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Abstract: The Visible Infrared Imaging Radiometer Suite (VIIRS) is a next-generation polar-orbiting
operational environmental sensor with a capability for global aerosol observations. Identifying land
aerosol types is important because aerosol types are a basic input in retrieving aerosol optical
properties for VIIRS. The VIIRS algorithm can automatically select the optimal land aerosol model
by minimizing the residual between the derived and expected spectral surface reflectance. In this
study, these selected VIIRS aerosol types are evaluated using collocated aerosol types obtained
from the Aerosol Robotic Network (AERONET) level 1.5 from 23 January 2013 to 28 February 2017.
The spatial distribution of VIIRS aerosol types and the aerosol optical depth bias (VIIRS minus
AERONET) demonstrate that misidentifying VIIRS aerosol types may lead to VIIRS retrieval being
overestimated over the Eastern United States and the developed regions of East Asia, as well as
underestimated over Southern Africa, India, and Northeastern China. Approximately 22.33% of
VIIRS aerosol types are coincident with that of AERONET. The agreements between VIIRS and
AERONET for fine non-absorbing and absorbing aerosol types are approximately 36% and 57%,
respectively. However, the agreement between VIIRS and AERONET is extremely low (only 3.51%).
The low agreement for coarse absorbing dust may contribute to the poor performance of VIIRS
retrieval under the aerosol model (R = 0.61). Results also show that an appropriate aerosol model can
improve the retrieval performance of VIIRS over land, particularly for dust type (R increases from
0.61 to 0.72).

Keywords: aerosol model; VIIRS; AOD; AERONET

1. Introduction

Atmospheric aerosols significantly influence the radiation budget of the Earth by affecting
precipitation rates, the lifetime and microphysical properties of clouds, and tropospheric
photochemistry [1-3]. Satellite remote sensing has long been recognized as an ideal approach for
monitoring the spatiotemporal distribution of aerosol optical depth (AOD) at the regional and global
scales [4]. Aerosol retrieval algorithms have been developed for the global distribution of AOD using
different satellite sensors [5-7]. The Visible Infrared Imaging Radiometer Suite (VIIRS), which was
launched aboard the Suomi National Polar-orbiting Partnership (NPP) Satellite in October 2011,
can be used to measure cloud and aerosol properties, ocean color, sea and land surface temperatures,
ice motion and temperature, fires, and Earth’s albedo [8,9]. VIIRS is designed with many characteristics
similar to the Moderate Resolution Imaging Spectroradiometer (MODIS) [10,11]. VIIRS can obtain
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aerosol information with finer spatial resolution compared with MODIS, and the obtained information
is complementary to the ground measurements from the Aerosol Robotic Network (AERONET) [12,13].

The VIIRS team continuously monitors, evaluates, and improves aerosol retrieval performance [8,14].
Other researchers have evaluated the performance of VIIRS AOD retrievals across different
regions [9,15-17]. For example, VIIRS AOD was evaluated with ground-measured AOD from
over 12 selected AERONET sites and compared with MODIS aerosol data over China in
2013 [15]. The spatiotemporal variations in AOD retrieved from VIIRS in Eastern China were also
investigated [16]. Emerging aerosol products from VIIRS, MODIS (Collection 6), and Geostationary
Ocean Color Imager in East Asia were evaluated in 2012 and 2013 using ground AOD observations from
AERONET and handheld sun photometers [17]. These early validation studies reported that VIIRS
data exhibit differences with ground measurements. Therefore, the potential source of uncertainty in
VIIRS land aerosol retrievals should be determined to improve VIIRS performance.

Identification of aerosol types is important for the accurate retrieval of AOD from VIIRS [14,18].
When an aerosol type is selected, its optical properties, in terms of refractive indices and size
parameters, can be precisely identified and the uncertainty in aerosol retrieval can be effectively
reduced [18]. The aerosol model selection algorithm used for VIIRS retrieval is described in detail
in [18]; this algorithm can dynamically select the optimal land aerosol model by minimizing the
residual between the derived and expected spectral surface reflectance. The standard deviation of the
predefined band ratios ranges from 10% to 30%, which indicates that the relationship of the expected
spectral surface reflectance obtained from global empirical values is a major error source in VIIRS
land aerosol retrieval [18]. Therefore, the dynamic selection of land aerosol models may result in a
considerable uncertainty in the land AOD retrieval of VIIRS [14].

Huang, et al. [14] showed the biases and uncertainties of VIIRS AOD under different aerosol
models but did not present results to quantify the selection performance of VIIRS aerosol type.
Therefore, the present study aims to evaluate the selection performance of a VIIRS aerosol model
by comparing aerosol models derived from VIIRS with aerosol types obtained via AERONET.
The evaluations and results of this study are potentially useful for optimizing the selection method for
an optimal land aerosol model and improving the accuracy of AOD retrieval.

2. Datasets and Methods

2.1. Datasets

VIIRS is one of the key environmental remote sensing instruments onboard the Suomi NPP
satellite. This instrument is a scanning radiometer that can extend and improve the heritage of
Advanced Very High Resolution Radiometer (AVHRR) and MODIS [8]. The Intermediate Product
(IP) of VIIRS is aerosol retrieval at the pixel level with a high spatial resolution (750 m) [18]. IP is
averaged and aggregated to an Environmental Data Record (EDR) with a spatial resolution of 6 km
(8 x 8 pixels) [8]. The AOD at 550 nm (AOD550) is identified as good quality at the IP level if the
following requirements are satisfied: (1) the solar zenith angle is less than 65°; (2) AOD550 is
within 0 to 2; (3) no cloud shadow, adjacent cloud, cirrus, or fire is detected; (4) the surface is not
dominated by soil; and (5) the minimum retrieval residual is less than 0.05. The high-quality EDR
AOD (8 x 8 pixels) is averaged from good quality IP AODs if the number of good quality pixels is
larger than 16. The evaluation in this study only focuses on high-quality VIIRS AOD.

The selected aerosol model is given at the EDR level, which is provided in the VIIRS Aerosol
Products Algorithm Theoretical Basis Document [19]. Five predefined aerosol models are found
in the VIIRS aerosol algorithm over land: Dust, Smoke High Absorption, Smoke Low Absorption,
Urban Clean, and Urban Polluted [18]. These models roughly represent all aerosol types based
on AERONET retrievals [20]. They can also be used to retrieve aerosol information from other
satellites, such as MODIS and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
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(CALIPSO) [10,21]. The aerosol size distributions and the optical characteristics of a given model vary
with AOD magnitude [22].

AERONET is a global network of ground-based sun photometers (Cimel sun/sky radiometer)
that provide regular and accurate measurements for aerosol optical properties with high spectral and
temporal resolutions at different global sites [12]. The total uncertainty of the AERONET level 1.5
AODs is approximately 0.01 to 0.02, which is sufficient to serve as a ground truth value for VIIRS
AOD550 validation over land [12,13]. The AERONET sites provided AODs at 340, 380, 440, 500, 675,
870, and 1020 nm and angular distributions of sky radiance at 440, 675, 870, and 1020 nm. Other aerosol
optical properties were also provided, such as the single-scattering albedo (SSA) with a 15 min time
resolution during daytime. The established second-order polynomial relation between AERONET
AODs and wavelengths (340, 380, 440, 500, 675, 870, and 1020 nm) in logarithmic coordinates is applied
to calculate AOD550 because AERONET does not provide AOD at the 550 nm channel [14].

2.2. Methods

This study investigates the selection of VIIRS aerosol types at the EDR level and compares it
with those derived from AERONET level 1.5 data, which cover the period from 23 January 2013
to 28 February 2017. The VIIRS aerosol types were previously described in the literature [18,20].
AERONET retrievals can be classified into four aerosol models, namely, Dust, Mixture,
non-absorbing (NA), and black carbon (BC), based on real-time SSA at 440 nm and fine-mode fraction
(FMF) at 550 nm, of which the classification criteria (Table 1) for AERONET aerosol can be found in
the study of Lee, et al. [23]. FMF was applied to represent the dominant mode for size distribution,
and SSA was applied to separate aerosols with different absorption levels [23].

Table 1. VIIRS aerosol types and their corresponding AERONET aerosol types. Abbreviation in this
table: Aerosol Robotic Network (AERONET), non-absorbing (NA), black carbon (BC), single-scattering
albedo (SSA) and fine-mode fraction (FMF).

VIIRS Aerosol Types Characteristics and Regions =~ AERONET Aerosol Types ~ AERONET Classification Criteria

Absorption and coarse mode,

Dust Sahara, Middle East Dust FMF < 0.4 and SSA < 0.95
High Absorption Smoke 1181 absorption, South Africa, BC FMF > 0.6 and SSA < 0.95
savanna fires
Low Absorption Smoke Low absorption, South BC FMF > 0.6 and SSA < 0.95
America, woody burning

Clean Urban Low absorption, developed NA FMF > 0.6 and SSA > 0.95
reglons

Polluted Urban High absorption, developing BC FMF > 0.6 and SSA < 0.95
reglons

Not available Not available Mixture 04 <FMF <0.6

The advantages of this algorithm are its simplicity and robustness, but performance depends
on threshold values. O'Neill, et al. [24] showed that the AERONET retrieval algorithm tends to
overestimate fine-mode AOD and underestimate coarse-mode AOD because it used a threshold of
0.6 mm to distinguish between fine- and coarse-mode aerosols. Consequently, by adopting a safety
margin of 0.2, fine-mode aerosols are defined by FMF to be greater than 0.6, whereas coarse-mode
aerosols are defined to be less than 0.4 [23]. Dubovik, et al. [20] found that SSAs at 440 nm are
within 0.90-0.98 for urban/industrial aerosol, 0.89-0.95 for biomass burning, and 0.92-0.93 for desert
dust. Biomass burning aerosol contains BC, whereas urban/industrial aerosol contains BC and NA.
Thus, the SSA threshold of 0.95, which is the upper limit of SSA for biomass burning aerosol, is used
to distinguish between absorbing and non-absorbing aerosols. This threshold is also acceptable for
distinguishing between desert dust (SSA range of 0.92-0.93) and oceanic aerosols (SSA of 0.98) in
coarse-mode particles.
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The present study investigates the performance of the aforementioned method and displays the
scatterplots of FMF and SSA in four typical regions shown in Figure 1. North America (30° to 60° N,
—135° to —45° E) is affected by aerosols mainly from non-absorbing anthropogenic pollution and wild
fires. The most frequently detected aerosol type is NA, followed by BC, whereas mixture and dust are
rarely detected in North America. The most frequently detected aerosol type in North Africa (0° to
30° N, —20° to 65° E) is dust from the Sahara Desert. The dominance of BC in South Africa (—40° to
0° N, —20° to 65° E) and South Asia (—10° to 20° N, 65° to 180° E) arises from periodic biomass burning.
The remarkable difference between the two regions is evident in the BC content of biomass-burning
aerosols. More BC is generated from the flaming stage of burning grass in Africa than from the
smoldering stage of burning forests or straw in South Asia [25]. Consequently, the classification criteria
can reasonably classify AERONET aerosols into four types.
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Figure 1. Scatterplots of FMF and SSA in four typical regions: (a) North America; (b) North Africa;
(c) South Africa; and (d) South Asia. Abbreviation in this figure: Mix. (Mixture), non-absorbing (NA),
black carbon (BC), single-scattering albedo (SSA) and fine-mode fraction (FMF).

For comparison, we selected the VIIRS aerosol types and their corresponding AERONET aerosol
types based on the VIIRS Aerosol Products Algorithm Theoretical Basis Document [19], as shown in
Table 1. No clear criterion distinguishes among ‘Low Absorption Smoke’, ‘High Absorption Smoke’
and ‘Polluted Urban’ because the SSAs of the three aerosol models have overlaps. Thus, we used the BC
of AERONET to represent the three VIIRS aerosol types with different absorption levels. The Mixture
type of AERONET has no corresponding VIIRS aerosol type.

The following rules based on [8,15,17] were executed to obtain the matchups between the datasets
of AERONET and VIIRS. We collected all the VIIRS aerosol types within a 27.5 km radius circle that
centered on the AERONET sites. AERONET data were acquired within 30 min of VIIRS satellite
overpass times. The threshold values of 27.5 km and 30 min were obtained from the evaluation study
of VIIRS retrievals executed by the VIIRS aerosol calibration/validation team [8,14]. Multiple VIIRS
aerosol types may exist within the 27.5 km circle (including approximately 80 VIIRS EDR retrievals) at
a given time. Thus, we selected the most common aerosol types (over 50% of the total valid number)
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for each matchup with a well-represented type. To match AOD between VIIRS and AERONET,
the VIIRS AODs (within the radius of 27.5 km and time of 30 min) near each AERONET site were
averaged to reduce evaluation uncertainty. We removed the matchups without a dominant aerosol
type or those where the high-quality VIIRS dataset is less than 20% within the matching range.
Consequently, a matchup occurs when there exists a dominant model (greater than 50% of the ~80 EDRs
within the circle centered over the AERONET site are the same) in the VIIRS retrieval that exists within
30 min of an AERONET observation. The hit ratio for each aerosol type from all the matchups was
calculated to quantify aerosol type agreement between VIIRS and AERONET. The “hit ratio” is the
number of “matchups” that agrees with AERONET relative to the total number of “matchups”.

To demonstrate the effects of the aerosol model on VIIRS retrieval, the performance of high-quality
VIIRS AOD at 550 nm was evaluated by comparing with the AERONET measurements under each
VIIRS aerosol type. The following evaluation methods were applied: (1) accuracy, which refers
to the average bias between two datasets; (2) precision, which is the standard deviation of the bias;
(3) correlation coefficient (R), which indicates the correlation and dependence of statistical relationships
between two datasets; (4) linear regression (AODvyyrs =a x AODsgroNET + b), which is used to estimate
the slope (1) and intercept (b) of the datasets; and (5) the percentage of VIIRS AODs that falls within
the MODIS expected error (EE) of &£ (0.05 + 0.15 AOD) over land [8,26]. VIIRS is expected to retrieve
aerosol properties with similar or even better performance than those of MODIS [8]; thus, the MODIS
uncertainty applied in this study can assess whether VIIRS AOD can achieve the accuracy of MODIS.

3. Results and Analysis

This section compares the aerosol types from VIIRS with those from AERONET. There are 384
AERONET sites were applied in this study. The colored boxes in Figure 2a show the hit ratio of
the aerosol type at each 6° x 6° grid box, and each of the 384 sites has more than 10 comparison
matchups. The hit ratio indicates the agreement percentage of the aerosol type for each grid box, which
is the percentage of the days with coincident aerosol type to the total matchup number at each grid
box (Figure 2c¢). Figure 2b displays the mean AOD difference between the AODs of the VIIRS and
AERONET sites.

Figure 2a indicates that the relatively large hit ratios (about 28%) occur in the developed regions
of Europe and the Eastern United States, where NA and BC are the most common aerosol types
(Figure 2d). The bias between VIIRS and AERONET AODs over these regions can be disregarded
(only —0.01 £ 0.03). However, large AOD underestimation (—0.08 & 0.09), which corresponds to a
low hit ratio of approximately 6%, can be observed over South Africa due to the influence of coarse
dust aerosols. Similarly, the low hit ratios (approximately 11%) over India and Northern China
correspond to a large underestimation (—0.10 & 0.23). For these developing countries (i.e., India and
China), polluted urban aerosol should be dominant due to high polluting industries and fossil fuel
consumption. Therefore, the misidentification of the aerosol model (low hit ratio) may be linked to
these biases. The influence of aerosol model misidentification on VIIRS aerosol retrieval is further
analyzed in the next paragraph.
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Figure 2. AERONET sites with more than 10 matchups applied in the study. All AERONET sites in a
6° x 6° grid box throughout the world: (a) hit ratio of aerosol type between VIIRS and AERONET;
(b) AOD difference (VIIRS minus AERONET); (c¢) matchup number of VIIRS and AERONET;
and (d) aerosol type with the highest frequency.

Figure 3 displays the valid days of VIIRS at a grid of 1° x 1° during the study period (total of
1497 days). The valid days refer to the number of days with high-quality VIIRS retrievals at each
1° x 1° grid from 23 January 2013 to 28 February 2017. The regional distribution of the dominant land
aerosol model in each 1° x 1° grid is shown in Figure 4a. The fractions of each aerosol type for VIIRS
are displayed in Figure 4b—f. The fraction of an aerosol type is the ratio of the days of the aerosol type
to the total valid days at each 1° x 1° grid (Figure 3). The dominant land aerosol model for Figure 4a
was obtained from the mode value in Figure 4b—f at each 1° x 1° grid. The void regions in Figure 4 are
due to the limitation of VIIRS in retrieving high-quality AOD over an area with scarce vegetation.

Number of Valid Days
300 600 900 1200

Latitude (°)

-180 -120 -60 0 60 120 180
Longitude (°)

Figure 3. Valid days of VIIRS at a grid of 1° x 1° during the study period (total of 1497 days from
23 January 2013 to 28 February 2017).
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VIIRS AODs were overestimated over the Eastern United States and the developed regions of East
Asia, as shown in Figure 2b. The clean urban model is appropriate for the Western United States and the
developed regions of East Asia (i.e., South Korea, Japan, and Taiwan). However, low-absorption smoke
is the most selected model for VIIRS (Figure 4a,e). Low-absorption smoke exhibits stronger absorption
than clean urban, which may result in a positive AOD bias. Underestimated AOD displays are
observed in Southern Africa, India, and Northeastern China (Figure 2b). The dominant aerosol model
for Southern Africa is high-absorption fine particles due to savanna fires. But the local aerosol may
mix with coarse dust originated from Northern Sahara. Dust particles with a coarse size exhibits lower
scattering capability than fine smoke particles, dust model mixing with fine smoke particles may result
in a AOD bias [14]. The developing regions of India and Northeastern China mostly have a Polluted
Urban model due to the massive incomplete burning of fossil fuels with low processing technology for
their industries and activities. However, the Clean Urban model is selected as the dominant aerosol
model for these developing regions as shown in Figure 4a,e. The lower absorption of the Clean Urban
model than that of the Polluted Urban model may account for the underestimations. In summary;,
the misidentification of VIIRS aerosol types may contribute to VIIRS retrieval overestimation over the
Eastern United States and the developed regions of East Asia and the underestimation over Southern
Africa, India, and Northeastern China.
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Figure 4. Spatial distribution of aerosol types from VIIRS: (a) aerosol types (left color bar) with the
highest frequency in each pixel; The fraction (right color bar) for (b) Dust; (c) Smoke High Absorption
(d) Smoke Low Absorption (e) Clean Urban and (f) Polluted Urban of VIIRS aerosol types. Abs. refers
to Absorption in each sunfigure.
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The hit ratio is defined as the percentage of the number of coincident aerosol types to the number
of total matchups (IN). The histograms of the comparison of the aerosol types are shown in Figure 5,
where the red box around a bar indicates that the VIIRS aerosol type is consistent with the AERONET
type. Overall, we found 40,727 matchups for comparison, with an agreement of 22.33% for all the
cases. The Dust model is frequently selected (53.92%, 21,958 of the collection number), followed by
the Urban Clean (23.88%), Urban Polluted (9.55%), Smoke Low Absorption (9.21%), and Smoke High
Absorption (3.45%) models. The VIIRS dust type has the most number of matchups. However, the dust
type agreement between VIIRS and AERONET is extremely low (only 3.51%). AERONET BC exhibits
the highest frequency for VIIRS dust type. However, the two types have a considerable difference in
effective particle radius (BC is a fine absorbing particle, whereas dust is a coarse particle), which may
result in a large bias in VIIRS aerosol retrieval under dust type. The agreements range from 32% to
58% for fine aerosol types, i.e., 56.34% for high-absorption smoke, 56.47% for low-absorption smoke,
32.17% for clean urban, and 58.75% for polluted urban.

VIIRS can determine fine dominant aerosols better than coarse absorbing aerosols (Dust).
Large amounts of VIIRS dust selection reduce the overall agreement between VIIRS and AERONET
aerosol types. Another considerable point is the differences in the aerosol classification criteria
between VIIRS and AERONET, as shown in Table 1. For example, Absorption Smoke and Polluted
Urban correspond to the same AERONET aerosol type because no appropriate criterion can distinguish
between them. Moreover, the inherent subjectivity of the classification criteria may reduce the reliability
of the comparison although our threshold values for the classification criteria are coincident with those
in [23].

100

(a) Dust ‘ (b) High Abs. Smoke (c) Low Abs. Smoke
go | (201301-201702) (201301-201702) (201301-201702)
< Hit Ratio=3.51% Hit Ratio=56.34% Hit Ratio=56.47%
< N=2195 N=1404 N=374
> 60 958 0 9
c
[4)
3 40
g
[T
20
0 -
Dust BC NA Mix. (d) Clean Urban (e) Polluted Urban
AERONET Aerosol Type | (201301-201702) (201301-201702)
Hit Ratio=32.17% Hit Ratio=58.75%
N=9725 N=3891
Dust BC NA Mix. Dust BC NA Mix.

AERONET Aerosol Type AERONET Aerosol Type

Figure 5. Corresponding AERONET aerosol types for each VIIRS aerosol type. The red box indicates
the AERONET aerosol type that is consistent with that of VIIRS. The y-axis denotes the frequency
of different types of AERONET at a given VIIRS aerosol type: (a) Dust; (b) High Absorption Smoke;
(c) Low Absorption Smoke; (d) Clean Urban; and (e) Polluted Urban.

The comparison between VIIRS EDR AODs and ground AERONET observations (N = 40,727)
shows an R of 0.80, a linear regression slope of 0.70, a positive intercept of 0.03, and an accuracy equal
to 0.00, with 73% of the AODs falling within the EE in Figure 6a. A worldwide evaluation study
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conducted from 23 January 2013 to 31 December 2014 exhibits similar results with matchup numbers
(29,145), accuracy (—0.0008), precision (0.116), uncertainty (0.116), and R (0.817) in land AOD versus
AERONET [14]. However, Figure 6 shows the varying retrieval errors of VIIRS AOD under different
aerosol types. VIIRS AOD products exhibit overestimation (accuracy = 0.02) for Clean Urban but
underestimation (accuracy = —0.02 to —0.01) for other aerosol types. The Urban Clean and the Low
Absorption Smoke models demonstrate higher uncertainties compared with the other three models,
and similar results can be found in [14]. For VIIRS AOD under the Clean Urban model, only 62% of
the retrievals fall within EE. For the inter-comparison under different aerosol types, VIIRS exhibits the
lowest R (0.61) under the coarse Dust model. The R values for the other fine aerosol models range from
0.80 to 0.89. The poor performance of VIIRS retrieval under the coarse Dust model may be attributed

to the large proportion of misidentification of dust types.
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Figure 6. Scatterplots of VIIRS AOD550 against AERONET measurements under different VIIRS
aerosol types: (a) All; (b) dust; (c) High Absorption Smoke; (d) Low Absorption Smoke; (e) Clean
Urban and (f) Polluted Urban. The width of each pixel is 0.04, and the number of collocations that falls
within/above/below EE is represented in each figure. The yellow line is the regression line, the gray
solid line is the 1:1 line, and the gray dashed lines are the EE envelopes. Abbreviation in this figure:
expected error (EE), accuracy (Acc.) and precision (Pre.).

Figure 7 shows the VIIRS performance when VIIRS and AERONET agree on the aerosol type.
A slight improvement in VIIRS performance can be observed in fine absorbing aerosols (i.e., the
Smoke and Polluted Urban models) while an evident increased correlation (R increases from 0.60 to
0.72) is observed in the dust type aerosol. Moreover, the appropriate aerosol model cannot improve
VIIRS performance under NA aerosol (clean urban), which may suggest that VIIRS aerosol retrieval is
insensitive to this model. Overall, selecting the appropriate aerosol model can improve the retrieval

performance of VIIRS, particularly for dust.
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Figure 7. VIIRS aerosol retrievals and AERONET measurements agree on the aerosol type.

The scatterplots of the VIIRS AODs against AERONET measurements under different VIIRS aerosol
types: (a) All; (b) dust; (c¢) High Absorption Smoke; (d) Low Absorption Smoke; (e) Clean Urban
and (f) Polluted Urban. The width of each pixel is 0.04, and the number of collocations that falls
within/above/below EE is represented in each figure. The yellow line is the regression line, the gray
solid line is the 1:1 line, and the gray dashed lines are the EE envelopes.

4. Conclusions

The VIIRS sensor is a next-generation polar-orbiting operational environmental sensor with a
capability for global aerosol observations. The identification of land aerosol types is significant to
reduce the uncertainty of VIIRS retrieval. This study quantitatively evaluated the performance of VIIRS
aerosol type selection by comparing with AERONET observations (level 1.5) from 23 January 2013 to
28 February 2017 and analyzed the influence of a misidentified aerosol model on retrieval. The spatial
distribution of VIIRS aerosol types and the AOD bias between VIIRS and AERONET demonstrate
that the misidentification of VIIRS aerosol types may contribute to VIIRS retrieval overestimation
over the Western United States and the developed regions of East Asia and underestimation over
Southern Africa, India, and Northeastern China. Overall, VIIRS aerosol types exhibit an agreement of
22.33% with AERONET for all cases. VIIRS dust type achieves the most number of matchups (53.92%).
However, the dust type agreement between VIIRS and AERONET is extremely low (only 3.51%).
The agreements for fine non-absorbing and absorbing aerosol types are approximately 36% and 57%,
respectively. The low agreement for coarse absorbing dust may contribute to the poor performance of
VIIRS retrieval under the aerosol model (R = 0.61). An appropriate aerosol model can improve the
retrieval performance of VIIRS, particularly for dust type (R increases from 0.61 to 0.72). Our results
indicate that the automatic selection method for an optimal aerosol model over land should be
improved further.
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