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Abstract: In this article, we review the available evidence and explore the association between air
pollution and insulin resistance (IR) using meta-analytic techniques. Cohort studies published before
January 2018 were selected through English-language literature searches in nine databases. Six cohort
studies were included in our sample, which assessed air pollutants including PM2.5 (particulate
matter with an aerodynamic diameter less than or equal to 2.5 µm), NO2(nitrogen dioxide), and PM10

(particulate matter with an aerodynamic diameter less than 10 µm). Percentage change in insulin or
insulin resistance associated with air pollutants with corresponding 95% confidence interval (CI) was
used to evaluate the risk. A pooled effect (percentage change) was observed, with a 1 µg/m3 increase
in NO2 associated with a significant 1.25% change (95% CI: 0.67, 1.84; I2 = 0.00%, p = 0.07) in the
Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) and a 0.60% change (95% CI: 0.17,
1.03; I2 = 30.94%, p = 0.27) in insulin. Similar to the analysis of NO2, a 1 µg/m3 increase in PM10 was
associated with a significant 2.77% change (95% CI: 0.67, 4.87; I2 = 94.98%, p < 0.0001) in HOMA-IR
and a 2.75% change in insulin (95% CI: 0.45, 5.04; I2 = 58.66%, p = 0.057). No significant associations
were found between PM2.5 and insulin resistance biomarkers. We conclude that increased exposure
to air pollution can lead to insulin resistance, further leading to diabetes and cardiometabolic diseases.
Clinicians should consider the environmental exposure of patients when making screening and
treatment decisions for them.

Keywords: air pollution; insulin resistance; meta-analysis

1. Introduction

Exposure to air pollution can influence human health in a variety of ways, leading to a dramatic
risk in morbidity and mortality [1]. Epidemiological evidence has shown an increasing influence of air
pollution on health, with air pollution becoming the largest environmental risk factor for a variety of
chronic diseases [2]. The main air pollutants include particulate matter (PM), ozone, carbon monoxide,
nitrogen dioxide, and sulfur dioxide [1]. Particulate matter pollutants are complex mixtures of solid

Int. J. Environ. Res. Public Health 2018, 15, 2593; doi:10.3390/ijerph15112593 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0001-7698-6927
https://orcid.org/0000-0003-4059-0538
http://dx.doi.org/10.3390/ijerph15112593
http://www.mdpi.com/journal/ijerph
http://www.mdpi.com/1660-4601/15/11/2593?type=check_update&version=2


Int. J. Environ. Res. Public Health 2018, 15, 2593 2 of 16

and liquid particles of organic and inorganic substances suspended in the air, and a large fraction
of PM is organic [3–5]. The World Health Organization (WHO) Air Quality guidelines (AQGs) have
recommended the lowest concentration values of PM as PM2.5 (PM with an aerodynamic diameter less
than or equal to 2.5 µm) of no more than 10 µg/m3 annual mean, 25 µg/m3 24-h mean, and PM10 (PM
with an aerodynamic diameter less than 10 µm) of no more than 20 µg/m3 annual mean, 50 µg/m3

24-h mean. [1] According to a survey, more than three-fourths of the world’s population lives in areas
with values over the annual air quality standard for PM2.5 set by the WHO (>10 µg/m3) [6,7]. With the
intensification of air pollution, chronic diseases related to air pollution are attracting increasingly more
attention. Numerous epidemiological investigations have shown that air pollutants are associated with
some common chronic diseases, such as hypertension [8] and diabetes mellitus [9,10]. Other studies
have also suggested that insulin resistance (IR) can be affected by air pollution [11–13].

IR is a condition characterized by decreased tissue sensitivity to the action of insulin [14–16].
It refers to various factors weakening the ability of insulin to uptake and utilize glucose. In parallel
with this process, the body compensates through excessive secretion of insulin to maintain the stability
of blood glucose. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR: HOMA − IR =

fasting insulin(µU/mL)× fasting glucose(mmol/l)/22.5) has been used to estimate the level of IR
in the existing studies [17]. Elevated IR is defined as a HOMA-IR ≥2.6 according to standard cutoff
points [18]. In addition, the changes in insulin, glucose, HbA1c, and leptin are also observed.

IR can increase the risk of developing type 2 diabetes and is considered an independent predictor
of type 2 diabetes [19,20]. Genetics, excessive eating, and reduced physical activity are major risk
factors or causes of the disease [21,22]. However, an increasing number of studies have reported that
air pollution is also an important risk factor for diabetes [23,24]. Moreover, air pollution and IR as
a precursor to type 2 diabetes has been shown to have a positive association [12,25]. IR also plays
a significant role in obesity, cardiovascular disease, and metabolic syndrome [26–29]. Owing to the
aging of the population and the increase in adverse environmental factors, the prevalence of these
diseases is increasing rapidly. Growing evidence has suggested an association between air pollution
and IR [30,31], but the results are equivocal. Some clinical studies have shown that high levels of
ambient and traffic-related air pollution are associated with increased HOMA-IR in children and
adults [31,32]. For example, Toledo-Corral et al. suggested that PM2.5 exposure was linked to higher
fasting insulin, fasting glucose, acute insulin response to glucose, and lower insulin sensitivity [33].
Jin et al. found that air pollutants PM10 and nitrogen dioxide (NO2) was positively associated with
insulin and HOMA index in elderly Koreans [12]. These findings suggest that air pollutants are
positively associated with IR. However, in other long-term exposure studies, although air pollutants
were positively associated with the level of glucose, this relationship was not found in either insulin
or HOMA-IR [14,34]. For instance, Ward-Caviness et al. found that people who lived closer to the
roadways had higher fasting blood glucose levels but no difference in HOMA-IR [34]. In addition,
in studies by Brook et al. and Li et al., PM2.5 was associated with higher levels of HOMA-IR and
glucose but did not have a relationship with insulin [11,35]. Thus, the magnitude of the association
between air pollution and IR remains unclear.

The existing evidence from mechanistic studies have indicated possible biological pathways
related to NO2, PM, and IR. Although the toxicity of air pollutants is different, they are all considered
effective oxidants, acting directly on lipids and proteins or indirectly through the activation of
intracellular oxidation pathways [36,37]. NO2 has been proven to trigger oxidative stress, inflammation,
and biological pathways that promote IR [38]. The effect of NO2 on the level of oxidized low-density
lipoprotein (LDL) in adolescents [39] was reported in a study. Some studies have reported that
exposure to PM and NO2 leads to elevated biomarkers of inflammation [14,40,41]. Studies have also
shown PM-induced oxidation potential of proteins and lipids in young adults [42]. This suggests that
oxidative stress caused by air pollution may play a role in IR.

The adverse effects of air pollution were also observed on c-reactive protein, TNF-α,
and interleukin-1β in children [13]. One explanation for the mechanism of IR is that oxidative
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stress-induced endoplasmic reticulum stress pathway could lead to activation of c-Jun N-terminal
kinase and ultimately impair insulin signaling in muscle tissue [43].

Besides, inflammation and the alterations in glucose metabolism are also potential mechanisms
for the relationship between PM and IR [44]. In animal experiments, PM-mediated elevation of blood
glucose was observed in mice in the normal diet and high-fat diet groups [25,45]. The adverse reaction
of insulin signal in liver tissue is the basis of IR pathogenesis. The reduced Akt phosphorylation
in liver, white adipose tissue, and skeletal muscle in response to insulin stimulation indicates the
development of insulin resistance in multiple organs [44]. PM-activated toll-like receptors can also
induce metabolic pathways, including changes in glucose metabolism [46].

The purpose of the present study was to review the available evidence of epidemiological
observational studies concerning the relationship between air pollution and IR, systematically explore
the relationship between the two using meta-analytic techniques, and provide evidence for the
formulation of effective preventive measures. We hypothesized that exposure to air pollution could
increase insulin resistance levels.

2. Materials and Methods

This meta-analysis was performed according to the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) statement [47].

2.1. Inclusion Criteria

We included studies that met the following criteria: (1) studies exploring the direct association
between air pollution and insulin resistance; (2) retrospective or prospective cohort studies; (3) studies
with sufficient data for extraction, such as percentage change and 95% confidence intervals (95% CI);
(4) articles written in English.

2.2. Search Strategy

We systematically searched nine English databases (PubMed, Embase, Web of Science, Nature,
Science Direct, OVID, Springer, The Cochrane Library, and JAMA) for pertinent literature published
before January 2018. PubMed, Embase, Web of Science, Nature, OVID, Springer, and The Cochrane
Library were accessed from Wuhan University Library. Science Direct and JAMA were available on
the official website. The search strategies were carried out on the basis of combinations of keywords
concerning air pollution (“air pollution” OR “air pollutants” OR “particulate matter” OR “PM10”
OR “PM2.5” OR “nitrogen dioxide” OR “NOx” OR “ozone” OR “soot” OR “smog” OR “carbon
monoxide” OR “sulphur dioxide”) and insulin resistance (“insulin” OR “insulin secretion” OR “insulin
resistance” OR “hyperinsulinism” OR “hyperinsulinemia” OR “insulin sensitivity” OR “beta cell” OR
“glucose” OR “glycaemic” OR “HbA1c” OR “hyperglycaemia” OR “hyperglycemia”). The language
was restricted to English. We downloaded all references identified from the databases into a reference
manager (NoteExpress 3.2, Aegean Software, Beijing, China). The bibliography of all included studies,
and those of previous reviews on the subject were examined for further relevant studies. The duplicates
were deleted from the initial records using the software, and the remaining articles were sorted for
eligibility using the following two steps: First, we reviewed titles and abstracts of all publications for
eligibility. Then, we further evaluated the full texts for the remaining references that were labeled as
potentially eligible (Figure 1).
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Figure 1. Flow chart of the study selection process.

2.3. Selection of Studies

There was no limit to the study population. Each study selection was performed by two
independent investigators (Jiajia Dang and Mengtong Yang) in order to reduce the potential for
selection bias, and a mutual decision was made together regarding whether or not it met the basic
inclusion criteria. The disagreements were solved by negotiating with a third investigator (Xinge
Zhang), and consensus was reached after discussion.

2.4. Data Extraction

The following information was extracted from each included study: author, published year, age,
study country, study period, exposure, exposure assessment, outcome assessment, adjusted variable,
statistical model and estimates (odds ratio (OR), regression coefficient (b), risk ratio (RR), or hazard
ratio (HR)), and their corresponding 95% confidence interval (CI) or standard error. Two researchers
(Jiajia Dang and Mengtong Yang) independently extracted the data from each study, and a third author
(Xinge Zhang) adjudicated conflicts. We contacted the original authors to acquire the original data for
studies that did not have enough data.

2.5. Quality Assessment

Two investigators (Jiajia Dang and Mengtong Yang) independently assessed the quality of each
study. We solved any disagreements by discussion. We used the Newcastle–Ottawa scale (NOS)
for cohort studies to assess the quality of individual studies [48]. There are three dimensions in this
scale: selection of the study groups, comparability of the study groups, and outcome ascertainment.
There are altogether eight questions raised in this scale, with a minimum of zero and a maximum of
nine stars. The quality of the study is then graded as poor (0–3 stars), intermediate (4–6 stars), or high
(7–9 stars) [48].

2.6. Statistical Analysis

We adopted percentage change of insulin resistance indicators as the effect size because most of
the included studies used percentage change as effect amount. Percentage increase and percentage
decrease are measures of percentage change, which is the extent to which a variable gains or loses
intensity, magnitude, extent, or value. We produced forest plots to show percentage change and the
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estimation of the summary percentage change. We recalculated the coefficient estimates to reflect a
1 µg/m3 increase in PM10, PM2.5 and NO2, assuming a linear relationship within the considered range.
The between-study heterogeneity was assessed by I2 statistics (no heterogeneity: I2 = 25%; moderate
heterogeneity: I2 = 25–50%; large heterogeneity: I2 = 50–75%; extreme heterogeneity: I2 = 75–100%)
and Q-test. The random effects model was utilized if the heterogeneity was statistically significant
(I2 > 50% and p < 0.05); otherwise, the fixed effects model was adopted [49]. We also examined the
influence of excluding each study and/or some specific studies to test the stability of our results [50].
Meta-regression was performed to identify participant age that can possibly explain the between-study
variation in the reported percentage change [51]. Finally, we used funnel plot and Egger’s regression
test to examine publication bias [52]. All these statistical analyses were carried out using R software (R
Foundation for Statistical Computing, Vienna, Austria). All p values were two-tailed, and less than
0.05 was considered statistically significant.

3. Results

3.1. Literature Retrieval and Study Characteristics

The literature screening process is shown in Figure 1. Table 1 summarizes the characteristics of
the included studies, all of which were cohort studies conducted in Germany (n = 3), the United States
of America (n = 2), and Belgium (n = 1). The final sample included 11,656 participants, aged between 0
and 56.2. For cohort studies, the duration of follow-up ranged from 2 to 13 years.

The association between IR and PM2.5 (n = 6), NO2 (n = 5), PM10 (n = 4) was investigated in the
included studies. One study explored the association of IR and the diameter of particulate matter
between 2.5 and 10 µm (PM coarse) [14]. One study reported the association of per 500 m decrease in
distance to major road with IR [13], and another one reported the association between traffic-related
pollution and IR [53].

Among the six studies, two studies reported an association between NO2 [31] and traffic-related
air pollution [14] and IR, respectively; one studied the association of air pollution [13] (including PM2.5,
NO2, and PM10) exposure and risk of IR; and the last three studies examined the effect of elevated
NO2 and PM2.5 on insulin homeostasis [40,41,53].
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Table 1. Characteristics of included studies.

Author Thiering et al. [13] Wolf et al. [14] Thiering et al. [31] Madhloum et al. [41] Alderete et al. [40] Li et al. [53]

Published Year 2013 2016 2016 2017 2017 2018
Age 10.2±0.2 Average age 56.2 15 Newborns 8~ 15 Average age 51
Study country German Southern Germany German Belgium USA US
Sample size 397 2944 837 590 314 5958
Study period 10 years 2006–2008 15 years 2010–2014 2001–2012 1998–2011

Exposure
NO2, PM10, PM2.5, per 500 m
decrease in distance to major

road (m)

PM2.5, PM10, PM coarse,
nitrogen monoxides (NOx),

NO2

NO2, PM10, PM2.5 PM2.5, PM10, NO2 NO2, PM2.5
PM2.5, traffic-related

pollution

Exposure assessment
(methods)

LUR models were used to
estimate long-term spatial
variability of NO2, PM10,
PM2.5, and PM2.5 absorbance
at the birth address of
each individual.
The concentrations of NO2
were measured at 40
monitoring sites, and
concentrations of PM2.5 and
filter absorbance of PM2.5
were measured at 20
monitoring sites in
Munich-Augsburg and the
Ruhr area.
The measurement period in
Munich was between
October 2008 and November
2009, and measurements at
all selected sites were carried
out three times for
14 consecutive days in
different seasons.

Air pollution measurements
of PM10, PM2.5, NO2, and the
sum of NO2 and nitrogen
monoxides (NOx) were
collected at 20 (PM) and 40
(NOx) monitoring sites for
three periods of two weeks in
the cold, warm, and one
intermediate season during
the period from October 2008
to July 2009.
LUR models were then
applied to the residence
addresses of study
participants to assess
individual
long-term concentrations.

Measurements of particulate
matter were conducted at 20
monitoring sites distributed
throughout each study area
for three, two-week periods
in cold, warm, and
intermediate temperature
seasons between October
2008 and July 2009. For NO2,
parallel measurements using
these 20 and additional 20
monitoring sites
were performed.
The annual mean
concentrations of the
pollutants were estimated for
all residences at the time of
the 15-year examination
(2011–2014) using the
European Study of Cohorts
for Air Pollution Effects
(ESCAPE) area-specific
LUR models.

The regional background
levels of air pollutants
(PM2.5, PM10, NO2) for each
mother’s residential address
were interpolated using a
spatial temporal
interpolation method
(Kriging) that uses pollution
data collected in the official
fixed site monitoring
network (n = 34) and
land-cover data obtained
from satellite images
(CORINE land-cover data
set) in combination with a
dispersion model.
To explore potentially critical
exposures windows during
pregnancy, individual mean
air pollutant concentrations
(micrograms per cubic meter)
were calculated for each of
the three trimesters of
pregnancy, with trimesters
being defined as 1–13 weeks
(1st trimester), 14–26 weeks
(2nd trimester), and 27 weeks
to delivery (3rd trimester).

Hourly air quality data from
ambient monitoring stations
were downloaded from the
U.S. Environmental
Protection Agency’s Air
Quality System (AQS) for the
relevant time period and
averaged to daily level.
Monthly averages were
calculated from the daily
data using a 75%
completeness criterion, and
monthly exposure values
were spatially interpolated
from the air quality
monitoring station’s locations
to the finest geographic
resolution possible (usually
parcel-level) based on the
participant’s geocoded street
level residence using an
inverse distance-squared
weighting (IDW2) algorithm.

Annual average
concentration of PM2.5:
ArcGIS software and a
hybrid spatial-temporal
model were used to estimate
PM2.5 concentration at
residential address.
Short-term exposure
assessment: central-site
hourly measure of PM2.5
from the Harvard Supersite
air pollution monitoring
station located on the rooftop
of the Francis A. A tapered
element oscillating
microbalance was used to
measure PM2.5.
Ambient levels of NOx and
O3 were computed by
averaging data collected from
local state monitors (three for
NOx and two for O3) within
the Greater Boston area.
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Table 1. Cont.

Author Thiering et al. [13] Wolf et al. [14] Thiering et al. [31] Madhloum et al. [41] Alderete et al. [40] Li et al. [53]

Measurement period October 2008~ November
2009 October 2008~ July 2009 October 2008~ July 2009

Three trimesters of
pregnancy: 1–13 weeks (1st

trimester), 14–26 weeks (2nd
trimester), and 27 weeks to

delivery (3rd trimester).

- -

Outcome (IR) HOMA-IR, glucose, and
fasting insulin

HOMA-IR, serum glucose,
insulin, HbA1c, and leptin

HOMA-IR, glucose, and
fasting insulin Plasma insulin Glucose and insulin HOMA-IR, fasting glucose,

HbA1c, insulin, and leptin

Outcome
measurement

Glucose measurements in
blood were performed by
standard laboratory methods
by the individual hospitals.
Fasting insulin in serum was
measured centrally by a fully
mechanized system,
LIAISON (DiaSorin,
Saluggia, Italy).

Serum glucose was measured
using a hexokinase method
(GLU Flex; Dade Behring
Marburg, Marburg,
Germany).
Insulin was determined
using ELISA kits from
Invitrogen (Camarillo, CA).
HbA1c was measured with a
reverse-phase, cation
exchange, high-performance
liquid chromatography
method (analyzer HA 8160;
Menarini Group).
Leptin concentrations were
assessed using ELISA kits
from Mercodia
(Uppsala, Sweden).

Glucose measurements in
blood were performed by
standard laboratory methods
by the two
individual hospitals.
Fasting insulin in serum was
measured centrally by a fully
mechanized system,
LIAISON (DiaSorin,
Saluggia, Italy).

Plasma insulin levels
(pmol/L) of umbilical cord
blood were measured by an
electrochemiluminescence

immunoassay on a
Modular-E170 (Roche, Basel,

Switzerland)
immunoanalyzer.

Glucose was assayed using a
Yellow Springs Instruments
analyzer (YSI INC., Yellow
Springs, OH).
Insulin was assayed using an
automated enzyme
immunoassay (Tosoh AIA
600 II analyzer, Tosoh
Bioscience, Inc., South San
Francisco, CA).

Fasting glucose was
measured by the hexokinase
method twice in each cohort.
Insulin was evaluated by
commercially available
enzyme-linked
immunosorbent assay kits
from Linco Research (St.
Charles, MO) in Third
Generation cohort
examination 1, and Roche
reagents (R&D Systems,
Minneapolis, MN) in
Offspring cohort examination
8 and Third Generation
cohort examination 2.
HbA1c was measured by
turbidimetric immunoassay
in Offspring cohort
examination8 and Third
Generation cohort
examination 2.
Leptin was measured using
enzyme-linked
immunosorbent assay (R&D
Systems, Minneapolis, MN)
in Third Generation cohort
examination 1.

Adjusted factors 1–3, 7 (paternal), 24–29 1–4, 16–18 1–4, 7 (paternal), 9, 11, 19–23 1–4, 7 (paternal), 9, 11, 19–23 2, 10, 15, 33–37 1 (centered), (1 (centered))2, 2,
4–8, 9(median), 11–14, 38, 39

NOS quality score 7 7 6 7 6 8

Adjustment factors: 1: age; 2: sex; 3: ethnicity 4: BMI; 5: smoking; 6: alcohol intake; 7: education; 8: occupation; 9: income; 10: social position; 11: physical activity; 12: date of visit; 13:
population density; 14: median value of owner occupied housing units; 15: season of testing (warm/cold); 16: waist-to-hip ratio; 17: month of blood withdrawal; 18: selected socioeconomic
and lifestyle variables; 19: study area; 20: cohort; 21: secondhand smoke at home; 22: pubertal scale; 23: NDVI; 24: birth weight; 25: study centre; 26:study; 27: study design; 28: puberty
status; 29: ETS; 30: parity; 31: gestational age; 32: season at delivery; 33: season at delivery; 34: prior year exposure at each follow-up visit; 35: body fat percentage; 36: study wave; 37:
study entry year; 38: pack years; 39: sine and cosine season. LUR: land use regression; BMI: body mass index; NDVI: normalized difference vegetation Index; ETS: environmental tobacco
smoke; HbA1c: hemoglobin A1C.
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3.2. The Association of Exposure to PM2.5 and IR

We pooled data from included studies (dividing the study of Wolf et al. into three groups:
nondiabetes, prediabetes, and diabetes) to assess the association of PM2.5, NO2, and PM10 with
IR. Results showed that there was no significant association between PM2.5 and HOMA-IR (−0.26%
change; 95% CI: −1.06,0.53; I2 = 43.55%, p = 0.09), glucose (0.02% change; 95% CI: −0.05,0.08; I2 = 0.00%,
p = 0.34), insulin (2.39% change; 95% CI: −0.69,5.46; I2 = 93.78%, p < 0.001), HbA1c (0.00% change;
95% CI: −0.00,0.00; I2 = 24.60%, p = 0.46), and leptin (0.01% change; 95% CI: −0.01,0.02; I2 = 0.98%,
p = 0.31; Figure 2). Heterogeneity analysis showed that, except for the exposure to PM2.5 with insulin,
the other biomarkers (HOMA-IR, glucose, HbA1c, and leptin) did not have significant heterogeneity
in the included studies (Figure 2).

Figure 2. Forest plot showing the association between PM2.5 and insulin resistance.

3.3. The Association of Exposure to NO2 and IR

The pooled effect percentage change) across studies reported the association between 1 µg/m3

increase in NO2 and 1.25% change in HOMA-IR (95% CI: 0.67,1.84; I2 = 0.00%, p = 0.07; Figure 3)
and 0.60% change in insulin (95% CI: 0.17,1.03; I2 = 30.94%, p = 0.27; Figure 3). However, there was
no significant association between NO2 and glucose (0.04% change; 95% CI: −0.01,0.09; I2 = 30.94%,
p = 0.27; Figure 3). The meta-analysis of exposure to NO2 and IR did not have significant heterogeneity
(Figure 3).
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Figure 3. Forest plot showing the association between NO2 and insulin resistance.

3.4. The Association of Exposure to PM10 and IR

Similar to the analysis of NO2, the results reported the association between 1 µg/m3 increase in
PM10 and 2.77% change in HOMA-IR (95% CI: 0.67,4.87; I2 = 94.98%, p < 0.001; Figure 4) and 2.75%
change in insulin (95% CI: 0.45,5.04; I2 = 58.66%, p = 0.057; Figure 4) after pooling three included
studies. In addition, there was no significant association between PM10 and glucose, HbA1c, and leptin.
While significant heterogeneity was found out in the group of exposure to PM10 and HOMA-IR, studies
included in the group of PM10 and insulin did not demonstrate significant heterogeneity (Figure 4).

Figure 4. Forest plot showing the association between PM10 and insulin resistance.

3.5. Sensitivity Analysis

We checked the influence of the removed data to the pooled estimates after deleting one single
study from the pooled analysis each time. In addition to the studies of Li et al. [53] and Alderete et
al. [40], the pooled estimates were generally robust for the exclusion of each study or some specific
studies (Data not shown).
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3.6. Meta-Regression

Meta-regression analyses showed that age was not a significant predictor of pooled estimates
(percentage change in IR biomarkers) exposure to air pollution (Supplementary Table S1).

3.7. Publication Bias Analysis

The shape of the funnel plot (Figure 5) shows the asymmetry of the data points, suggesting that
the loss of negative results produced by less precise studies might lead to a potential publication bias of
PM2.5, NO2, and PM10. The plots show the observed outcomes (percentage change) on the horizontal
axis against their corresponding standard errors for PM2.5, NO2, and PM10. Egger’s test revealed
the presence of publication bias in the analysis of the relationship between PM2.5 and HOMA-IR
(p = 0.004), PM2.5 and insulin (p = 0.03), NO2 and HOMA-IR (p = 0.02), and NO2 and insulin (p = 0.02)
(Table 2).

Figure 5. Funnel plot to explore publication bias for each pollutant.
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Table 2. Egger’s test to explore publication bias for each pollutant.

Pollutants and IR Biomarkers Percentage change SE Z-Egger p-Egger

PM2.5 and HOMA-IR −0.26 0.41 2.91 0.004
PM2.5 and glucose 0.02 0.03 1.19 0.23
PM2.5 and insulin 2.39 1.57 2.12 0.03
PM2.5 and HbA1c 0.00 0.00 1.19 0.24
PM2.5 and leptin 0.01 0.01 1.67 0.09

NO2 and HOMA-IR 1.25 0.30 2.31 0.02
NO2 and glucose 0.04 0.03 1.60 0.11
NO2 and insulin 0.60 0.22 2.39 0.02

PM10 and HOMA-IR 2.77 1.07 −1.18 0.24
PM10 and insulin 2.75 1.17 0.26 0.80

SE (Standard error): The standard error of a statistic (usually an estimate of a parameter) is the standard deviation
of its sampling distribution or an estimate of that standard deviation.

4. Discussion

To the best of our knowledge, this is the first meta-analysis to systematically examine the
relationship between air pollution and IR. The results showed that the exposure to NO2 and PM10 were
associated with IR, demonstrating that the levels of NO2 and PM10 increased the risk of IR. However,
there was no significant association between PM2.5 and the risk of IR.

The advantages of our research include comprehensive searches across multiple databases, a
robust meta-analysis after adjusting the exposures (1 µg/m3 of PM2.5, NO2 and PM10), and the large
sample size and resulting statistical power. In addition, the design of the included cohort studies was
more suggestive of a causal effect of air pollution and IR. Moreover, the process of data extraction and
data analysis was rigorous and reproducible.

However, our research also has some limitations. First, there were a limited number of included
studies that incorporated differences in research exposure assessment strategies. Cross-sectional
studies were not included because we sought to establish the directionality of the relationship. Second,
we found substantial heterogeneity for PM10 analyses and serious risk of bias for included studies,
which reduced the credibility of the cumulative evidence. When analyzing the effects of PM2.5 exposure
on insulin, the included studies were heterogeneous in the respects that the levels of exposure in
various studies varied and that the assessment methods for exposure levels were not uniform. IR is
affected by multiple factors, but the adjustment of confounding factors in the included studies was
inconsistent, which might have been the reason for the heterogeneity of this meta-analysis. Besides,
the outcome measures were all laboratory indexes. Although the measurement was convenient and
the accuracy was satisfactory, the systematic error of the measuring instrument would have been
inevitable, which might have also been a source of heterogeneity. Third, in this study, as an important
adjusted factor, the wide age ranges might be one of the sources of heterogeneity. In addition, people
with different ages have different sensitivity to air pollution and susceptibility to IR, but the results
showed that age was not the cause of heterogeneity. It has been proven that higher insulin levels in
early childhood are associated with increased risk of type 2 diabetes during adult life exposure to air
pollutants [54]. However, diabetes does not occur in all patients with insulin resistance [14]. In addition,
the limited number of included studies may have led to nonsignificant result. Fourth, we did not find
any study from developing countries (India, China, and South America). In fact, air pollution in China
is a significant public health burden, and the mean annual averages of PM2.5 and PM10 in 2013 were
72.4 and 118.5 µg/m3, respectively [55], which were nearly fivefold higher than the WHO standard
of 10 µg/m3 and 20 µg/m3 for PM2.5 and PM10, respectively. Fifth, a single-pollutant model that did
not account for the potential interaction between pollutants was used in most of our included studies.
It is likely that a model of all possible sources of air pollution will be more accurate than a single
pollutant model. Thus, other unmeasured variables, such as interactions between air pollutants and air
pollutants species, may also have played an important role in explaining the observed heterogeneity.
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Sixth, the exposure assessment strategy varied from study to study and the majority of estimates were
based on exposure levels of outdoor or circumjacent area. Therefore, there was no information about
the impact of indoor air pollution on susceptibility to IR. Seventh, based on substantial heterogeneity
tested out in some groups, random effects model was frequently conducted in our meta-analysis to pool
the studies. However, this model has limitations in underestimating the statistical error and yielding
overconfident conclusions [56]. Finally, the sample size for some air pollutants (e.g., PM2.5, NO2,
and PM10) was not large enough. The above limitation could be sources of bias in this meta-analysis.

The possible effect of NO2 on IR [39,57] has been found in prior studies. Thiering et al. found that
IR increased by 17.0% and 18.7% as the result of increased exposure to NO2 and PM10, respectively,
and that the level of IR was greater in children [13]. Another study of 560 elderly people also showed
that air pollutants such as O3 and NO2 were significantly associated with IR biomarkers in South
Koreans [12]. In addition, several reviews have provided strong evidence that long-term exposure
to high level PM10 increases the risk of IR [10,58]. A study consisting of 374 adolescents in Isfahan,
Iran, reported PM10 concentration was related to IR [39]. A strong interaction between PM10 and
IR [59] was also observed in another study. These studies are similar to our findings of the positive
relationship between NO2, PM10, and IR. Several experiments have found the potential mechanism of
the relationship between NO2, PM and IR. However, more toxicological research on this mechanism is
needed to directly investigate whether NO2 promotes IR [60].

As for the relationship between PM2.5 and IR, quite a few studies have provided inconsistent
evidence. One study of 25 American adults observed that subacute exposure to PM2.5 could increase
HOMA-IR score even on five days of low concentration [11]. A study of 1023 Mexican Americans
(17.9–65.6 years) also showed that short-term (up to 58 days) exposure to PM2.5 and higher annual
average PM2.5 exposure were associated with higher serum glucose and HOMA-IR [61]. Another
study of 65 nonsmoking adults with metabolic syndrome and IR showed that PM2.5 was associated
with worsening IR from 2012 to 2013 in Beijing, China [30]. Liu et al. described the biological
mechanisms of air pollution (especially PM2.5) and IR or diabetes in a systematic review [44], including
activation of the central nervous system, alterations in glucose and lipid metabolism, endoplasmic
reticulum stress, pulmonary and systemic inflammation, and so on. These results provided an in-depth
study of the mechanism of air pollution-mediated IR. However, we did not find any evidence of
associations between PM2.5 and IR biomarkers in the current study. This discrepancy may be explained
through the following points: First, participants in the above three studies had specific population
characteristics, i.e., the age and geographical distribution of these studies was limited to specific groups
of people and areas; however, in our study, the participants were relatively widely distributed. Secondly,
the differences in methodology might also explain the results. The included studies in our research used
regression models (n = 3), spatial-temporal model (n = 2), and U.S. Environmental Protection Agency’s
Air Quality System and Federal Reference Method (FRM; n = 1) to measure the concentration of air
pollutants, which differed from the measurement methods (community monitor [11], tapered element
oscillating microbalance [30], multipollutant model [61]) used in those three studies. Moreover, it was
difficult to exclude the influence of population susceptibility (such as obesity and immune resistance)
on the outcome [11]. People from different races and regions have different gene susceptibility and
lifestyle that lead to different degree of physical change with the same level of air pollution, and this
difference may even be seen in the group with the same race and region. Furthermore, the contribution
of environmental determinants other than air pollutants on IR cannot be ignored [11,30]. Alveolar
macrophages and bronchial epithelial cells are the initial cellular sensors of matter, and they do
not respond to PM itself but to the biological components of PM, such as lipopolysaccharide (LPS).
LPS concentration is higher in PM10 than in PM2.5, which might explain our findings that IR was not
sensitive to the concentration changes of PM2.5.

This meta-analysis found no significant relationships between air pollutants and glucose, HbA1c,
and leptin. A number of studies have shown that long-term exposure to traffic pollution or particulate
air pollution may be associated with increased level of glucose and HbA1c [14,39,62,63]. However,
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participants with diabetes or prediabetes might contribute to this positive effect [14]. Although some
short-term exposure to air pollutants may be associated with evidence of higher levels of glucose,
this association may not be detected in long-term exposure. In addition, the age distribution of the
target population included in this paper was wide, and the adolescents and young adults among
them were less sensitive to the exposure to air pollutants, which might have buffered the effect of
air pollution. Wang et al. [64] found that distance to roadway was not associated with leptin levels,
while the study by Wolf et al. [14] showed annual average NOx and NO2 had a positive association
with leptin. However, lack of information about what and when the participants ate, the time of
study visit, and blood draw might affect the outcome [64], which could also explain the findings in
this meta-analysis.

5. Conclusions

We found that NO2 and PM10 can increase the risk of insulin resistance and that there is no
association between PM2.5 and insulin resistance. Our results conclude that increased exposure to air
pollution can lead to insulin resistance, potentially leading to diabetes and cardiometabolic disease.
Further study is warranted to confirm these results and to assess the clinical significance of the results.
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