

International Journal of Environmental Research and Public Health

Supplementary Material:

Figure S1. Typical marcoplastics and mesoplatics collected in this study.

Table S1. Abundance comparison with other freshwater areas (Surface water).

Figure S1. Typical marcoplastics and mesoplatics collected in this study.

	1	,	,
Surface Water	Location	Abundance (Items/m³)	Reference
Los Angeles River	USA	22–12,932	[1]
Tamar Estuary	UK	0.028	[2]
Yangtze River Estuary	China	500-10,200	[3]
Oujiang Estuary	China	100-4100	[4]
Seine River	France	3-108	[5]
Great Lakes tributaries	North America	0.05-32	[6]
Lake Bolsena	Italy	0.82-4.42	[7]
Lake Chiusi	Italy	2.68-3.36	[7]
Taihu Lake	China	3400-25,800	[8]
Bei Lake	China	7800–10,050	[9]
Wu Lake	China	1160-2380	[10]
Three Gorges Dam	China	1594–12,611	[11]
Rhine River and Meuse River	Netherlands and Germany	100-18,700	[12]
Middle-Lower Yangtze River Basin	China	500-3100	[13]
Antua River	Portugal	58-1265	[14]
Hong Lake	China	1250-4650	[15]
East Dongting Lake	China	900-2800	[15]
West Dongting Lake	China	433–2217	This study
South Dongting Lake	China	367-2316	This study

Table S1. Abundance comparison with other freshwater areas (Surface water).

 Table S2. Abundance comparison with other freshwater areas (Sediment).

Sediment	Location	Abundance (Items/kg)	Reference	
Lagoon of Venice	Italy	672–2175	[16]	
Rhine River	Germany	228–3763	[17]	
Taihu Lake	China	11–234.6	[8]	
Lake Chiusi	Italy	205–266	[7]	
Lake Ontario	Canada	20–27,830	[18]	
Beijiang River	China	178–544	[9]	
Huangpu River	China	410-1600	[19]	
Edgbaston Pool	UK	250–300	[20]	
Yangtze River Esuary	China	20-340	[21]	
River Thames Tributary	UK	18.5–66	[22]	
Antua River	Portugal	18–619	[14]	
Three Gorges Dam	China	25–300	[11]	
West Dongting Lake	China	320-480	This study	
South Dongting Lake	China	200-1150	This study	

References

- Moore, C.J.; Lattin, G.L.; Zellers, A. Quantity and type of plastic debris flowing from two urban rivers to coastal waters and beaches of Southern California. Journal of Integrated Coastal Zone Management 2011; 11: 65-73.
- 2. Sadri SS, Thompson RC. On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Marine Pollution Bulletin 2014; 81: 55-60.
- 3. Zhao S, Zhu L, Wang T, et al. Suspended microplastics in the surface water of the Yangtze Estuary System, China: First observations on occurrence, distribution. Marine Pollution Bulletin 2014; 86: 562-568.
- 4. Zhao S, Zhu L, Li D. Microplastic in three urban estuaries, China. Environmental Pollution 2015; 206: 597-604.
- 5. Dris R, Gasperi J, Rocher V, et al. Microplastic contamination in an urban area: a case study in Greater Paris. Environmental Chemistry 2015; 12: 592.
- 6. Baldwin AK, Corsi SR, Mason SA. Plastic Debris in 29 Great Lakes Tributaries: Relations to Watershed Attributes and Hydrology. Environmental Science & Technology 2016; 50: 10377-10385.
- 7. Fischer EK, Paglialonga L, Czech E, et al. Microplastic pollution in lakes and lake shoreline sediments-A case study on Lake Bolsena and Lake Chiusi (central Italy). Environmental Pollution 2016; 213: 648-657.
- 8. Su L, Xue Y, Li L, et al. Microplastics in Taihu Lake, China. Environmental Pollution 2016; 216: 711-719.
- 9. Wang J, Peng J, Tan Z, et al. Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere 2017; 171: 248-258.
- 10. Wang W, Ndungu AW, Li Z, et al. Microplastics pollution in inland freshwaters of China: A case study in urban surface waters of Wuhan, China. Science of The Total Environment 2017; 575: 1369-1374.
- 11. Di M, Wang J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China. Science of The Total Environment 2018; 616-617: 1620-1627.
- 12. Leslie HA, Brandsma SH, van Velzen MJM, et al. Microplastics en route: Field measurements in the Dutch river delta and Amsterdam canals, wastewater treatment plants, North Sea sediments and biota. Environment International 2017; 101: 133-142.
- 13. Su L, Cai H, Kolandhasamy P, et al. Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environmental Pollution 2018; 234: 347-355.
- 14. Rodrigues MO, Abrantes N, Gonçalves FJM, et al. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal). Science of The Total Environment 2018; 633: 1549-1559.
- 15. Wang W, Yuan W, Chen Y, et al. Microplastics in surface waters of Dongting Lake and Hong Lake, China. Science of The Total Environment 2018; 633: 539-545.
- Vianello A, Boldrin A, Guerriero P, et al. Microplastic particles in sediments of Lagoon of Venice, Italy: First observations on occurrence, spatial patterns and identification. Estuarine, Coastal and Shelf Science 2013; 130: 54-61.
- 17. Klein S, Worch E, Knepper TP. Occurrence and Spatial Distribution of Microplastics in River Shore Sediments of the Rhine-Main Area in Germany. Environmental Science & Technology 2015; 49: 6070-6076.
- Ballent A, Corcoran PL, Madden O, et al. Sources and sinks of microplastics in Canadian Lake Ontario nearshore, tributary and beach sediments. Marine Pollution Bulletin 2016; 110: 383-395.
- 19. Peng G, Xu P, Zhu B, et al. Microplastics in freshwater river sediments in Shanghai, China: A case study of risk assessment in mega-cities. Environmental Pollution 2018; 234: 448-456.
- 20. Vaughan R, Turner SD, Rose NL. Microplastics in the sediments of a UK urban lake. Environmental Pollution 2017; 229: 10-18.
- 21. Peng G, Zhu B, Yang D, et al. Microplastics in sediments of the Changjiang Estuary, China. Environmental Pollution 2017; 225: 283-290.
- Horton AA, Svendsen C, Williams RJ, et al. Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin 2017; 114: 218-226.