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Abstract: The erosion and sediment transport processes in shallow waters, which are discussed
in this paper, begin when water droplets hit the soil surface. The transport mechanism caused by
the consequent rainfall-runoff process determines the amount of generated sediment that can be
transferred downslope. Many significant studies and models are performed to investigate these
processes, which differ in terms of their effecting factors, approaches, inputs and outputs, model
structure and the manner that these processes represent. This paper attempts to review the related
literature concerning sediment transport modelling in shallow waters. A classification based on the
representational processes of the soil erosion and sediment transport models (empirical, conceptual,
physical and hybrid) is adopted, and the commonly-used models and their characteristics are listed.
This review is expected to be of interest to researchers and soil and water conservation managers who
are working on erosion and sediment transport phenomena in shallow waters. The paper format
should be helpful for practitioners to identify and generally characterize the types of available models,
their strengths and their basic scope of applicability.

Keywords: erosion and sediment transport; mathematical and computer models; types of models;
classification; applications; shallow waters

1. Introduction

Soil erosion and its degradation of soil productivity and environment effects on the productivity of
land and water quality (of rivers, estuaries and lakes) comprise one of the major concerns of watershed
managers and decision makers. Temporal and spatial information of soil erosion processes is required
to reflect the pattern of sediment transport during storm events. Erosion is a process of detachment
and transport of soil materials by erosive agents from any part of the Earth’s surface [1]. Generally,
natural erosion is divided into two main categories: water erosion and wind erosion. Water erosion
occurs as different forms of splash, sheet and interrill erosion, rill erosion, gully erosion, river banks
or channel erosion, tillage erosion and glacial erosion. Factors affecting water erosion are climate,
topography, soil structure, vegetation and anthropogenic activities such as tillage systems and soil
conservation measures [2]. Sheet and interrill erosion is considered one of the first steps of erosion in
catchments, which is widely observed on bare or almost bare soils in agricultural lands, pasturage and
open areas. In this type of erosion, the process begins by rain drops hitting the soil surface, and their
effect of detaching the soil structure is an important factor in particulate matter transport. Generally,
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rainfall intensity and runoff rate are the major determinants of splash and sheet erosion [3]. Particularly
in very shallow water, raindrops can provide temporary disturbances that cause static particles to
move. Subsequently, the overland flow transports the sediment in a downslope direction. Three types
of transportation are taking place in sheet erosion: raindrop splash, overland flow action and the
combination of overland flow and rainfall impact [4]. However, the main cause of erosion on steep
slopes or any area with sparse land cover is concentrated flow [5], and flow hydraulic parameters and
transport capacities determine the concentrated flow erosion rates [6].

Due to the increasing use of computer applications and computing power in recent decades,
the investigations of soil erosion and sediment transport through the development of computer models
have been rapidly increased, developed and provided new possibilities. However, there are still
many models that suffer from a range of problems, such as over-estimation due to the uncertainty
of models and the unsuitability of assumptions and parameters in compliance with local conditions.
Over-parameterization due to the deficiency of testing the model is also an issue. The key objective of this
paper is to provide a source that addresses these processes with details for the researchers who are involved
in studying the transport process of sediment by overland flow and shallow waters. This scope could be
achieved by reviewing a number of existing models and studies in the mentioned field, the knowledge
and concepts behind these models and the characteristics of the models including their inputs-outputs.

Many physics-based algorithms have been developed recently to describe the processes of
detachment and sediment transport by shallow overland flow. These algorithms commonly have been
inspired by the state sediment flux equation [7], the fundamental energy transport equation [8] and
the steady state continuity equation for rill and interrill detachment and/or deposition [9]. Sediment
transport capacity concepts and relationships, which initially were developed for channels and alluvial
rivers, are adopted for use in shallow water flows, and different complexities are widely used in
these algorithms. Indeed, most of the mathematical models of soil erosion in shallow waters are
borrowed from the field of fluvial sediment transport [10]. There are significant differences between
shallow overland flow and deeper channel flow [11]. However, knowledge of the shallow overland
flow hydraulics and soil erosion mechanics have been increasing recently, but little research has been
published explaining the physical mechanisms of particulate matter wash-off in shallow flow.

As mentioned, sediment transport capacity is a major concept to determine the rates of
detachment and deposition in physically-based erosion and sediment transport models. In most
of the physically-based models, the erosion process is divided into concentrated flow (rill) erosion
and splash and sheet (inter-rill) erosion [7,12–14]. The transportability of sediment by overland flow
depends on the sediment concentration. During severe rainfall events or high intensity rainfalls,
sediment concentration is higher compared to lower rainfall intensity. This is due to the greater power
of rainfall in triggering the detachment of soil particles. On the other hand, by increasing the flow
depth, sediment concentration decreases and causes the transport capacity to be increased again.
Hjulstrom [15] developed a graph to show the relationship between the size of sediments and the
velocity required to erode (lift it), transport and deposit the soil particles (Figure 1).

Proffitt [16] expressed that the detachability or re-detachability, and thereby, the amounts of
soil loss, is expected to decrease when the overland flow depth is increased. Many laboratory
experiments have provided the necessary knowledge to establish better relationships between different
hydraulic parameters and sediment transport capacity in shallow waters. This information is the
initial component for any physically-based erosion and sediment transport models. For more complex
problems involved in the concurrent processes of erosion and sediment transport in non-uniform
flows on varying topography or other situations that provide unsteady flows, numerical solutions are
required in these models. In situations with simpler scenarios and when assumptions are made, the
model can be analytically solved.

Over the past few decades, remote sensing and geographic information systems (GIS) have
been widely used to develop spatially-distributed models of watershed hydrological processes for
automated extraction of watershed structure from digital elevation model (DEM), land use/land cover,



Int. J. Environ. Res. Public Health 2018, 15, 518 3 of 24

soils, vegetation maps, etc. [17–21]. Much information such as canopy leaf area index, slope, aspect,
contributing drainage area, soil texture or hydraulic conductivity assigned by soil series, and so on,
can be automatically imported into the models using remote sensing and GIS techniques.
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The structure of this paper is to review most of the available literature concerning sediment
transport modelling in shallow waters and to make a classification based on the representational
process of the model adopted, and the commonly-used models and their characteristics are listed.
Model types are categorized in terms of how the processes of soil detachment, transport and deposition
are represented by the model. It provides descriptions of a number of available models that are widely
used in the market. The review is expected to be of interest to researchers, decision makers and water
quality managers who are concerned with erosion and sediment transport phenomena in shallow
waters. This paper will conclude with the major issues of the introduced erosion and sediment
transport models, including discussions about the models’ complexity and accuracy, data availability
and models’ uncertainties. This review is prepared to provide an overview of the wide range of issues
related to the erosion and sediment transport processes in shallow waters. For a detailed analysis of
these components, the reader is required to refer to the appropriate references throughout this text
prior to modelling.

2. Soil Erosion and Sediment Transport Models

A wide range of soil erosion models has been developed in the past few decades, each differing
in terms of complexity, accuracy, inputs and outputs, approaches and their spatial and temporal scales.
Generally, based on the physical processes simulated by the model, approaches to generate the data
and data dependence, different kinds of models can be categorized into four widely-used models
including:

(1) Empirical models,
(2) Conceptual models,
(3) Physically-based models,
(4) Hybrid models.
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The accuracy of soil erosion measurement depends on model type and the considered parameters.
For example, Kinnell [22,23] pointed out that both conceptual and empirical models have some
inadequacy in characterizing the soil loss in comparison to observed erosion values in bare soils.
Models may also be described as hybrids between two or more of these classes. For example,
the Identification of unit Hydrographs And Component flows from Rainfall, Evaporation and
Streamflow-Water Quality (IHACRES-WQ) model [24] and European SEDiment NETwork (SEDNET)
model [25] are hybrid metric-conceptual models. The structure of the models consists of a number of
storages and is basically conceptual, while statistical identification procedures are used to determine
the number and configuration of storages in each catchment [9].

Most of the studies are performed on bare soils and in some cases on tilled soils covered by grass
or mulch. However, natural systems are more complex and represent many variations in terms of
spatial and temporal scales, transport media and dimensions and the interactions between detached
sediment and attached chemicals. Jakeman et al. [26] stated that environmental modeling is limited by
natural complexity, spatial heterogeneity and the lack of available data. As an example, in forested
areas, high variability in the spatial and temporal distribution of vegetation and soil properties may
be seen. In such areas, different types of surface cover, runoff-generating mechanisms and various
spatial and temporal patterns of hydraulic conductivity, infiltration capacity and surface erodibility are
experienced [27–40]. These factors can cause different values of sediment generation and deposition.

It should be noted that it is impossible to choose the ‘best’ model among those available, because
each model has been developed for a particular purpose and is unable to solve the problem in every
situation. A number of factors that should be considered in order to choose an appropriate model for a
particular purpose include:

• Dataset requirements of the model,
• Fundamental assumptions of the model,
• The accuracy and validity of the model,
• Model capabilities and susceptibilities,
• The components of the model,
• User-friendliness of the model,
• The objectives of the model,
• The scales of the model outputs,
• Hardware requirements of the model.

2.1. Empirical Models

Empirical models are a simulation of natural processes, mostly based on statistical observations,
and rely on developed regression relationships. The computational processes of empirical models
are simple, and their data requirements are less than those that are required for conceptual and
physically-based models. In this way, it can be said that empirical models are the simplest approach to
measure soil erosion and sediment transport when compared to the other three types of models.
The difficulty with using empirical models is the inability to be accurately used outside of the
geographical area where their relationships were derived. Empirical models also may utilize unrealistic
assumptions about the physics of the catchment system and, therefore, ignore the heterogeneity of
some catchment inputs such as rainfall and soil types. In addition, it should be noted that the inherent
non-linear relations in the catchment system are ignored in empirical models [41].
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Morgan [42] introduced three types of analyses for empirical models: (1) black-box analysis, where
only the main inputs and outputs are studied; (2) grey-box analysis, where the system’s procedure is
explained in more detail; and (3) white-box analysis, where the elements of the system are represented
in detail. An advantage of empirical models is their ability to be employed in catchments with limited
data, and also the lack of a requirement for complex inputs; thus, they can be considered preferable to
more complex conceptual and physically-based models. Empirical models are valuable as a first step
in identifying sources of sediment and nutrient generation. At regional scales, with the recognition of
sediment residence time and delivery patterns, empirical methods can be applied uniformly to predict
the sediment delivery [25]. In the empirical models, the parameter values can be obtained from local
calibrations, although sometimes transferred from calibrations at experimental sites [9].

The first investigations resulted in the development of the following empirical models: Sediment
Rating Curve [43], Musgrave Equation [44], Dendy–Bolton Method Flaxman Method [45,46], Sediment
Delivery Ratio Method [47], Runoff-Sediment Yield Relation [48,49]. Table 1 represents the list of
commonly-used empirical models with their characteristics and sources.
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Table 1. Empirical soil erosion models.

Model Name Spatial Scale Temporal
Scale

Data
Demand

Output
Overland Sediment In-Stream Sediment Gully

Erosion
Rainfall-
Runoff

Sediment-
Associated Chemicals

Source
Gen. * Trans. * Dep. * Gen. * Trans. * Dep. *

PSIAC

Pacific Southwest
Interagency
Committee

Method

Catchment,
Field Annual High sediment yield No No No No No No Yes Yes No [50]

MUSLE
Modified

Universal Soil Loss
Equation

Hillslope Annual High Erosion Yes No No No No No No No No [51]

USLE Universal Soil Loss
Equation Hillslope Annual High Erosion Yes No No No No No No No No [52]

SLEMSA

Soil Loss
Estimation Model

for Southern
Africa

Catchment Annual High Soil loss, sheet
erosion Yes No No No No No No No No [53]

RUSLE Revised Universal
Soil Loss Equation Hillslope Annual High Erosion Yes No No No No No No No No [54,55]

EPM Erosion Potential
Method

Catchment,
Field Annual High Erosion,

sediment yield Yes No No No No No Yes Yes No [56]

SEDD Sediment Delivery
Distributed

Hillslope,
Catchment

Annual,
Event High Erosion,

sediment yield Yes No No No No No No Yes No [57]

TCRP
Tillage-Controlled

Runoff Pattern
model

Field Abstract Low Gully formation,
runoff No No No No No No Yes Yes No [58]

MOSES
Modular Soil

Erosion System
project

Hillslope Annual High
Erosion,

sediment yield,
runoff

Yes No No No No No No Yes No [59,60]

TMDL Total Maximum
Daily Load Catchment Annual Low Sediment No No No No No No No No Yes [61]

BQART Not Found Global/Regional Annual High
Erosion,

sediment yield,
runoff

Yes Yes Yes Yes Yes Yes No No No [62]

Note: Gen. * = Generation; Trans. * = Transportation; Dep. * = Deposition.
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2.2. Conceptual Models

Conceptual models are basically a combination of empirical and physically-based models and
are more applicable to answering general questions [63]. These models were developed on the basis
of spatially-lumped forms of water and the sediment continuity equation [64]. The main focus of a
conceptual model is to predict sediment yield, basically using the concept of the unit hydrograph.
Conceptual models represent a catchment by its internal storage systems, which typically incorporate
the inherent physical processes of runoff generation and sediment transport in their conceptual
structure. These models usually unify general descriptions of catchment processes without specifying
the process of interactions that would require very detailed catchment information [65]. These models
therefore provide an indication of the quantitative and qualitative effects of land use changes within a
watershed, without taking into consideration the data that are obtained from spatial and temporal input.
The value of each parameter in conceptual models is obtained through calibration against observed
data, such as stream discharge and sediment concentration measurements [66]. Therefore, due to this
requirement, conceptual models tend to suffer from the identifiability problems of their parameter
values [67]. Generally, simple conceptual models have fewer problems with model identification than
more complex models. Thus, to minimize the problems with model identification, the number of
parameters to be estimated through calibration can be reduced where applicable [41,68]. However,
this simplification of models may affect the goodness of fit to calibration data.

The first investigations to derive conceptual models led to the development of the following
models: Sediment Concentration Graph [69], Renard–Laursen Model [70], Unit Sediment Graph [71],
Instantaneous Unit Sediment Graph [72], Sediment Routing Model [73], Discrete Dynamic Models [74],
Muskingum Sediment Routing Model [75]. The list of commonly-used conceptual models and their
characteristics and sources are summarized in Table 2.
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Table 2. Conceptual soil erosion models.

Model Name Spatial Scale Temporal
Scale

Data
Demand

Output
Overland Sediment In-Stream Sediment Gully

Erosion
Rainfall-
Runoff

Sediment-
Associated Chemicals

Source
Gen. * Trans. * Dep. * Gen. * Trans. * Dep. *

TOPMODEL TOPMODEL Hillslope Daily Medium Sediment yield,
runoff No No No No No No No Yes Yes [76]

HSPF
Hydrologic
simulation

Program, Fortran
Catchment Daily High

Sediment load,
runoff, flow rate,

nutrient
Yes Yes Yes Yes Yes Yes Yes Yes Yes [77]

EPIC Erosion-Productivity
Impact Calculator Field Daily High Sediment load,

nutrient Yes Yes Yes Yes No No No No Yes [78]

AGNPS
Agricultural

Non-Point Source
pollution model

Catchment Daily High

Erosion,
sediment yield,

runoff, peak rate,
pollutants

Yes No No Yes Yes Yes Yes Yes Yes [79]

SWAT Soil and Water
Assessment Tool Regional Daily Medium

Erosion,
sediment yield,

runoff, peak rate,
nutrient

Yes Yes Yes Yes Yes Yes No Yes Yes [80,81]

SWRRB
Simulator for

Water Resources in
Rural Basins

Catchment Daily High

sediment,
streamflow,

nutrient and
pesticide yields

Yes No No Yes Yes Yes No Yes Yes [82]

ACRU
Agricultural
Catchment

Research Unit
Catchment Daily Low

Erosion,
sediment yield,

runoff, flow rate
Yes No No Yes No No Yes Yes Yes [83]

APSIM
Agricultural
Production
Simulator

Field Daily High Erosion, nutrient Yes Yes Yes No No No No Yes Yes [84]

SWIM Soil and Water
Integrated Model Regional Daily Medium Sediment load,

runoff, nutrient Yes No No No No No No Yes Yes [85]

IQQM
Integrated Water

Quality and
Quantity Model

Regional Daily Medium

Sediment load,
suspended
sediments,
pollutants

transport, salt
fluxes

Yes No No Yes No No No Yes Yes [86]

RillGrow 1
and 2 RillGrow 1 and 2 Plot Abstract High Rill formation Yes Yes Yes No No No Yes No No [87]

MEDRUSH

MEdalus
Desertification
Response Unit

SHe

Catchment Hourly High

sediment
transport, net

erosion, runoff,
soil moisture

profiles

Yes Yes Yes Yes Yes Yes Yes Yes Yes [88]

LASCAM Large Scale
Catchment Model Catchment Daily High

Sediment load,
runoff, salt

fluxes
Yes Yes Yes Yes No No No No No [89]
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Table 2. Cont.

Model Name Spatial Scale Temporal
Scale

Data
Demand

Output
Overland Sediment In-Stream Sediment Gully

Erosion
Rainfall-
Runoff

Sediment-
Associated Chemicals

Source
Gen. * Trans. * Dep. * Gen. * Trans. * Dep. *

AGNPS-UM

Agricultural
Non-Point Source
pollution model,

modified

Catchment Daily High
Suspended
sediments,

runoff, nutrient
Yes No No Yes Yes Yes Yes Yes Yes [90]

EMSS
Environmental

Monitoring
Support System

Catchment Daily Low Sediment load,
runoff, nutrient No No No Yes Yes Yes Yes Yes Yes [91]

SEDNET
European
SEDiment
NETwork

Catchment Steady-State Moderate

Suspended
sediment,
sediment

distribution,
overland flow

Yes No No No No No No Yes Yes [25]

STREAM

Sealing, Transfer,
Runoff, Erosion,

Agricultural
Modification

model

Catchment Event High

Erosion,
sediment

generation and
transport

Yes Yes Yes Yes No No No No No [92]

SERAE
Soil Erosion Risk

Assessment in
Europe model

Regional Annual Medium Erosion Yes No No No No No No Yes Yes [93]

CAESAR

Cellular
Automaton

Evolutionary
Slope and River

model

Catchment-RegionalAnnual High
Erosion,

sediment
transport

Yes Yes Yes Yes Yes Yes Yes Yes No [94]

WILSIM

Web-based
Interactive
Landform

Simulation Model

Hillslope Abstract High
Erosion,

sediment
transport

Yes No No Yes No No No No No [95]

INCA-C
Integrated

Catchments Model
for Carbon

Catchment Daily Daily

Suspended
sediments,

runoff,
Dissolved

Organic Carbon
(DOC)

Yes Yes Yes Yes Yes Yes No Yes Yes [96]

PSYCHIC

Phosphorus and
Sediment Yield

Characterization
in Catchments

Catchment Daily High Sediment load,
nutrient Yes Yes Yes No No No No Yes Yes [97]

Note: Gen. * = Generation; Trans. * = Transportation; Dep. * = Deposition.
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3. Physically-Based Models

Physically-based models are generally based on the concept of the conservation of mass,
momentum equations and energy as governing equations describing streamflow or overland flow,
and conservation of mass equation for sediment [98,99]. Most of the developed physically-based soil
erosion models that are being used worldwide to predict erosion and sediment yield are not 100%
physically-based because mathematical expressions describing each individual process are developed
based on the empirical/conceptual approaches and their assumptions and consideration [100].
Physically-based models, in particular, are often over-parametrized [41,101]. Basically, the parameters
of physically-based models are independently measurable. However, due to the existence of a
large number of complex parameters and the heterogeneity of critical characteristics, especially in
catchments, calibration of these parameters with observed data is inevitable [41]. This procedure
creates extra uncertainties in parameter values. In this situation, with the large number of parameter
values (in some cases, hundreds) that are required to be measured through the mentioned process, the
ability to identify the model parameters will become very difficult, and the non-uniqueness of ‘best fit’
solutions can be expected [63].

Generally, the governing equations in physically-based models are derived at a small scale and
under very specific physical conditions. However, in many cases, these equations are regularly applied
to a greater scale with different physical conditions. Continuous spatial and temporal data have been
considered for use in these equations, although it is used most often in practice point source data
taken to represent an entire grid cell in the catchment. This manner of scaling up is questionable [102],
as these small-scale parameters that are assumed for application in small-scale models have the
potential to lose their physical significance when they are applied to larger scales [103]. There is not
enough theoretical justification to assume that equations can be used identically at the grid scales
that represent the lumped aggregate of heterogeneous sub-grid processes [9]. The mathematical
expressions in physically-based models, which are derived to describe individual processes, have
many assumptions that may not be relevant in most of the natural conditions [104]. Beven [105]
notes that by calibration-based model parameterization, physical distributed models are equal to any
conceptual model.

The Erosion Kinematic Wave Models [106–108], Quasi-Steady State Erosion [109], ANSWERS
(Areal Non-point Source Watershed Environment Response Simulation) [110], CREAMS (Chemical
Runoff and Erosion from Agricultural Management Systems) [111] and Continuum Mechanics
Model [112] are among the first examples of researchers’ efforts to develop physically-based models.
Table 3 represents the list of commonly-used physically-based models with their characteristics
and sources.

Hybrid Models

Hybrid models are a mixture of dynamic and empirical soil erosion evaluation techniques.
The structure of hybrid models is usually physical or conceptual at the core, while the configuration of
the model in the spatial and temporal scales is based on statistical observations and relies on developed
regression relationships. For example, in an empirical-conceptual hybrid model, the structure is
conceptualized as a set of storages, and effective rainfalls are modelled at these scales to generate
runoff values. In the empirical phase, the statistical identification procedure is applied to determine
the metric component of the model, the storage number and configurations per catchment.

Hybrid models developed as soil erosion and sedimentation modelling systems can be used
to predict the water erosion vulnerability, soil productivity reduction at hillslopes, catchments and
farms and can also assess the optimal management strategies for agricultural or soil and water
conservation practices. The list of commonly-used hybrid models and their characteristics and sources
are summarized in Table 4.
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Table 3. Physically-based soil erosion models.

Model Name Spatial Scale Temporal
Scale

Data
Demand

Output
Overland Sediment In-Stream Sediment Gully

Erosion
Rainfall-
Runoff

Sediment-
Associated Chemicals

Source
Gen. * Trans. * Dep. * Gen. * Trans. * Dep. *

ANSWERS
Areal Nonpoint Source

Watershed Environment
Response Simulation

Small
Catchment Event High

Erosion, sediment
yield, runoff, peak

rate, nutrients
Yes Yes Yes No No No No Yes Yes [110]

CREAMS
Chemicals, Runoff and

Erosion from Agricultural
Management Systems

Field/
Plot Monthly High Erosion, deposition Yes Yes Yes No No No Yes Yes Yes [111]

SPNM Sediment–Phosphorus–
Nitrogen Model

Hillslope/
Catchment Event High Erosion, sediment

yield, runoff, nutrients No No No Yes Yes Yes No Yes Yes [113]

TOPOG The Terrain Analysis
Hydrologic Model

Hillslope/
Catchment Daily High

Erosion hazard, water
logging, solute

transport
Yes Yes Yes No No No No Yes Yes [114]

MIKE-SHE

Systeme Hydrologique
Europeen (French acronym
for “European Hydrologic

System”)

Hillslope/
Catchment Event High Erosion and sediment

yield Yes Yes Yes Yes Yes Yes No Yes No [66,115]

WESP Watershed Erosion Prediction
Project

Small
Catchment Event Medium Erosion, sediment

yield, runoff Yes Yes Yes Yes Yes Yes No Yes No [116]

SEM Soil Erosion and Sediment
Transport Model Catchment Event High Erosion, sediment

yield Yes Yes Yes Yes Yes Yes No No No [117]

SHESED SHE- SEDimentation Hillslope/
Catchment Event High Erosion, sediment

yield, runoff Yes Yes Yes No No No No Yes No [118]

ARMSED
Army Multiple Watershed
Storm Water and Sediment

Runoff

Small
Catchment Event High Erosion, sediment

yield, runoff Yes Yes Yes No No No No Yes No [119]

RUNOFF No acronym Small
Catchment Event Low Erosion, sediment

yield, runoff, peak rate Yes Yes Yes No No No No Yes No [120]

KINEROS Kinematic Runoff and
Erosion Model

Hillslope/
Small

Catchment
Event High Erosion, sediment

yield, runoff, peak rate Yes Yes Yes No No No No No No [121]

WEPP Watershed Erosion Prediction
Project

Hillslope/
Catchment Daily High Erosion, sediment

yield, runoff Yes Yes Yes Yes Yes Yes No Yes No [122]

PERFECT
Productivity, Erosion and

Runoff, Functions to Evaluate
Conservation Techniques

Field Daily High Erosion, runoff, crop
yield No No No No No No No Yes Yes [123]

OPUS No acronym
Field/
Small

Catchment
Daily High

Erosion, suspended
sediments, runoff,

nutrient
Yes Yes Yes No No No No Yes Yes [124]

GLEAMS
Groundwater Loading Effects
of Agricultural Management

Systems
Field Daily High Erosion, sediment

yield Yes Yes Yes No No No No Yes Yes [125]
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Table 3. Cont.

Model Name Spatial Scale Temporal
Scale

Data
Demand

Output
Overland Sediment In-Stream Sediment Gully

Erosion
Rainfall-
Runoff

Sediment-
Associated Chemicals

Source
Gen. * Trans. * Dep. * Gen. * Trans. * Dep. *

PEPP Process-oriented Erosion
Prediction Program

Hillslope/
small

catchment
Event High

Erosion, deposition
and sediment and

phosphorous
transport

Yes Yes Yes Yes Yes Yes No Yes Yes [126]

CSEP Climatic Index for Soil
Erosion Potential

Regional/
Hillslope

Monthly/
Event High Sediment yield, runoff Yes Yes Yes Yes Yes Yes Yes Yes No [127]

EROSION-3D EROSION-3D
Field/
small

catchment
Event High Sediments dynamics Yes Yes Yes Yes Yes Yes Yes No Yes [128]

HEM Hillslope Erosion Model Hillslope Event High
Erosion, sediment

yield, sediment
concentration, runoff

Yes Yes Yes Yes Yes Yes No Yes Yes [102]

LISEM Limburg Soil Erosion Model Small
catchment Event High Sediment yield, runoff Yes No No Yes Yes Yes No Yes Yes [129]

SHETRAN
European Distributed Basin

Flow and Transport
Modelling System

Plot/
catchment Event High

Sediment yield,
erosion/

deposition, pollutants
transport

Yes Yes Yes Yes Yes Yes No Yes Yes [130]

GUEST Griffiths University Erosion
System Template Plot Steady

State High Suspended sediment,
runoff Yes Yes Yes No No No No Yes No [131]

SIMWE SIMulation of Water Erosion Catchment Event High

Erosion, sediment
transport and

deposition, gully
formation

Yes Yes Yes No No No Yes Yes No [132]

EUROSEM European Soil Erosion Model Catchment Event High Erosion, sediment
yield, runoff Yes Yes Yes No No No No No No [133]

EUROWISE EUROpe WIthin Storm
Erosion Catchment Event Medium

Erosion, sediment
yield, runoff, gully

formation
Yes No No Yes Yes Yes Yes Yes No [134]

MIKE-11
Mike (named partially after

the author Michael, Mike
Abbott)

Catchment Daily High Sediment yield, runoff No No No Yes Yes Yes No Yes Yes [135]

EGEM Ephemeral Gully Erosion
Model Field Event Medium Gully formation No No No No No No Yes No No [136]

SEMMED Soil Erosion Model for
Mediterranean Areas Regional Annual Medium

Erosion, deposition
and sediment

transport
Yes Yes Yes No No No Yes Yes No [137]

CASC2D-SED CASCade 2-Dimentional
SEDimentation Catchment Event High

Sediment yield,
erosion/

deposition
Yes Yes Yes Yes Yes Yes No Yes No [138]

WATEM Water and Tillage Erosion
Model Field Abstract Low

Erosion, deposition
and sediment

transport
Yes Yes Yes Yes Yes Yes No No No [139]
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Table 3. Cont.

Model Name Spatial Scale Temporal
Scale

Data
Demand

Output
Overland Sediment In-Stream Sediment Gully

Erosion
Rainfall-
Runoff

Sediment-
Associated Chemicals

Source
Gen. * Trans. * Dep. * Gen. * Trans. * Dep. *

PESERA Pan-European Soil Erosion
Risk Assessment model Regional Annual Medium Erosion, runoff Yes Yes Yes No No No No Yes No [140]

CHILD Channel-Hillslope Integrated
Landscape Development

Hillslope/
catchment Event High

Erosion, sediment
yield, runoff, gully

formation
No No No Yes Yes Yes Yes Yes No [141]

MWISED Modelling Within-Storm
Sediment Dynamics Field Event High Erosion, sediment

yield, gully formation No Yes No Yes Yes Yes Yes No No [142]

KINEROS2 Kinematic Runoff and
Erosion Model-2 Catchment Event High Erosion, sediment

yield, runoff, peak rate Yes Yes Yes No No No No Yes No [143]

GSSHA
Gridded Surface/

Subsurface Hydrologic
Analysis

Catchment Event Medium

Overland erosion,
sediment transport,

detachment, raindrop
impact, and
deposition

Yes Yes Yes Yes Yes Yes Yes Yes No [144]

DWSM Dynamic Watershed
Simulation Model

Hillslope/
catchment Event High

erosion, sediment
yield, surface and

underground runoff,
flood agrochemical

transport

Yes Yes Yes Yes Yes Yes Yes No Yes [145]

REGEM Revised Ephemeral Gully
Erosion Model Catchment Event High

Erosion, sediment
yield, runoff, gully

formation
Yes Yes Yes Yes Yes Yes Yes Yes Yes [146]

SWAT-WB Soil and Water Assessment
Tool-Water Balance Regional Daily Medium

Erosion, sediment
yield, runoff, peak

rate, nutrient
Yes Yes Yes Yes Yes Yes No Yes Yes [147]

Note: Gen. * = Generation; Trans. * = Transportation; Dep. * = Deposition.
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Table 4. Hybrid soil erosion models.

Model Name Spatial Scale Temporal
Scale

Data
Demand

Output
Overland Sediment In-Stream Sediment Gully

Erosion
Rainfall-
Runoff

Sediment-
Associated Chemicals

Source
Gen. * Trans. * Dep. * Gen. * Trans. * Dep. *

MMMF Modified Morgan,
Morgan and Finney Hillslope Annual High

Erosion,
sediment yield

and distribution,
runoff

Yes Yes Yes No No No Yes Yes No [148]

THORNES Thornes model Hillslope/Catchment Event Medium Erosion, runoff Yes Yes Yes No No No No Yes No [149]

AQUALM Networked Storm Water
Quality Model Small Catchments Daily Medium

Suspended
sediments,
runoff and
pollutant
transport

No No No Yes Yes No No Yes Yes [150]

USPED Unit Stream Power-based
Erosion Deposition Hillslope Annual/EventMedium Erosion Yes Yes Yes No No No No No No [20]

IHACRES-WQ

Identification of unit
Hydrographs and

Component flows from
Rainfall, Evaporation and
Streamflow-Water Quality

Catchment Daily Low
Erosion,

sediment yield,
runoff, nutrients

no no no Yes Yes Yes Yes Yes Yes [24,151,152]

SEDNET Sediment river network
model Regional/Catchment Annual High

Sediment load
and distribution,

suspended
sediments,

runoff, nutrients

Yes Yes Yes Yes Yes Yes Yes Yes No [153]

SPL Stream Power Law Model Catchment Annual Medium Riverine erosion Yes No No No No No No No No [154]

SEAGIS Erosion Assessment Tool
of MIKE BASIN & MILW Catchment Annual High Erosion,

sediment yield Yes Yes Yes Yes Yes Yes No Yes No [155]

AGWA Automated Geospatial
Watershed Assessment Catchment Daily/Monthly High

Erosion,
sediment yield,

runoff, peak rate,
nutrients

Yes No No Yes No No No Yes Yes [19]

Note: Gen. * = Generation; Trans. * = Transportation; Dep. * = Deposition.
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4. Criteria for the Selection of a Proper Model for Study

Most of the soil erosion and sediment yield and transport models have their own capabilities
and limitations based on their complexities, uncertainties, data availability and accuracy, objectives
and spatial and temporal scales of study. There are still many difficulties in the understanding and
description of event-based procedures that cause erosion, and this may lead to exaggeration of the
erosion and sediment yield when combined with the insufficiency and inaccuracy in the interpretation
of data. Due to the limitations and difficulties in fully understanding the complexity of natural systems,
especially over large watersheds, empirical models are more widely used than physically-based models
to solve specific problems in large-scale ecosystems. Furthermore, the large database required by
physically-based models is not always easily accessible and available for all watersheds, especially in
developing countries.

Many successes and failures derived from different widely-used models that are reported in
the literature should be considered precisely by modelers and the agencies that support the models’
development to promote and enhance the usefulness of existing models. Simulated results should
be validated and calibrated by comparing with the field-measured data. However, the limitations,
capacities and capabilities of the model, sensitivities, uncertainties, assumptions, required inputs and
expected results, license costs and other determined physiographic and climatic conditions of models
must be studied and considered by users. Based on these criteria, to select a proper model to obtain the
desired results, a user should first know what the simulation outputs of the model are. Furthermore,
special attention should be given to the spatial (field, catchment, hillslope and regional) and temporal
(continuous, event, daily, monthly, seasonal and annual) scales of the model, which are important
factors in the selection of a proper tool for a specific study. It is highly recommended to use accredited
and validated models that have been previously used to simulate erosion and sediment processes in
similar physiographic and climatic conditions. In addition, accurate data are required to obtain reliable
results from erosion and sediment prediction models.

5. Conclusions

Soil erosion caused by water as a natural phenomenon appears in different types and has direct
and indirect effects on the environment and human life. It reduces the productivity of lands and
decreases the useful storage volume of rivers and reservoirs and the service life of many hydraulic
structures, like dams, by deposition of sediments. During the past few decades, a large number of
soil erosion and sediment transport models has been developed, focusing on various characteristics
and capacities. Based on their underlying concept, these models are categorized into four groups:
(I) empirical models, (II) conceptual models, (III) physically-based models and (IV) hybrid models.

Among the empirical models, the Universal Soil Loss Equation (USLE) model is widely described
in the literature. Although it was mainly developed based on data from the United States, this model
and its latter Revised (RUSLE) and Modified (MUSLE) versions are widely applied all around the
world with a large number of subsequently developed models based on this model.

Hydrologic simulation Program, Fortran (HSPF), is considered as a conceptual model that is
freely available. It is suitable for large watersheds comprised of both urban and rural areas. HSPF
can address the sediment and nutrient Total Maximum Daily Load (TMDL) problems, nutrient and
pesticide management, urbanization and ponds. It calculates the amounts of deposition or scour of
cohesive sediment based on the bed shear stress. The critical shear stress required for the calculation
of deposition and scouring is determined by the user, and deposition or scouring of cohesive bed
sediments occurs whenever shear stress is less than or greater than the specified critical shear stress,
respectively. The simplified Krone’s equation [156] is used in this model to measure the rate of
deposition based on settling velocity, sediment concentration, shear stress and critical shear stress [157].
The Soil and Water Assessment Tool (SWAT) model is another conceptual model that is continuously
under development and largely used worldwide. SWAT is a regional-scale and continuous-time
model, which operates on a daily time step at the basin scale. It can be used to predict both overland
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and in-stream sediment generation, transportation and deposition, as well as rainfall-runoff and
sediment-associated transport of chemicals. Prediction of the long-term impacts of erosion in large
basins, as well as the timing of agricultural practices within a year are other applications of this model
that cause it to be used frequently. Physically-based models are developed on the basis of the physical
description of the soil erosion and sediment transport processes. Working with these models is more
complex than other models due to their highly detailed representations of the processes and the
requirement of the preparation of extensive data. These issues have caused models such as Limburg
Soil Erosion Model (LISEM) and Watershed Erosion Prediction Project (WEPP) to be less frequently
adopted [9] and has led to efforts to develop physically-based erosion and sediment transport models
that are simplified and require less data.

However, physically-based models are more capable of operating either on a continuous
basis or in an event-based mode, like MIKE-Systeme Hydrologique Europeen (SHE), CASCade
2-Dimentional SEDimentation (CASC2D-SED), Watershed Erosion Prediction Project (WESP), SEM,
SHE-SEDimentation (SHESED) and EUROpe WIthin Storm Erosion (EUROWISE). The Danish
Hydraulic Institute (DHI)’s MIKE-SHE is a physically-based watershed model, which also contains
several Best Management Practices (BMPs) options, such as wetlands, nutrient and pesticide
management. For river hydraulics purposes, MIKE-SHE can be used with MIKE-11. Groundwater
Loading Effects of Agricultural Management Systems (GLEAMS) is another model that is used for
hydrology, water quality and nutrient analysis, pesticide transport and erosion and sediment yield for
field-scale agricultural areas. In this model, the USLE computation methods are used and implemented
to measure the rates of erosion and sediment yield. The Kinematic Runoff and Erosion Model-2
(KINEROS-2) is the improved version of KINEROS, which is an event-based model suitable to analyze
surface runoff and erosion rates over small natural and urban watersheds. KINEROS-2 can consider
both concentrated flow (rill) erosion due to flowing water and splash and sheet (inter-rill) erosion
resulting from raindrop energy, separately. This model also can prepare the input data and visualize
the results is a GIS format. An important disadvantage of this model is its lack of considering the
Evapotranspiration (ET) losses. Furthermore, true soil moisture redistribution for long rainfall intervals
cannot be formulated in KINEROS-2.

GSSHA (Gridded Surface/Subsurface Hydrologic Analysis) is a 2D physically-based model,
which simulates surface and groundwater hydrology. In previous versions of the model, the erosion
and sediment component were semi-empirical; however, in recent versions, the sediment transport
formulation is based on the USLE soil parameters. There are also different optional methods to
simulate erosion and sediment transport, especially using a specific gravity different from sand. Other
optional equations to calculate sediment transport include: Kilinc and Richardson [158], Englund
Hanson [8] and Stream power [159]. GSSHA inputs can be driven by land use, soil, vegetation and
other physiographic maps in GIS format, and it also links the model results with GIS.

DWSM, the Dynamic Watershed Simulation Model, is a storm event, distributed and
physically-based model for simulations of surface and ground water flow, soil erosion and transport
of sediment and chemicals (nonpoint-source pollutants) in a watershed during a single or a series
of rainfall events. DWSM computes the rates of erosion based on the detachability of user-defined
soil particles by raindrop impact and also erodibility of soil by flow characteristics. The sediment
transport component and the process of scouring and deposition are computed based on the
sediment transport capacity of flow using the approximate analytic solution of the temporally- and
spatially-varying continuity equation. Drainage patterns and topographic features are considered to
delineate the sub-watersheds.

Hybrid models, which apply both metric and physical processes of soil erosion and
sedimentation modelling systems, can be used to predict the water erosion vulnerability and the
soil productivity reduction at hillslopes, catchments and farms and are also used to assess the optimal
management strategies for agricultural or soil and water conservation practices. IHACRES-WQ,
SEDNET, THORNES and Automated Geospatial Watershed Assessment (AGWA), in terms of their
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characteristics and their outputs, can be mentioned as the strongest models among the hybrid models.
The determination of an appropriate model depends on the questions and problems that need to be
addressed. Furthermore, the spatial and temporal scales, suitability, accuracy and validity of a model
in catchment conditions, model assumptions and data requirements should be considered by the user.
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