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Table S1. Cumulative exposure and risk concepts over time.  

Reference or Source Key Concept(s) or Definition(s) Introduced 

National Environmental Policy Act (NEPA) of 

1969 (P.L. No. 91-190) 

Council on Environmental Quality regulations 

implementing NEPA [1] 

“Cumulative effects” include exposure over time and additive, antagonistic and synergistic effects. 

Guidelines for the Health Risk Assessment of 

Chemical Mixtures [2] 

Chemical mixtures exposures can occur from multiple environmental sources or hazardous waste sites. 

Formulas for the two primary models of joint action, dose or concentration addition (DA or CA) and 

response addition or independent action (IA). 

Pesticides in the Diets of Infants and Children [3] 

Aggregate exposure and risk considers exposure and risk associated with all pathways and routes of 

exposure to a single chemical. 

Cumulative risk is the risk of a common toxic effect associated with concurrent exposure by all relevant 

pathways and routes of exposure to a group of chemicals that share a common mechanism of toxicity. 

Executive Order (EO) 12989 “Federal Actions to 

Address Environmental Justice in Minority 

Populations and Low Income Populations” 

EO 13045 “Protection of Children from 

Environmental Health Risks and Safety Risks” 

Some populations may be more vulnerable and more highly exposed to environmental chemicals.  

Phthalates and Cumulative Risk Assessment: The 

Tasks Ahead [4] 

Recommended common adverse outcomes as a broader organizing principle for cumulative risk 

assessments than a common mechanism of toxicity. 

Science and Decisions: Advancing Risk 

Assessment [5] 

Found that EPA “cumulative risk” work to date had largely been limited to addressing chemical mixtures.  

Recommended that EPA expand its cumulative risk efforts to include nonchemical stressors, population 

vulnerability and susceptibility.    
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Table S2. Conceptual developments—human health. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Akom [6] 

 Explores environmental exposures and educational outcomes. 

 Written from a sociology/race theory/social epidemiology perspective. 

 Describes the “eco-apartheid framework”. 

 Eco-apartheid framework also may be a useful conceptual framework 

for joint analysis of social and environmental inequities. 

Balbus et al. [7] 

 Discusses the potential for global climate change to alter the human 

health risks of chemical stressors. 

 Describes potential effects of climate stress on exposure from major 

contaminate sources and vulnerable populations, as well as 

implications of climate change on current risk assessment and 

management practices. 

 Net increase in exposure to contaminants likely. 

 Climate change will affect fate and transport; types, amounts, and 

patterns of chemicals used; naturally occurring toxicant exposures 

(e.g., aflatoxin); and change in human vulnerability to stressors 

resulting from changes in diet, heat stress, and other factors. 

 Future research requires a holistic approach and world-wide 

collaboration from many disciplines. 

Barzyk et al. [8] 

 Provides recommendations for consistent CRA approaches across 

community, state, and federal levels.  

o Methods are under development at each level, but there are no 

cross-cutting recommendations for best practices for all CRAs. 

 Recommendations are organized by the three phases of CRA: 

planning, scoping, problem formulation; risk analysis; and risk 

characterization, interpretation, and management. 

 Identifies relative risk ranking and other procedures as alternative 

strategies to estimate risk while advances are made in the science 

characterizing MOAs for multiple stressors.  

 By comparing and contrasting CRA approaches at multiple levels, the 

authors identify components necessary to include in any CRA.  

Beckie [9] 

 Evaluates the empirical literature (1997–2012) on the relationships 

between allostatic load (AL), health disparities, and health outcomes.  

 Describes allostasis, or the regulatory process of approximating 

biological functioning to environmental demands to preserve 

physiological stability, through a heuristic model of AL: 

 Allostatic challenges/factors that shape response to stress (e.g., 

genetics, SES, behavioral factors, anxiety, childhood adversity) → 

perceived stress → primary mediators (e.g., cortisol, dopamine, 

interleukin-6) → secondary outcomes (e.g., blood pressure, waist-hip 

ratio) → tertiary outcomes (e.g., mortality, physical health).  

 Although lack of homogeneity in AL measurements across studies 

made comparison difficult and resulted in inconsistent AL/health 

disparity/health outcome relationships, there was good evidence of 

relationships between AL, antecedents and tertiary outcomes. 

 Further investigation is needed to identify the best methods for 

measuring AL.   

 AL research is a promising resource for identifying interventions for 

reducing the impacts of biological dysregulation resulting from 

chronic stress. 

 Early intervention may help reduce chronic illnesses and eliminate 

health disparities. 

Braun et al. [10] 

 Summarizes the challenges of studying the impacts of chemical 

mixture exposure from an epidemiological perspective. 

 Proposes three questions future studies can address to help advance 

method development for better understanding of the effects of 

exposure to chemical mixtures on human health.   

 Defined research questions are:  

o What are the health effects of individual chemicals within a 

mixture?  

o What are the interactions between chemicals within a mixture?  

o What is the health effect of cumulative chemical exposure? 

 Questions can be applied to other mixtures including non-chemical 

stressors. 
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Buzzelli [11] 

 Argues for using Bourdieu’s [12,13] relational framework of social 

stratification—using social, cultural, and economic capital as a more 

nuanced approach to evaluating the psychosocial environment. 

 Uses air pollution literature as an example of rigorous environmental 

science/epidemiology that so far has used only simple markers of 

socioeconomic position (SEP). 

 The author cites a need for better data for all aspects of 

environmental justice studies (i.e., measures of physical and social 

environment and health outcomes). 

Checker [14] 

Presents: 

 Argument for community participatory research. 

 Role for anthropologists, e.g., on-the-ground assessments with 

refugees to properly characterize risk experienced from a number of 

different circumstances. 

 Case study of Hyde Park area of Augusta, Georgia. 

 

Clougherty and 

Kubzansky [15] 

Reviews: 

 Biologic mechanisms through which acute and chronic psychosocial 

stress can affect health. 

 Key issues for assessment of stress, air pollution exposure and 

respiratory health. 

 Need for toxicological research with good animal models of social 

stress (e.g., rats, monkeys).  

 Value of human experimental studies on acute and chronic 

psychosocial stress. 

Issues with measuring psychosocial stress:  

 Phases of stress process, biomarkers of stress response.  

 Temporality of stress and pollution exposure.  

 Spatial correlation among social and physical exposures.  

 Exposure–response may be nonlinear and exhibit saturation effects.  

 Pollution and pollution sources also are psychosocial stressors. 

 SES is linked to many complex exposures; stress may reflect some but 

not all of these. 

Cutchin [16] 

 Describes how “new health geography” can contribute to 

understanding physical and social environments and inform social 

epidemiological studies. 

 Illustrates several health geography concepts with a community case 

study in Texas City, Texas. 

 Health geography offers explanations for how certain social and 

physical exposures come about.  

 Health geography analyses will suggest different types of 

interventions than the “traditional” risk-factor type of 

epidemiological study. 

 Concepts of health geography can strengthen social epidemiological 

approaches to questions of environment and health. 

deFur et al. [17] 

 Proposes a model for incorporating vulnerability in CRA. 

 Includes individuals, communities, and populations as receptors. 

 Includes physical and social environments in environmental 

conditions.  

 Lists factors contributing to vulnerability across levels of environment 

and receptors. 

 Draws from both human and ecological health risk concepts. 

 Maintain focus of research effort on causes of vulnerability so that the 

causes can be addressed.   

Hennig et al. [18] 

 Argues for the incorporation of nutrition or dietary choices into the 

risk assessment paradigm as a critical modulator between 

environmental pollutants and health status. 

 Describes studies demonstrating:   

 Healthful nutrition or diet as an important buffer against chemical, 

physical, and biological stressors. 

 Poor nutrition or diet increasing vulnerability to pollutants. 

 Recommends diet and nutrition be considered in CRAs and be used 

as a tool for intervention and risk reduction. 
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Howd [19] 
 Describes age and lifestage as susceptibility factors as well as 

determinants of differential chemical exposure.  

Knol et al. [20] 

 Provides background on the use of conceptual frameworks as a tool to 

inform environmental health research or assessments. 

 Describes three levels/types of frameworks and how each framework 

relates to issue framing (problem formulation), design (planning and 

scoping), execution (analyses), and appraisal (risk characterization and 

reporting).   

 

Lentz et al. [21] 

 Describes potential for CRA approaches to be adapted to occupational 

scenarios 

 Illustrates factors that may need to be considered to integrate risk from 

occupational and non-occupational settings using a case study of a 

hypothetical individual with hearing loss.  

 

Levy [22] 

 Describes a framework for evaluating epidemiological studies as 

informative for CRA (particularly for dose–response). 

 Identifies characteristics of an “ideal” epidemiological study for 

cumulative risk. 

 Identifies the need to have: 

o Useful epidemiological studies for many cumulative risk 

questions. 

o Communication between epidemiologists and risk assessors to 

develop useful studies. 

o Approaches that can draw on both epidemiology and 

toxicology.  

 Proposes that meta-regression will be useful to combine results of 

multiple studies.  

Linder and Sexton 

[23] 

 Argues for the need for theoretical frameworks to support 

“speculative” conceptual models that have been used in CRAs. 

 Discusses three theoretical frameworks that each support 

corresponding families of conceptual models: 

o Social determinant framework from the World Health 

Organization. 

o Health disparity framework from the Centers for Population 

Health and Health Disparities. 

o Multiple stressor framework from Morello-Frosch and Shenassa. 

 Using established theoretical frameworks will lead to improvements 

in the characterization of cumulative risks. 
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Menzie et al. [24] 

 Describes “Phased Approach” for CRA: 

o Conceptual model 

o Screening step  

o Assess individual stressors 

o Assess combinations of stressors 

 Includes: 

o Tables to illustrate methods for effects- and stressor-based 

assessments. 

o Listing of multivariate statistical tools for addressing multiple 

stressors. 

o Geographic Information System (GIS) applications. 

 Matrix-based approaches (Relative Risk Model). 

 A useful “how-to” guide for study design and implementation. 

Morello-Frosch et al. 

[25] 

 Briefly reviews evidence of several factors of interest in CRA: 

o Health disparities by race/ethnicity. 

o Inequalities in environmental hazards and exposures by 

race/ethnicity and low SES. 

o Biological susceptibility by age, genetics, and preexisting health 

conditions. 

o Social vulnerability—how social constructs of race and class can 

amplify environmental exposures. For example, low SES, poor 

physical environment, and other factors contribute to 

psychosocial stress (see Clougherty and Kubzansky [15] 

o Limitations of current risk assessment approaches. 

 Suggests that Health Impact Assessment (HIA) may be a better tool 

for characterizing cumulative impact than risk assessment because it 

is better able to deal with a lack of scientific information by using a 

diverse array of qualitative and quantitative evidence for analysis.  

Segal et al. [26] 

 Using lead and psychosocial stress as an example, describes a 

framework for evaluating chemical-nonchemical interactions and 

options for incorporating interactions into risk assessments. 

 Evidence is supportive of interactive effects of lead and psychosocial 

stress on neurodevelopment. 

 Additional research to understand effects of nonchemical stressors at 

the biological level is needed.  

Sexton [27] 

 Examines effects-based CRA and discusses vulnerability-based CRA as 

an additional useful alternative to examining health risks in 

communities or other defined populations. 

 Reviews existing tiered and phased approaches for CRA. 

 Characterizes the difficulties of development methods for and 

implementing CRAs.  

o Need for risk assessments addressing more realistic exposure 

scenarios. 

o Complicated by a lack of mechanistic understanding of 

complex exposure–response relationships.  

 Suggests focus on developing tiered/phased approaches and 

appropriate science policies to address uncertainties and variation in 

levels of available information for analyses.  
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Sexton and Linder 

[28] 

 Argues that CRA is a logical and impartial method for informing 

decision-making about environmental justice issues. CRA can: 

o Identify critical environmental mixtures of chemical and 

nonchemical stressors,  

o Determine the nature and magnitude of relevant cumulative 

exposures for the population of interest,  

o Describe key interaction mechanisms and related health 

outcomes for high-priority mixtures. 

 Discusses a set of typical critiques that are representative of views 

challenging risk assessment’s application to environmental justice 

communities, and asserts these critiques foreshadow advancement in 

CRA method development.   

 Recommends the following approaches to developing and advancing 

CRA:  

o Identify high-priority communities, populations or places; 

o Undertake a coordinated research effort; 

o Use conceptual model and research data to assess cumulative 

risks; and 

o Modify, revise, or reject the conceptual model on the basis of 

research findings. 

Smith et al. [29] 

 Describes exposomics as the study of all nongenetic factors that 

contribute to disease, measured by the influence of small molecules in 

the body on biological pathways that lead to adverse health effects.  

 Discusses the application of exposomics to CRAs in vulnerable 

populations using existing frameworks.  

o Describes the public health exposome concept [30].  

o Defines “stressogens” as chemicals that disrupt stress response 

pathways; evaluation of these chemicals can contribute to a 

more holistic approach to assessing health risks.  

 Suggests high priority populations for study: recent migrants, highly 

exposed low socioeconomic groups, and pregnant women. 

 Begin by applying exposomics in populations previously studied 

using cumulative risk methods. 

Rider et al. [31] 

 Provides and discusses frameworks that can be used to include 

nonchemical stressors into CRAs. 

 “Person-oriented modeling” is a computer simulation that models 

exposure patterns and uncertainty that is then repeated to create 

population descriptions. 

 A combination of EPA’s conceptual models for metals and the weight 

of evidence framework from the Agency for Toxic Substances Disease 

Registry. 

 Presents case study of benefits and risks of fish consumption using a 

comparative dietary risk framework. 

 Take steps to facilitate quantification of information for inclusion in 

CRA: 

 Standardize terminology. 

 Identify sources of information. 

 Compile good quality causal models that relate joint exposures to 

chemical and non-chemical stressors to human health effects. 

 Achieve a better understanding of long-term effects of exposure to 

non-chemical stressors. 

 Shift focus from reference doses (RfDs) and No Observed Effect 

Levels to ranges of values. 

 Use semiquantitative methods (e.g., Hazard Index informed by 

weight of evidence) for immediate inclusion of nonchemical stressors 

in risk characterization. 
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Rider et al. [32] 

 Reviews evidence of interactions between physical and chemical 

stressors: 

 Sunlight and air pollutants 

 Air pollutants, pesticides, and thermal stress 

 X-rays and chemicals 

 Chemicals and infectious disease 

 Noise and chemicals 

 Include physical stressors in CRA because they modify the toxicity of 

chemical stressors. Link physical factors (e.g., temperature, noise at 

site) to environmental sampling for further assessment of physical 

and chemical interactions. 

 Use a systems-based approach to predict interactions 

 Combine simulation approaches with monitoring data for 

incorporation of physical stressors. 

 Add estimates of the magnitude of modification of interactions to the 

CRA process. 

 Develop more case studies. 

Ryan et al. [33] 

 Reviews biomarkers. 

 Discusses attributes of ideal biomarkers. 

 Offers framework to illustrate how multiple stressors relate to 

biomarkers of exposure, susceptibility, and effect. 

 Describes two ways to use biomarkers: 

 Disaggregating contributions of multiple stressors to a disease process. 

Identify contributing sources and stressors using biomarkers of exposure, 

susceptibility, and effect. 

Challenges: 

 Will require large amounts of related data and well-developed 

biologic mechanisms to fully understand any particular biomarker. 

 No fully developed example exists. 

Sexton and Linder 

[34] 

 Reviews existing chemical mixture methods. 

 Presents Gee and Payne-Sturges and Shenassa and Morello-Frosch 

multistressor conceptual models. 

 Identifies several indices for assessing health and SES disparities (see 

[35]).  

Next steps to advance cumulative risk methods and practices: 

 Identify high-priority communities/populations/places. 

 Undertake a coordinated research effort. 

 Use conceptual model and research data to assess cumulative risk. 

 Modify/revise/reject conceptual model on the basis of research 

findings. 

Zeise et al. [36] 

 Reviews approaches for describing interindividual variability and 

susceptibility within a “source-to-outcome continuum”. 

 Adjustment factors. 

 Pharmacokinetic (PK), pharmacodynamic (PD), and physiologically 

based pharmacokinetic (PBPK) modeling approaches. 

 Discusses new data on biological variability. 

 Reviews in vitro, in vivo, and in silico models. 

 Discusses the use of Genome-Wide Association Studies in clinical and 

epidemiological studies to investigate susceptibility though genetic 

analysis. 

 Integrate emerging data streams into in silico models for decision-

making applications. 
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Table S3. Cumulative risk methods and applications for human health: GIS. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Aagaard-

Hansen et al. 

[37] 

 Provides a public health rationale for GIS-based surveillance systems 

that combine information on population health, physical, chemical and 

biological exposures and social determinants of health (as 

demonstrated by Basara and Yuan [38], below). 

 Valuable as a descriptive tool to identify high-risk 

populations. 

Andrey and 

Jones [39] 

 Describes a GIS developed to evaluate selected environmental and 

socioeconomic hazards in Vancouver, Canada. 

 Based on Canadian Census for 1986, 1996 and 2001. 

 Environmental hazards:  earthquake-induced liquefaction, wildfires 

and noise pollution. 

 Many demographic and socioeconomic variables. 

 Applies Principle Components Analysis—results in groups of variables 

with similar spatial patterns as components, which in turn suggest the 

spatial structure of the data. 

 Social and environmental hazard exposures were dynamic 

over time. 

 Authors found inconsistent patterns of minority- or 

income-based environmental inequity over the 15-year 

period studied. 

 Descriptive study—no analysis of health outcomes; no 

chemical exposures. 

 Application of Principle Components Analysis may be of 

interest as a method. 

Basara and 

Yuan [38] 

 Describes and illustrates a GIS-based data management system 

incorporating social, physical and health outcome data sets. 

 Could be used to identify and group communities with similar 

characteristics.  

 These types of databases then can be used in studies to 

generate and test cumulative exposure and outcome 

hypotheses. 

 Limited to existing data sources (e.g., EPA’s Toxic Release 

Inventory, census, hospitalization data). 
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Briggs et al. 

[40] 

 Assesses associations between multiple measures of socioeconomic 

deprivation and five sets of environmental pollutants in England: 

o Index of Multiple Deprivation includes: income, employment, 

education, health, living environment, barriers to housing and 

services, and crime. 

o Components of the health indicator: Years of potential life lost, 

comparative illness and disability ratio, emergency hospital 

emissions, and adults with mood or anxiety disorders. 

o Stressors include: road traffic, industry, electromagnetic frequency 

(EMF) radiation, disinfection byproducts in drinking water, and 

radon. 

o “Exposure” measured in terms of proximity to source, emissions 

and concentrations. 

 This study assessed many bivariate associations but not 

combined impacts of SES and environment on health. 

 It confirmed the existence of environmental inequities 

associated with socioeconomic deprivation.   

 Stronger associations occurred with crime, living 

environment and health (contingent components of 

deprivation), rather than with causative components such 

as income, employment or education. 

 For environmental concentrations, strongest associations 

were found between SES and air pollutants rather than 

proximity to source or emissions. 

 Overall, the associations between environmental factors 

and SES were “weak, subtle and complex”; the strength of 

association varied depending on metrics used. 

 Areas of “triple jeopardy” (socioeconomic deprivation, 

poor health and poor environment) were limited. 

 Problems of confounding by SES in area-level 

environmental epidemiological studies were likely limited 

because of the weak associations between environmental 

conditions and SES in this analysis.  

Huang and 

London [41] 

 Develops a Cumulative Environmental Vulnerability Assessment 

comprised of three indices to identify environmental justice 

communities in the San Joaquin Valley, California, through spatial 

analysis: 

o Cumulative Environmental Hazard Index 

o Social Vulnerability Index 

o Health Index 

 Indices include health status and social vulnerability 

indicators beyond income and race. 

 Can be used to focus resources on the most vulnerable 

communities.  

 Limited by the accuracy and availability of the data sets, 

and the geographic unit of analysis (census block group). 

Maclachlan et 

al. [42] 

 Describes an Internet-based GIS developed to investigate relationships 

between health, air quality and socioeconomic factors in Hamilton, 

Canada. 

 Reports on a pilot test and focus group evaluation for public health 

professional users of the system. 

 No analytical results of environment-health-SES 

relationships. 

 An interesting tool that could be replicated in other 

geographic areas. 
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Salinas et al. 

[43] 

 Demonstrates the Human Security Index as a useful tool for 

understanding and correlating socioeconomic and environmental 

stressors with race/ethnicity at the county level. 

 Defines cumulative risk burden by indicators from Economic, 

Environmental, and Social “Fabrics” (e.g., poverty, incarceration rate, 

high ozone days). 

 Uses GIS to identify statistical associations between risk burden, 

ethnicity, and place. 

 Index useful for identifying the relative contributions of 

impacts from chemical and nonchemical stressors on 

community health. 

Shmool et al. 

[44] 

 Demonstrates a GIS approach for examining spatial patterns among 29 

administrative indicators of social stress, and their combined effects 

with air pollution on health in New York City, using New York City 

Community Air Survey (NYCCAS) data. 

 Also performs an ecologic analysis investigating effect modification 

between nitrogen dioxide (NO2) and childhood asthma Emergency 

Department (ED) visit rates by social stressors. 

 Social stressors were not consistently correlated, nor were 

they correlated with other indicators of SEP. 

 Social stressors appeared in geographically distinct 

patterns, which were characterized by the following 

factors: 

o Violent crime and physical disorder 

o Crowding and poor access to resources 

o Noise disruption and property crimes 

 In the ecologic analysis, these factors were differentially 

associated with area-average NO2 and childhood asthma 

ED visits.  

Tornero-Velez 

et al. [45] 

 Investigates environmentally relevant chemical co-occurrence using a 

biogeographical method. 

 Assumes chemical occurrence at specific locations is not random; 

characteristics of a location favor certain chemical combinations. 

 Biogeography methods can be used to help risk assessors 

identify mixtures of concern and prioritize efforts. 

Wang and 

Chen [46] 

 Uses a GIS-based modeling approach for assessment of air pollution.  

 Considers multiple pollutants (chemical mixtures). 

 Uses fuzzy aggregation modeling to quantify uncertainty. 
 

Zartarian et al. 

[47] 

 Designed the Community-Focused Exposure and Risk Screening Tool, a 

Web-based GIS to support community-level risk research and 

environmental justice efforts. 

 Beta-version currently being pilot-tested. 
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Table S4. Biomarker, genetic and “Omics” studies. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Al Zabadi et al. 

[48] 

 Assesses overall genotoxicity of worker exposures to polyaromatic 

hydrocarbons (PAHs) and VOCs with integrated and nonspecific 

urinary biomarkers.  

 Urinary biomarkers reflected higher exposure for sewage workers than for 

office workers and corresponded to increased lifetime cancer risk. 

Das et al. [49] 

 Assesses three, two-pesticide mixtures on viability and DNA 

damage in cultured human peripheral blood lymphocytes: 

o Monocrotophos and carbofuran 

o Endosulfan and monocrotophos 

o Endosulfan and carbofuran 

 Evaluates viability with a standard cytotoxicity dye exclusion assay. 

 DNA damage included chromosomal aberrations and comet assay. 

 Authors found that combinations of pesticides showed synergism with regard 

to reduced cell viability and DNA damage in human peripheral blood 

lymphocytes in vitro. 

 Authors suggest that these types of assays may serve as biomarkers of 

exposure or susceptibility. 

Daughton [50] 

 Proposes use of raw sewage to gauge community health (Sewage 

Chemical Information Mining).  

 Detection of biomarkers of exposure and disease in sewage can 

provide a measure of the aggregate health status of individuals in a 

local population. 

 Uses isoprostanes (biomarkers of systemic oxidative stress) as an 

example.  

 Potential: 

o Shows aggregate health status, health trends, and possible health 

disparities for communities. 

o Allows health comparisons among distinct populations. 

o Aids in causal inference for exposure disease relationships. 

o “Health checks” for entire communities. 

Gennings et al. 

[51] 

 Investigated the link between body burden of 42 chemicals and well-

being using National Health and Nutrition Examination Survey 

(NHANES) biomonitoring data and a holistic index. 

o 42 chemicals were divided into 6 mechanistic groups that may 

affect health through different MOAs. 

 Novel method for assessing multiple chemicals acting through 

multiple pathways that may cause multiple adverse effects (a 

systems biology approach). 

 Developed Relative Wellness Index (RWI) to measure the function of 

multiple organ systems. 

o RWI is predictive of mortality.  

o RWI indicates the overall wellness of the subject by detecting 

conditions that are outside of the normal range for healthy 

organ system function. 

 Negative associations were found between the body burden index and RWI in 

3 of 6 mechanistic groups, and 5 of 6 groups when the body burden index was 

weighted. 

o Suggests that exposure to environmentally relevant concentrations of 

chemicals in five of the groups will have adverse effect on well-being.  

 Found evidence of interactions between mechanistic groups (antagonistic, 

greater than additive). 

 Limitation: Biomonitoring data, collected at a single point in time, do not allow 

a determination of temporal relationships between exposure and disease.   

Whyatt et al. 

[52] 

 Studies maternal urinary phthalate metabolites and child 

development. 

 Assesses biomarkers of exposure and clinical effects. 

 Suggests that prenatal phthalate exposures decrease mental and 

motor development. 

 New work on the health effects of phthalate exposures. 
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Bonefeld-

Jorgensen et al. 

[53] 

 Reviews recent biomonitoring literature on the combined effect of 

serum POP mixtures on the activity of hormone receptors as a risk 

factor for human health.  

 Conclude that POPs biomagnify up the food chain, bioaccumulate in humans 

and animals, are potential endocrine disruptors and carcinogens, and can 

cause adverse human health effects. 

 Suggest epidemiological molecular-genetic studies to further observe effects in 

human beings and animals. 

Hendriksen et 

al. [54] 

 Interactions of methylmercury, benzene and trichloroethylene on 

mRNA (messenger RNA) expression in rat liver and kidney were 

studied by microarray analysis. 

 The three chemicals were selected on the basis of their different 

MOAs. 

 Animals were dosed with low and high doses of the individual 

chemicals, all two-chemical combinations and the three-chemical 

mixture for 14 days. 

 In the two-chemical combinations, the compounds had strong antagonistic 

effects on each other’s gene expression changes, however, the mixtures affected 

the expression of “novel” genes that had little or no effect from the individual 

compounds. 

 Authors conclude that the results suggest a shift from compound-specific 

responses to a more generic stress response to mixtures. 

 Most effects observed in microarray analysis were not detected in classical 

toxicological evaluation of tissues. 

 This type of study moves toward development of biomarkers of joint toxicity. 

 The findings ultimately may lead to the design of interaction models for most 

known toxicants. 

Miyake et al. 

[55] 

 Developed a prediction model for type 2 diabetes. 

 Included 11 genes as well as age, sex and body mass index (BMI). 

 Perhaps this model could serve as a tool to explore chemical exposure in 

addition to genetic and physiological factors. 

North and 

Martin [56] 

 An overview of gene-environment studies 

 Examples highlight obesity research with environmental factors 

defined as diet, physical activity, stress and other diseases. 

 A framework for consideration of chemical exposures as well. 

Thayer and 

Kuzawa [57] 

 Reviews epigenetic findings related to nutritional stress, 

psychosocial stress, and toxicant exposure.   

 Considers each type of exposure separately.  

 A resource for identifying types and measures of epigenetic changes to 

incorporate into cumulative risk studies. 
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Table S5. Measures and models. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Barzyk et al. 

[58] 

 Identifies more than 70 EPA databases, data management, data 

display and GIS applications that can provide information for 

community-based CRAs. 

 Databases and computational tools were developed by various EPA 

programs and reflect the particular program focus and data. 

 Useful for issue identification, hazard identification. 

 Typically more than one database is needed to fully evaluate all 

environmental media or sources of concern in a community. 

 Most produce dose estimates but not risk characterization 

metrics. 

 Difficulty accessing and using these technologies. 

 Lack of nonchemical stressor data. 

 Lack of risk-ranking capabilities. 

Borgert et al. 

[59] 

 Proposes Human Relevant Potency Threshold (HRPT) approach as 

a more scientifically tenable alternative to the phthalates report 

(NRC [4]) recommendation.  

 Tested the concept recommended by the phthalates report that CRA 

should apply DA for all chemicals with common adverse outcomes 

(CAOS). 

 Found the DA-CAOS model to be flawed after comparing its 

predictive capabilities to human clinical and epidemiological data. 

 The proposed HRPT approach integrates parts of the DA-CAOS 

concept at doses near the lower limit of the observable effect range. 

Below this threshold, IA is recommended. 

 Applying the approach to phthalates, authors found HRPT was 

more suitable to assess risk than DA by itself. 

Boyd et al. 

[60] 

 Demonstrated a novel in vitro method for predicting effects of 

chemical mixtures using a PD response. 

o Test of a concept that cellular interpretation of exposure is 

sufficient to predict interaction effects instead of relying on the 

chemical’s MOA. 

 Exposed human hepatocellular carcinoma-derived cells to deguelin, 

potassium cyanide, and staurosporine. 

 Found the cellular response approach effective in identifying 

mixture interactions based solely on dose (rather than MOA). 

Chen [61]  Proposes an isobologram model for quantal dose–response data. 
 Extension of isobologram methods for assessing joint action of 

chemical mixtures. 

Clougherty et 

al. [62] 

 Used an animal model of chronic social stress for toxicological 

study of effects of air pollutants. 

 Social stress induced by putting young male rat in home cage of 

dominant male rat for 20 minutes.   

 Biomarkers of physiological changes were indicative of potential 

disease mechanisms (susceptibilities). 

 Environmental exposure was to concentrated urban air (dose–

response). 

 Stressed animals displayed higher average C-reactive protein, 

tumor necrosis factor-α, and white blood cell counts. 

 Findings consistent with epidemiological findings that chronic 

stress may alter respiratory responses to air pollution. 

 This model may help identify (and potentially quantify) 

biological mechanisms of differential susceptibility. 

 This model may help quantify the combined stress and 

chemical response for dose–response assessment. 



Int. J. Environ. Res. Public Health 2017, 14, 0000; doi: S14 of S32 

Evans et al. 

[63] 

 Study on cumulative risk of exposure to low to moderate levels of 

psychosocial (e.g., workload, social support) and physical (e.g., 

noise, crowding) stressors in an occupational setting. 

o Cumulative risk concept adapted from developmental 

psychology.  

o Data self-reported. 

o No chemical exposures evaluated. 

 Identified linear trends between stressor exposures and 

outcomes (e.g., fatigue, psychological distress, physical health). 

 Additive model is a drawback considering physical and 

psychosocial risk factors can interact. 

 May nonetheless prove a useful example for evaluating the 

cumulative impacts of exposure to low levels of nonchemical 

stressors.   

Glass et al. 

[64] 

 Example of social epidemiological study of neighborhood-level 

stressors, lead and cognitive function in adults. 

 Developed and used an indicator of neighborhood psychosocial 

hazard (from city and U.S. Census data sets) that includes the 

following: 

o Social disorganization  

o Public safety 

o Physical disorder  

o Economic deprivation  

 Used multilevel statistical models. 

 Neighborhood psychosocial hazards exacerbated adverse 

associations of tibia lead in three of seven cognitive domains 

(language, processing speed, and executive functioning). 

Glei et al. 

[65] 

 Examined the theory of AL in nationally representative longitudinal 

study in Taiwan 

 Study questions: 

o Do chronic stressors predict physiological dysregulation? 

o Is that relationship moderated by characteristics of the 

individual and his/her social environment? 

o Does perceived stress mediate the relationship between 

stressors and dysregulation? 

 Developed a physiological dysregulation score from 16 biomarkers 

in blood or urine reflecting neuro-endocrine, immune, 

cardiovascular and metabolic function. 

 Findings were consistent with theory of AL. 

 Relationship between life challenges and physiological 

dysregulation was weak. 

 Evidence of lower resilience (stress buffering), e.g., low social 

position, weak social networks, and poor coping were 

associated with greater physiological consequences. 

Hertzberg et 

al. [66] 

 Proposed four steps to evaluate chemical mixtures for consistency 

with DA: 

o Determine how well the combined prediction model (i.e., the 

dose additive prediction formula) matches data from the 

single chemical models. 

o Evaluate the fit of the mixture model to the mixture data. 

o Evaluate agreement between the combined prediction model 

and the mixture data. 

o Evaluate consistency between the combined prediction model 

and the mixture model.  

 Four-step approach to evaluating mixtures is reasonable for a 

screening level assessment, but not for predicting mixture 

effects. 

 More research using physiologically based toxicokinetic models 

would be helpful.   
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MacDonell et 

al. [67] 

 An updated (as of early 2013) inventory of Internet-accessible tools 

for CRA.  

 Describes how the tools can be used for CRA. 

 Organized in tables by main phases of the risk assessment process: 

o Planning, scoping, problem formulation  

o Environmental fate and transport 

o Exposure analysis 

o Toxicity analysis 

o Risk and uncertainty characterization 

 

Marshall et 

al. [68] 

 Proposed a method for examining whether a chemical mixture 

found in the environment is sufficiently similar to a mixture used in 

toxicity testing. 

 Developed a similar mixture risk indicator to link available 

exposure data to sufficiently similar mixtures toxicology data. 

 Used pesticide mixture exposure data at child care centers and 

dose–response data from an animal study of a similar mixture as an 

illustrative case study. 

 Using the reference value from mixture toxicity data as a proxy 

for the RfDs for the observed pesticide mixtures at child care 

centers is a valid method for evaluating risk.   

Medina-Vera 

et al. [69] 

 Survey of environmental detection or measurement methods such 

as test kits for numerous analytes in water or indoor air, and for 

mold and lead on surfaces. 

 Not all kits provide quantitative results. 

 Quantitative methods are more costly. 

Navas-Acien 

et al. [70] 

 Examined effects of lead and cadmium exposure on kidney 

function measures in NHANES. 

 This epidemiological study showed that those exposed to both 

lead and cadmium were more likely to have reduced kidney 

function. 

 Study used national survey database, and biomarkers of 

exposure and effects. Measurements were taken at single point 

in time, inferring cause-effect relationship between exposure 

and outcome is limited. 

Ragas et al. 

[71] 

 Chemical mixture assessment considering particulate matter (PM), 

several VOCs and six food pesticides.  

 Case example of hypothetical urban environment. 

 Used Disability Adjusted Life Years as health outcome measure for 

selected chemicals. 

 Recommendations: 

o Need to develop person-oriented exposure models to 

reflect normal daily activities. 

o Need better mechanistic understanding of cumulative 

effects beyond experimental investigation of 

antagonism/synergism. 

o Need methods to screen and prioritize stressors for 

inclusion in a CRA. 
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Scholze et al. 

[72] 

 Developed a method for applying DA to mixtures of partial 

agonists using a toxic unit extrapolation approach. 

 Validated with a mixture of estrogenic chemicals using an assay 

measuring the proliferation of human epithelial breast cancers. 

o Estimation of cumulative internal exposure. 

 Toxic unit extrapolation approach accurately predicted 

responses. 

 Method can be applied to other pollutants.  

Silva et al. 

[73] 

 Evaluated CA as a model to predict effects of estrogenic mixtures 

including endogenous and synthetic steroidal hormones, pesticides, 

cosmetic additives and phytoestrogens (for a total of five mixture 

experiments). 

 Mixtures were tested with the E-Screen (breast cancer cell 

proliferation assay). 

 Considered findings in a context of regulatory applications. 

 Effects of two of the mixtures were accurately predicted by CA. 

 In three other cases, CA slightly overestimated findings. 

 Authors found that increased metabolism of steroidal estrogens 

likely contributed to the antagonistic deviations from CA. 

 Deviations from CA were small, leading the authors to 

conclude that CA remains a reasonable model to predict 

combination effects of estrogenic chemicals with the endpoint 

of cell proliferation. 

Zota et al. 

[74] 

 Using NHANES data, assessed how AL affects the relationship 

between lead exposure and blood pressure in middle-aged adults. 

 First study to use AL to assess the effects of chronic stress on 

chemical exposure (others have used proxy measures like SES or 

self-reported stress levels). 

 High AL is associated with an increase in adverse effects of lead 

on blood pressure.  

 Limitations of this study include those inherent in cross-

sectional study design, residual confounders, and issues 

selecting biomarkers representative of AL.   

 Results suggest need for additional research on how 

psychosocial stress modifies the effects of chemical stressors in 

vulnerable populations. 

Kondo et al. 

[75] 

 Using data collection from focus groups in Philadelphia, PA, 

explores the role of place-based elements on risk perception 

associated with industrial air pollutants. 

 Identifies three factors that must be addressed for effective 

community-based assessments: 

o How community identifies with area and industry 

o Highly perceptible stressors such as odors and abandoned 

sites 

o Fear of displacement and lack of social control 

 Assessments must also be sensitive to community fear and 

uncertainty about the research process itself to be successful. 

Bobb et al. 

[76] 

 Used Bayesian kernel machine regression (BKMR) to study 

mixtures. 

o Health outcome is regressed on a flexible function of the 

chemical mixture components that is specified using a kernel 

function.  

o Uses epidemiological and toxicological studies to illustrate. 

 Has advantages over traditional frequentist approaches 

o BKMR more fully captures uncertainty in the exposure–

response function. 

o Improved evaluation of mixture components. 
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Su et al. [35] 

 Development and application of Cumulative Environmental 

Hazard Inequality Index (descriptive index of SES inequalities and 

cumulative environmental hazard). 

 Index has two components:   

o Measure of ethnic and socioeconomic inequalities. 

o Estimates of cumulative environmental hazards. 

 Example presented includes data from census (% nonwhite 

population and % population below 2× federal poverty line) and 

selected air pollutants (including cancer risk estimates for diesel 

PM). 

 A descriptive index combining multiple stressors. 

 Useful to identify high-risk areas. 

 Could also include positive attributes (e.g., available green 

space, access to supermarkets). 

Tan et al. [77] 

 Describes potential of PK and PD models to understand effects of 

chemical mixtures. 

 Some examples included solvents and pesticides. 

 Emphasis has been on PK aspects.  

 Need more PD work. 

Tie et al. [78] 

 Evaluated and suggested parallel use of a combination of several 

models to investigate interactions of drugs and chemicals that are 

inhibitors of cytochrome P450 CYP3A4 isozyme. 

 Three models were suggested: computational molecular 

docking, structure–activity relationship, and spectral data-

activity relationship. 

Wason et al. 

[79] 

 Developed a framework for a PBPK/PD model to evaluate the 

impact of poor nutrition on the internal dose of chlorpyrifos and 

acetylcholinesterase (AChE) inhibition in urban low-income 

children. 

 Method and “proof of concept” application to introduce 

nonchemical stressors into the CRA paradigm. 

 The combination of stressors is likely to increase risk of AChE 

inhibition in children from an urban low-income neighborhood.  

 The PBPK/PD model allowed quantitative characterization of 

impacts of a chemical and nonchemical stressor on at PD 

outcome. 

 The framework could be extended to include multiple stressors 

with same MOA. 

Levy et al. 

[80] 

 Demonstrated three meta-analytic approaches to dose–response 

development for multi-stressor assessments. 

o A literature-based meta-analysis of the differential toxicity of 

fine particulate matter components. 

o A structural equation modeling approach to an effects-based 

CRA of hypertension risk factors. 

o A discrete event simulation model simulating the effect of 

changes in the built environment on environmental exposures 

and asthma outcomes. 

 Emphasized the need for and importance of advanced 

analytical methods to synthesize evidence from multiple 

disciplines for CRAs.  

Evans et al. 

[81] 

 Characterized exposure to lead, methyl mercury and AL (i.e., 

chronic stress) using data from the 2003–2004 NHANES. 

 Examined race/ethnicity as a predictor of joint exposure to lead and 

methyl mercury.  

 Chronic stress modified the association between elevated joint 

lead/methyl mercury exposure and race/ethnicity. 
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Table S6. Cumulative risk studies of vulnerable populations. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Alexeeff et al. 

[82] 

 Developed a screening methodology for assessing cumulative 

impacts in 30 diverse California communities. 

 Used zip code boundaries to delineate communities and 

publicly available data for indicators of exposure, sensitive 

populations, SES factors, public health and environmental 

effects. 

 Useful tool for facilitating consideration of cumulative impacts in 

environmental justice communities.  

 Also a significant contribution to the GIS literature.  

Bevc et al. [83] 

 Develops a spatial model including socio-demographics, 

perceived and objective exposure measures, and home-grown 

food consumption.  

 Reviews proximity-based environmental justice research 

methods. 

 Example community was near an incinerator and landfill 

(Superfund site):  

o Environmental exposures were derived from an ash 

deposition model, years of residence, home-grown 

produce, well-water and local fish consumption. 

o Psychological well-being was assessed with the Impact of 

Events Scale (relates to stress avoidance and intrusive 

stress) and the Depression Scale. 

o Used hierarchical modeling. 

 Found that socio-demographics, perceived and objective exposure 

measures, and home-grown food consumption were significant 

predictors of physical health and psychological well-being. 

 A simple proximity-based exposure metric was not significantly 

associated with health. 

Chen et al. [84] 

 Presents results of a study of traffic-related air pollution and 

stress interactions as predictors of asthma outcomes in 

children.  

 Sampled NO2 at 116 sites, then used land-use regression to 

predict concentrations for participants. 

 Psychosocial stress over the previous 6 months assessed with 

the University of California Los Angeles Life Stress Interview. 

 Biomarkers: cytokines, IL-5, IgE, eosinophil counts. 

 Clinical measures: parent and child interviews on symptoms; 

child diaries; Peak Expiratory Flow Rate taken twice daily for 2 

weeks. 

 Higher chronic stress was associated with higher inflammatory 

profiles as pollution levels decreased. 

 NO2 and stress interactions were found for child diary symptoms, 

parent-reported symptoms and Peak Expiratory Flow Rate 

declines over time. 

 Conclusions:  

o Stress-pollution interactions predicted biologic and clinical 

outcomes.  

o Higher chronic stress made children vulnerable to asthma 

exacerbations when pollution exposure was more modest. 
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Dulin-Keita et 

al. [85] 

 Conducted a longitudinal study of ethnically diverse children 

to evaluate effects of neighborhood stressors on serum cortisol 

levels. 

 Focused on the direct effects of neighborhood socio-

environmental conditions on physiological outcomes.  

 Included body fat composition in analysis; known to affect 

cortisol levels and has not been considered in previous studies. 

 Neighborhood disorder was predictive of higher serum cortisol in 

European American children, and was predictive of lower serum 

cortisol levels in African American children. 

 Alteration of cortisol levels in either direction may lead to adverse 

health outcomes. 

Hicken et al. 

[86] 

 Evaluated effect of psychosocial stress, as measured by 

depressive symptoms, on the association between blood lead 

levels and blood pressure in blacks versus whites using 

NHANES data. 

 A study of differential vulnerability to chemical exposure 

between blacks and whites. 

 Black-white disparity shown in positive association between 

blood lead levels and blood pressure in groups with high 

depressive symptoms. 

o Blacks had 5.6 mmHg (millimeters of mercury) increase in 

blood pressure with each doubling of blood lead levels. 

o Whites’ blood pressure increased 1.2 mmHg.  

 No disparity was seen in low depressive symptoms groups. 

Hoffmann et al. 

[87] 

 Cross-sectional study of childhood social position, 

environmental exposures and lung function, allergy and 

immune function.  

 Social position indicators: nationality, immigration 

background, parental education, household income, 

unemployment in family. 

 Environmental exposures:  

o Total suspended particulate 

o Environmental tobacco smoke 

o Unfavorable living conditions (near roadway and/or 

damp residence) 

 Socially disadvantaged children experienced higher exposures 

and were more likely to have unfavorable living conditions.  

 Health outcome findings were complex and some were counter-

intuitive; socially disadvantaged children were less likely to report 

allergic and respiratory diseases but more likely to have abnormal 

lung function in clinical testing. 

 Explanations for the counterintuitive findings included selection 

and reporting bias and biologic interactions. 

 Limitations: used secondary data analysis, did not evaluate 

neighborhood contextual effects, and did not have adequate 

sample size for stratified analyses.  

Islam et al. [88] 

 Describes a study of parental stress by pollutant interactions 

on children’s lung function in a prospective cohort. 

 Perceived parental stress served as a proxy for children’s 

psychosocial stress. 

 Traffic-related pollutants: nitric oxide, NO2 and nitrogen oxides 

(NOx) were estimated (from measurements) for homes and 

schools. 

 Lung function was assessed by trained staff. 

 Children from high-stress households had greater lung function 

deficits related to NOx at home and school than those from lower 

stress households. 

 No significant NOx effects observed in children from low-stress 

households. 

 Conclusion: A high-stress home environment was associated with 

increased susceptibility to lung function effects of air pollution.  
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Pearlman [89] 

 A brief review of asthma epidemiology studies that are 

addressing community and neighborhood social factors.  

 Refers to the work of Wright et al. [90].  

 Social factors may increase risk or increase resilience. 

 Multilevel models allow the assessment of clustering at the 

individual and neighborhood levels.  

 Study noted issues with measurement of neighborhood social 

context, including:  

o Do you look only at the primary residence or other places as 

well? 

o How do you account for changes over time? 

Schulz et al. 

[91] 

 Conducted a study to examine the effects of neighborhood 

poverty on AL controlling for household poverty. 

 Tested to see if self-reported psychosocial stress mediates the 

association. 

 Found neighborhood poverty to be positively correlated with AL. 

 Relationship mediated by perceived social stress, but not by 

health behaviors (e.g., smoking, diet). 

 Connected SES to adverse health outcomes using physiological 

indicators. 

Shankardass et 

al. [92] 

 Describes a prospective cohort study of parental stress as effect 

modifier of traffic-related air pollution exposure and child 

asthma incidence. 

 Air pollution exposure was modeled. 

 Data on stress and other exposures were collected by survey. 

 Doctor-diagnosed new asthma outcome was reported by 

parents at 3-year follow-up. 

 Children of parents with high perceived stress were at higher risk 

of new-onset asthma associated with pollution.  

 Similar findings from stress and maternal smoking in pregnancy 

(but small numbers of participants in this category). 

 Authors suggest that high-stress home environment increases 

susceptibility to pollution and in utero tobacco smoke for asthma 

incidence. 

Theall et al. [93] 

 Investigated the connection between salivary telomere length 

and exposure to neighborhood level stressors in children. 

 Used telomere length as a biomarker of AL. 

 First study to seek a cellular response to community-level 

psychosocial stress; also could be categorized as a novel 

biomarker study. 

 Children living in neighborhoods characterized as having high 

levels of disorder had shorter telomere lengths. 

 Findings support hypothesis that neighborhood level stressors 

cause adverse biological responses in early life. 

 Potential confounders are bacterial contamination and DNA 

degradation related to saliva sampling. 

 Interventions should be focused as early in life as possible to 

prevent health disparities. 

Erickson and 

Arbour [94] 

 Explored the mechanistic pathways between exposure to 

particulate air pollution and adverse pregnancy outcomes. 

 Also investigates similarities to mechanisms where SES 

contributes to adverse pregnancy outcomes.  

 Review literature showing interactive effects between air 

pollution and stressors associated with SES. 

 Evidence suggests that various social and environmental 

exposures can cause common adverse pregnancy outcomes. 

 Suggests using multilevel models in future epidemiological 

studies to explore the biological effects of the social and physical 

environment.  
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Wing et al. [95] 

(description) 

Horton et al. 

[96] 

Schinasi et al. 

[97] (results) 

 Describes an epidemiologic study of respiratory outcomes and 

stress in communities proximal to swine concentrated animal 

feeding operations (CAFO). 

 Academic-community partnership. 

 2-week longitudinal study. 

 Air monitoring. 

 Participants used diaries and personal respiratory monitors for 

outcome data collection. 

 Assessed coping style using “John Henryism” Active Coping 

Scale.  

 Increased acute eye irritation with each unit increase in odor, H2S 

and PM10. 

 Odor and H2S during the previous 12 hours were associated with 

irritation and respiratory symptoms.  

 Increase in 12-hour PM2.5 was associated with wheezing and 

declines in forced expiratory volume in 1 second (FEV1). 

 Endotoxin was associated with increased sore throat, chest 

tightness and nausea. 

 Odor, H2S and PM10 were associated with stress and negative 

mood. 

 Individuals who perceived that they had more control over their 

environment found malodor more stressful than those who 

perceived they had less control. 

 Authors suggest odor be included in studies of environmental 

injustice. 

Wing et al. [98] 

 Conducted a community based participatory repeated 

measures study on adults living near a swine CAFO. 

 Each participant measured their blood pressure and reported 

levels of hog odor after sitting outdoors at scheduled times for 

two weeks. 

 Authors measured ambient levels of H2S and PM10 during 

same time period. 

 Increases in malodorous air pollution from CAFO were associated 

with increased blood pressure. 

 SES, BMI, medical history, etc. were not confounders because 

participants served as their own controls. 

 Chronic effects of exposure not evaluated. 

 Swine CAFOs are commonly located near low-income minority 

communities; acute exposures to hog odors contributes to health 

disparities.   

Young et al. [99] 

 Demonstrated the value of social epidemiology in evaluating 

differential exposure to hazardous air pollutants (HAPs) 

related to neighborhood-level socioeconomic deprivation.  

 Assessed neurological, cancer, and respiratory air pollutant 

hazards associated with the Townsend Index of Socioeconomic 

Deprivation.  

 Found positive associations between air pollutant hazards and the 

Townsend Index at the census-tract level. 

 Found clear evidence of differential vulnerability in 

disadvantaged communities. 

Schule and 

Bolte [100] 

 Systematically reviews multilevel modeling studies that 

consider both neighborhood SEP and factors of the objective 

built environment simultaneously in to evaluate their effects 

on individual health. 

 

McDonald et al. 

[101] 

 Provides a scalable “climate health justice” model for assessing 

and projecting incidence, treatment costs, and sociospatial 

disparities for diseases with well-documented climate change 

linkages. 

 Demonstrates a low-cost and easily implementable tool that can 

be utilized for geographic analyses of disparate health impacts 

associated with climate change.  

 Model can help inform development of public health intervention 

strategies. 
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Table S7. Conceptual developments—ecological health. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Holmstrup et 

al. [102] 

 Reviews ecotoxicological literature on studies of 

chemical and natural stressors such as temperature, 

desiccation, oxygen depletion, pathogens. 

 Most studies include only two factors (e.g., one 

chemical and heat). 

 Many examples of synergistic interactions, a few 

antagonistic interactions. 

 Research needs to develop this area: 

o Comparative studies to identify the most potent combinations of 

natural and chemical stressors. 

o Examine the sequencing of exposures. 

 Limitation: These are largely short-term studies. 

Jansen et al. 

[103] 

 Explores the concepts of life-course and sequencing of 

exposures in a case study of Daphnia. 

 Daphnia populations were exposed to carbaryl and 

developed resistance to the pesticide. 

 These populations were then exposed to biological or 

predation stresses and fitness/survival was assessed. 

 Possible mechanisms investigated with 

genome/transcriptome methods. 

 Carbaryl-resistant Daphnia were more susceptible to Pasteuria ramosa 

(bacterial endoparasite).  

 Carbaryl-resistant Daphnia were not more vulnerable to predation stress. 

 Main point: Past exposures to pesticides are important and should be 

considered when evaluating current stressors. 

Lokke [104] 

 Describes the NoMiracle Project. 

 Focuses on human and ecological risk and chemical 

mixtures. 

 Develops methods for modeling fate and 

transport/exposure. 

 Develops methods for assessing effects of chemical 

mixtures, including some in vitro testing of human 

cell lines. 

 Uses assessment and management models, for 

example: 

o Ecological vulnerability assessment 

o Human respiratory health risk 

o Uncertainty and variability tool 

 Project directed at development of new methods for assessing risks to human 

and ecological health from chemical mixtures.  

o Methods and model development included: 

 Databases 

 “Omics” systems 

 In vitro screening systems 

 Author states need for better understanding of mechanisms. 

 Author states importance of timing and sequence of exposures. 

 Concludes that research should focus on the receptor rather than on particular 

stressors or combinations of stressors.   
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Moe et al. 

[105] 

 Discusses the joint effects of global climate change and 

toxicant exposure on the health of ecosystems. 

 Outlines the challenge in ecotoxicology of predicting 

the effects climate stress will have on population 

responses to toxicants.  

 Recommends research on adaptive potential to climate stress using genetic 

variability and correlation analysis; microevolution; comparative studies of 

climate tolerance in reference populations and toxicant-resistant populations. 

 Recommends long-term experiments to incorporate climate change 

projections. 

 Notes a need to integrate climate change into ecotoxicological modeling 

focusing on non-additive interactions between climate stressors and 

chemicals, population vulnerability, resilience, and adaption to same.  

Table S8. Measures and models—ecotoxicology. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Al-Salhi et 

al. [106] 

 Identified the xenometabolome (xenobiotics and metabolites) 

that accumulate in fish exposed to wastewater treatment works 

effluent. 

 Roaches were then exposed to the identified mixtures to 

investigate metabolite responses. 

 Metabolite biomarkers can be used to monitor exposure to complex 

chemical mixtures in fish and inform follow-up studies on health 

effects. 

Baylay et al. 

[107] 

 Assessed effects of binary mixtures on Lumbricus rubellus using 

CA and IA models along with a metabolomics based approach. 

 Exposed to imidacloprid and thiacloprid (similar MOAs), as well 

as chlorpyrifos and nickel (dissimilar MOAs). 

 Imidacloprid/thiacloprid mixture:  

o Exhibited additivity but metabolite changes indicated distinct 

effects. 

o Independent joint effect also exhibited at higher exposure 

concentrations. 

 Chlorpyrifos/nickel mixture  

o Effects confirmed dissimilar MOAs. 

o Found to be more toxic than predicted. 

 Metabolomic analysis revealed more complexity in mechanisms of 

action than assumed in CA and IA.  

Dondero et 

al. [108] 

 Investigated the toxicodynamics of a neonicotinoid insecticide 

mixture on marine mussels. 

 Tested imidacloprid and thiacloprid. 

 Methods included gene expression and proteome profiles.  

 

 Each insecticide had distinct toxicodynamics as shown by different 

transcriptomic and proteomic profiles, and also had opposite trend 

of AChE.  

 Findings generally met principle of IA at the biomarker level 

despite having the same mode-of-action. 

 High-throughput molecular data may help shed light on 

mechanistic pathways of individual chemicals when mixture 

studies yield counterintuitive results. 
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Garcia-

Reyero et al. 

[109] 

 Used Daphnia magna as biomonitoring tool for complex mixtures. 

 Exposure to mixture of munitions contaminants. 

 Response was measured in the change in gene expression using 

polymerase chain reaction assays and high-density microarrays. 

 Prediction of gene expression change after chemical mixture 

exposure is possible to a limited extent. 

 Limited to nonadditive effects, contaminants in similar chemical 

class. 

Wang et al. 

[110] 

 Integrated fuzzy CA-IA model demonstrated in mixture 

experiments with 12 organic chemicals representing four 

different MOAs. 

 Model uses molecular structural information and fuzzy set 

theory to characterize the degree of similarity or dissimilarity of 

MOAs in a mixture. 

 This model was successfully applied to mixtures with similar or 

dissimilar MOAs.  

 This study tests the model in mixtures that combine similar and 

dissimilar MOAs. 

 Study showed that this model had very low predictive error in 

comparison to the two-stage prediction model. 

 Mechanism of action/MOA information is not needed for this 

approach. 

Zhang et al. 

[111] 

 Demonstrated the Uniform Design and fixed-ratio ray design 

experimental techniques. 

 15 pesticides (insecticides and herbicides) in 18 mixtures. 

 Evaluated the observed versus predicted concentration-response 

functions by both CA and IA. 

 Uniform Design effectively simulated numerous complex mixtures. 

 CA accurately predicted the combined toxicity of pesticide 

mixtures. 

 CA and IA predictions were very similar. 

Zou et al. 

[112] 

 Developed a method for testing the chronic toxicity of mixtures 

using antibiotics and Vibrio fischeri. 

 Model is combination molecular docking-based and quantitative 

structure–activity relationship receptor library. 

 Limited to binary mixtures, chemicals with similar structures. 

 Future ecological research should focus on collecting chronic 

mixture toxicity data (as opposed to acute). 

Landis et al. 

[113] 

 Conducted a risk assessment using the Bayesian Network 

Relative Risk Model (BN-RRM) to calculate the ecological risks 

from exposure to mercury and other chemical and physical 

stressors in the South River and upper Shenandoah River area.  

 Three main findings are reported: 

o Risk varied by location, type and quality of habitat, and exposure to 

stressors. 

o Risk to abiotic endpoints was greater than risk to biotic endpoints. 

Including both endpoints allowed comparisons among endpoints 

that represented various stakeholder values. 

o Mercury was the regulated stressor for the South River, but was not 

the only stressor influencing risk. Other ecological and habitat 

stressors contributed to risk and should be considered as part of 

risk management plans. 
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Dietrich et 

al. [114] 

 Examined the effect of acute and sublethal exposures to the 

organophosphate pesticide malathion and elevated temperature 

on Chinook salmon. 

 Study demonstrates impacts of anthropogenic stressors in the 

ecological context. 

 There was an observed increase in mortality in salmon exposed to 

both malathion and elevated temperature. 

 Salmon exposed to malathion under normal temperatures were not 

at risk of increased mortality. 

 Demonstrated an interaction between co-occurring stressors, and 

that risk may be underestimated if stressors are evaluated 

individually. 

Table S9. Examples of ecological cumulative risk studies. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

Langmead et al. 

[115] 

 Assessed models of the effects of socioeconomic development on the 

marine environment of the Black Sea. 

 Informed by DPSIR, a framework used to organize social and ecological 

information and map pathways from human activities to changes in 

ecological states, with available data sets used as indicators of drivers, 

stressors and states. 

 Applied Bayesian belief networks.  

 Developed four models for the socioeconomic development of post-

Soviet countries surrounding the Black Sea along lines of consumerism 

vs. community and autonomy vs. interdependence. 

o National Enterprise 

o Local Responsibility 

o World Markets 

o Global Community 

 Indicators of the marine environment included fish catches, hypoxia and 

sea grass habitat, among many others. 

 Two of the four development models (the “National 

Enterprise” and “World Market” scenarios) increase 

pressures on the Black Sea environment.   

 Currently, no policy tools address the important 

ecological health drivers identified in this study. 

 Bayesian belief networks were useful in combining 

different types of information. 

 A novel approach; ecosystem modeling does not 

typically consider larger socioeconomic processes. 

McConnachie et 

al. [116] 

 Experimentally elevated cortisol levels in fish to mimic chronic stress and 

then exposed the fish to either heat or fasting stress. 

 Cortisol elevation increased short-term and long-term 

physiological vulnerability to subsequent stressors. 

Stampfli et al. 

[117] 

 Investigated the combined effects of an insecticide (esfenvalerate, a 

chemical stressor) and hydrological fluctuation (a physical stressor) on 

zooplankton communities.  

 Extreme hydrological disturbance is predicted from global climate 

change, which could modify the effects of chemical exposures in aquatic 

communities.  

 Hydrological stress increased the sensitivity of the 

zooplankton to the insecticide. 

 Effects were additive, detection of a synergistic 

relationship was not possible in the experiment. 
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Vanhoudt et al. 

[118] 

 Reviewed 35 ecological studies of the combined effects of radiation and 

other stressors (e.g., chemical, temperature, salinity) in aquatic and 

terrestrial plants, terrestrial animals (rats and mice), and aquatic animals. 

 In all but one study, CA and IA were not predictive of 

combined effects. 

 Interactions were instead categorized as “positive 

interactions” (i.e., potentiation, synergism) or 

“negative interactions” (i.e., antagonism) or no 

interaction. 

Vidau et al. [119] 

 Describes an experiment with bees infected with Nosema ceranae and also 

exposed to sublethal doses (1/100th of LD50 (lethal dose, 50%)) fipronil or 

thiacloprid. 

 Explores the hypothesis that N. ceranae infection could modify the bees’ 

detoxification capacity. 

 Observed increased mortality for infected bees also 

treated with insecticide as compared to infected and 

uninfected controls. 

 Increased mortality was not “strongly linked” to 

decreases in detoxification systems. 

 An example of impacts of biological and chemical 

stressors. 

Vieira and 

Guilhermino 

[120] 

 Studied the effects of PAHs and temperature stress on the marine algae 

Tetraselmis chuii. 

 Experimental conditions set to mimic increase in temperatures caused 

by global climate change and increase in marine organism exposures to 

petrochemicals caused by ocean transport of oil (potential spills) and 

other products. 

 A 5 °C increase in temperature caused increased 

toxicity of PAHs to the algae. 
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Table S10. Conceptual developments—ecosystem services. 

Reference Main Points Findings/Challenges/Next Steps/Possible Applications 

De Laender 

and Janssen 

[121] 

 Propose integration of the ecosystem 

perspective into ecological risk assessment 

(European Union perspective). 

 Identifies 5 key areas of research that are necessary for extending ecological risk to 

the ecosystem level: resource competition, predation, chemical effects on 

biodiversity, chemical effects on ecosystem services, and chemical mixture effect 

quantification at the ecosystem level. 

Myers et al. 

[122] 

 Discusses current research on ecosystem 

services and links to human health and 

identifies areas of improvement.  

 Current literature is “patchy” and important 

relationships are not completely characterized. 

 Aggregate ecosystem alterations are affecting 

multiple dimensions of human health and 

requires a systematic approach to 

characterizing health outcomes. 

Limitations of current research: 

 Focuses on only one human health impact of ecosystem degradation (e.g., 

infectious disease) instead of multiple health outcomes. 

 Inadequate investigation of health outcomes resulting from the interaction of 

multiple environmental changes (e.g., climate change in conjunction with resource 

scarcity). 

 Inadequate exploration of human adaptation to environmental changes and how 

this may mediate health outcomes. 

 Inadequate characterization of populations affected by ecosystem alteration (i.e., 

differential vulnerabilities in poorer communities). 

Reis et al. 

[123] 

 Proposes a conceptual model to integrate 

human health and environmental impact 

analysis. 

 The ecosystems-enriched Drivers, Pressures, 

State, Exposure, Effects, Actions model merges 

ecological health and human well-being 

through ecosystem services. 

 Describes the “ecological public health” 

concept, which calls for integration of the 

social, economic, environmental, and public 

health realms.  

 Model shows potential for stakeholder engagement and needs refinement, but is a 

good starting point for holistic assessment of ecological and human health. 
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Table S11. Methods and applications—ecosystem services. 

Reference Main Points 
Findings/Challenges/Next Steps/Possible 

Applications 

Jackson et 

al. [124] 

 Developed a Web-based application called the Eco-Health Relationship Browser 

(http://www.epa.gov/research/healthscience/browser/introduction.html). 

 Data from 169 articles included in the browser and reflects the weight of evidence on the 

positive and buffering that effects ecosystem services have on human health. 

 Limitation: Does not include studies of the 

associations between the built environment 

and health and well-being. 

Norman et 

al. [125] 

 Developed a GIS for ecosystem services using the Soil and Water Assessment Tool and 

mapped socioeconomically disadvantaged populations near the U.S.-Mexico border using 

a Modified Socio-Environmental Index. 

 Spatially correlate community access and exposure to ecosystem services. 

 Method for identifying environmental justice communities using ecosystem services 

instead of chemical exposures.  

 Found that border communities carry 

disproportionate environmental burdens 

resulting from ecosystem service 

degradation.  

Ringold et 

al. [126] 

 Developed a framework for identifying data that can serve as an indication of ecosystem 

impact on human well-being. 

 Argued for the use of “final” ecosystem services, or services that are directly consumed or 

enjoyed by humans, as the most robust link to human well-being. 

 Defined final ecosystem services as “biophysical features, quantities, and qualities that 

require little further translation to make clear their relevance to human well-being”. 

 Applied a six-step process to streams to demonstrate the framework. 

 Framework aids in moving toward 

quantification of ecosystem services on 

well-being.  

Smith et 

al. [127] 

 Proposed a modeling structure for evaluating the impacts of ecosystem services on human 

well-being. 

 Categorized indicators from existing well-being indices into domains (e.g., education, 

health, social cohesion) for use in a well-being index for the United States. 

 Recognized the difficulties in using well-

being indices in policy, but proposed model 

aggregates and incorporated well-known 

and accepted measures and methodologies.  

Yang et al. 

[128] 

Proposed an index of dependence on ecosystem services:  

 Quantifies patterns of human dependence on ecosystem services. 

 Higher value equals higher dependence on ecosystem services and increased vulnerability 

to ecosystem degradation. 

 Found that the poor and those with less 

control of natural capital are more 

dependent on ecosystem services. 

 The method can be used to identify 

interventions for poverty alleviation.  
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Table S12. Papers exploring essential concepts, methods, and new directions. 

Reference Category Contribution to Cumulative Risk 

Alexeeff et al. [82] 
Method: GIS for 

Environmental Justice 

Screening method for communities disproportionately exposed to 

social, economic, and environmental stressors.  

Bevc et al. [83] 
GIS Application and 

Methods 

Example of an approach to assessing multiple factors causing mental 

and physical health problems. 

Briggs et al. [40] GIS Application 
Analyzes correlations of SES and environment with health status (most 

GIS work was descriptive). 

Clougherty and 

Kubzansky [15] 
Concepts Explains the concepts and challenges of measuring social stress. 

deFur et al. [17] Concepts 

Highlights the concepts of susceptibility and vulnerability and issues a 

call to remain focused on identifying causes of susceptibility and 

vulnerability rather than mitigating factors. 

Gennings et al. [51] Method: Biomarkers 
Presents a method for linking body burden of chemicals to human 

well-being. 

Glass et al. [64] 
Methods: 

Epidemiology 

Exemplifies social epidemiological approach and a measure of social 

context. 

Glei et al. [65] 
Methods: 

Epidemiology 
Assesses biological impacts of stress; findings support theory of AL. 

Hendriksen et al. [54] 
Methods: “Omics” for 

chemical mixtures 

Illustrates the limitations of classic toxicology and advantages of 

“omics” technologies. 

Hicken et al. [86] 
Method: Differential 

Vulnerability 

Assessment of differential effects of psychosocial stress on the 

association between chemical exposure and health outcome. 

Islam et al. [88] 
Methods: 

Epidemiology  

Example of impacts of household stress on child pulmonary function 

in response to exposures to NOx. 

Knol et al. [20] Concepts 
Reviews the development and use of conceptual models underpinning 

research in environmental public health. 

Landis et al. [113] Method 
Assesses ecological risk from multiple stressors using Bayesian 

methods.  

Levy et al. [80] 
Methods: Dose–

response 

Demonstrates three different meta-analytic techniques for dose-

response development.  

Linder and Sexton [23] Concepts 
Presents theoretical frameworks that can be used to support CRA 

conceptual model development. 

McConnachie et al. 

[116] 
Method: AL 

Ecological example of interactions between chronic stress and 

environmental stressors. 

Menzie et al. [24] Concepts and Process 

Presents systematic processes for conducting cumulative risk research 

and offers reviews of statistical models and analytical approaches 

appropriate for different types of risk questions/study circumstances. 

North and Martin [56]; 

Thayer and Kuzawa 

[57] 

Methods: Gene-

Environment and 

Epigenetics  

Presents the building blocks for further research and application of 

gene-environment and epigenetic studies to cumulative risk 

investigations. 

Rider et al. [31] Concepts 
Discusses frameworks and models for integrating nonchemical 

stressors into CRA. 

Rider et al. [32] Review of Concepts 
Reviews evidence for interactions between chemical and nonchemical 

stressors. 

Ringold et al. [126] 
Method: Ecosystems 

and Human Health 

Provides a framework for identifying indicators of ecosystem service 

impact on human well-being. 

Sexton [27] Concept 
Reviews and synthesizes existing CRA concepts and frameworks, and 

presents a path forward for implementation.  

Theall et al. [93] 
Method: Children’s 

Health 

Provides an example of a biomarker study of cellular response to 

neighborhood-level stressors. 

Tornero-Velez et al. 

[45] 
GIS Method 

Biogeographical method for identifying environmentally relevant 

chemical co-occurrences. 

Wang and Chen [46];  

Wang et al. [110] 
Methods 

Applications of fuzzy set theory to ecological dose–response and air 

quality index for selected criteria air pollutants. 

Wason et al. [79] Method: PBPK 
Demonstrates a method for introducing nonchemical stressors into the 

risk assessment paradigm. 

Wing et al. [95]; 

Horton et al. [96];  

Schinasi et al. [97] 

Methods:  

Epidemiology 

Example of community-based participatory research, 2-week 

longitudinal environmental epidemiology study, application of 

individual level stress, and mood instruments. 

Zota et al. [74] Method: AL 
Provides a method for assessing how AL affects the relationship 

between a chemical stressor and a health outcome. 
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