: there is no content]



(15)






[image: there is no content]



(16)







Table 2. Parameters and their values (unit: [image: there is no content]).







	
Parameters

	
Value

	
Comments






	
[image: there is no content]

	
[image: there is no content]

	
annual crop of newborn puppies




	
[image: there is no content]

	
[image: there is no content]

	
dog natural mortality rate




	
[image: there is no content]

	
[image: there is no content]

	
livestock to dog transmission rate




	
[image: there is no content]

	
0.5

	
rate moving from infected to non-infected dog




	
[image: there is no content]

	
[image: there is no content]

	
annual crop of newborn livestock




	
[image: there is no content]

	
[image: there is no content]

	
livestock mortality rate




	
[image: there is no content]

	
[image: there is no content]

	
parasite egg-to-livestock transmission rate




	
[image: there is no content]

	
1.65

	
released rate from infected dog




	
[image: there is no content]

	
47.5

	
parasite egg mortality rate




	
[image: there is no content]

	
[image: there is no content]

	
human annual birth population




	
[image: there is no content]

	
[image: there is no content]

	
human natural mortality rate




	
[image: there is no content]

	
[image: there is no content]

	
human incubation period




	
[image: there is no content]

	
[image: there is no content]

	
human disease-related death rate




	
[image: there is no content]

	
0.1875

	
treatment/recovery rate




	
[image: there is no content]

	
[image: there is no content]

	
parasite egg-to-human transmission rate










Using these parameter values, we can give a rough estimate of the basic reproduction number [image: there is no content] in the current circumstances in Xinjiang. This indicates that, with the current control measures, human Echinococcosis cases will eventually vanish in Xinjiang.



The simulation results of the model on the number of human Echinococcosis cases are shown in Figure 5.


Figure 5. The comparison between real values and the simulation values.



[image: Ijerph 14 00262 g005]






From Figure 5, we can see that the dynamic epidemic model simulation result matches the Echinococcosis data well. According to the current situation, we present a prediction on the general tendency of the epidemic in the long-term, which is presented in Figure 6.


Figure 6. The tendency prediction of human Echinococcosis cases over a period of 60 years.



[image: Ijerph 14 00262 g006]






Figure 6 shows that the number of human Echinococcosis cases will increase steadily in 26 or 27 years, then reach a peak (about 1250) in 2039, before beginning to slowly decline, and finally disappear.




3.2.2. Sensitivity Analysis


To create better control strategies for Echinococcosis infections, we would like to see what parameters can reduce the basic reproduction number [image: there is no content]. Based on the methods of reference [34], we performed a sensitivity analysis of several model parameters and provided some useful strategies for controlling the transmission of Echinococcosis.



For the sensitivity analysis, we used Latin hypercube sampling (LHS) and partial rank correlation coefficients (PRCC) to examine parameters which had a significant influence on the basic production number [image: there is no content]. We chose the sample size n = 3000, and the significance level [image: there is no content] = 0.05. The larger the PRCC is in absolute value, the more important the parameters are for responding to the change of [image: there is no content]. A plus sign or minus sign means that the influence is positive or negative, respectively. The ordering of these PRCCs corresponds to the level of statistical influence that the parameter has on the variability of the basic production number [image: there is no content]. The PRCC values of six parameters are listed in Table 3 and are shown in Figure 7.


Figure 7. Partial rank correlation coefficients (PRCC) results for the dependence of [image: there is no content] on each parameter. * denotes the value of PRCC is not zero significantly, where the significance level is 0.05.
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Table 3. Partial rank correlation coefficients (PRCCs) for the aggregate [image: there is no content] and each input parameter variable.







	
Input Parameter

	
The Basic Production Number [image: there is no content]




	
PRCC

	
[image: there is no content] Value






	
[image: there is no content]

	
0.0833

	
0.0000




	
[image: there is no content]

	
0.0148

	
0.4183




	
[image: there is no content]

	
0.8916

	
0.0000




	
[image: there is no content]

	
0.9530

	
0.0000




	
[image: there is no content]

	
−0.8307

	
0.0000




	
[image: there is no content]

	
0.0071

	
0.6964










From Table 3 and Figure 7, we can confirm that parameters [image: there is no content], [image: there is no content], and [image: there is no content] have a positive impact upon [image: there is no content], and that [image: there is no content] has a negative impact. We also know that [image: there is no content] is not sensitive to parameters [image: there is no content] and [image: there is no content]. Further, Table 3 shows that the low parasite egg-to-livestock transmission rate [image: there is no content] (|PRCC| = 0.9530) has the greatest impact on [image: there is no content], followed by the livestock to dog transmission rate [image: there is no content] (|PRCC| = 0.8916), and then the high rate moving from infected to non-infected dogs [image: there is no content] (|PRCC| = −0.8307). Hence, from sensitivity and mathematical analysis, we conclude that the most effective approach for reducing the Echinococcosis infection is to decrease the parameters [image: there is no content], and [image: there is no content], and to increase the parameter [image: there is no content].



From the above sensitivity analysis, to control Echinococcosis, some alternative strategies can be considered: dogs should be barred from slaughter houses and should not be fed uncooked offal, infection carcasses and offal should be burned or buried, the frequency of dog anthelmintic should be increased, the method of transmission and instructions in personal sanitation should be informed to the public, and the annual crop of newborn puppies should be reduced, etc. [1].






4. Conclusions


Echinococcosis is of significant medical and economic importance in the Xinjiang Uygur Autonomous Region of China. It is one of the most important zoonotic diseases and it is of great social importance. This research investigates the modified grey model and the dynamic epidemic model for predicting the human Echinococcosis cases. In this study, the traditional GM(1,1) model, two residual correction-based grey models (PECGM(1,1), FGM(1,1)), and a multiplicative seasonal model ARIMA(1,0,1)(1,1,0)4 are applied, to analyze the surveillance data of Echinococcosis cases for a short-term prediction comparison. Furthermore, a dynamic epidemic model for long-term prediction is also established.



The fitting results of the grey models show that FGM(1,1) is able to make an accurate prediction for the Echinococcosis prevalence trend in Xinjiang. The results also demonstrate that there are obvious seasonal and periodic features in Echinococcosis cases in Xinjiang. Infection with Echinococcus remains a major public health issue and the cases will continue to rise in the short-term. Efforts should be continued, for both animals and humans, by increasing training campaigns and public awareness.



A dynamic epidemic prediction model can predict the future tendency very well. Its results demonstrate that, using current control options, human Echinococcosis cases will decrease around the 104th quarter. The basic reproduction number [image: there is no content] indicates that, with the current control measures, human Echinococcosis cases will cease to exist in Xinjiang in the long run. To control human Echinococcosis, we could choose prevention and control strategies from decresae parameters [image: there is no content] (annual crop of newborn puppies), [image: there is no content] (livestock to dog transmission rate), [image: there is no content] (parasite egg-to-livestock transmission rate), and increase the parameter [image: there is no content] (rate moving from infected to non-infected dog). However, elimination is a difficult goal to achieve, principally due to the disease transmission restriction and the control measures being implemented.



It should be noted that the government and officials in Xinjiang have enlarged the propaganda and education on Echinococcosis control. There are many clear technological improvements in the diagnosis and treatment of human and animal Echinococcosis vaccinations against Echinococcus granulosus in animals. These new measures and technologies increase the efficiency of Echinococcus control programmes, potentially reducing the time required for its elimination. We hope that our work may help in understanding the epidemic spreading phenomena and designing appropriate strategies to control Echinococcus infections in Xinjiang.
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