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Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants,
presenting potential threats to the ecological environment and human health. Sixty-two urban
soil samples were collected in the typical semi-arid city of Xi’an in Northwest China. They were
analyzed for concentration, pollution, and ecological and health risk of sixteen U.S. Environmental
Protection Agency priority PAHs. The total concentrations of the sixteen PAHs (Σ16PAHs) in the
urban soil ranged from 390.6 to 10,652.8 µg/kg with an average of 2052.6 µg/kg. The concentrations
of some individual PAHs in the urban soil exceeded Dutch Target Values of Soil Quality and the
Σ16PAHs represented heavy pollution. Pyrene and dibenz[a,h]anthracene had high ecological risk to
aquatic/soil organisms, while other individual PAHs showed low ecological risk. The total ecological
risk of PAHs to aquatic/soil organisms is classified as moderate. Toxic equivalency quantities (TEQs)
of the sixteen PAHs varied between 21.16 and 1625.78 µg/kg, with an average of 423.86 µg/kg,
indicating a relatively high toxicity potential. Ingestion and dermal adsorption of soil dust were
major pathways of human exposure to PAHs from urban soil. Incremental lifetime cancer risks
(ILCRs) of human exposure to PAHs were 2.86 × 10−5 for children and 2.53 × 10−5 for adults,
suggesting that the cancer risk of human exposure to PAHs from urban soil is acceptable.

Keywords: polycyclic aromatic hydrocarbon; ecological risk; health risk; urban soil

1. Introduction

Cities are the densest area of anthropogenic activities [1,2]. Owing to the rampant development
of industrialization, urbanization, and agricultural modernization, urban soil, as an important
part of urban ecosystems, has been suffering serious contamination with various pollutants, such
as heavy metals, polychlorinated biphenyls, phthalate esters/phthalic acid esters, and polycyclic
aromatic hydrocarbons (PAHs). These harmful pollutants accumulated in urban soil can be carried
into surface/ground water through precipitation and urban runoff, emitted into atmosphere by
volatilization, and transported into crops from polluted soil and air via root and leaf adsorption,
which may indirectly result in further water, atmosphere, and food pollution [3–5]. They can also be
transferred to the human body via ingestion, inhalation, and dermal adsorption of soil dust, which has
a direct influence on human health, especially for children and elderly people who are physiologically
more vulnerable to environmental contamination [6]. Therefore, urban soil has become a main reservoir
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of various pollutants and a transmitter of pollutants to water bodies, atmosphere, crops, and human
beings; its quality is also a valid indicator of pollution and environmental risks [2–5,7–16].

PAHs consisting of two or more fused benzene rings are widespread in water, air, soil, dust, and
sediment. Their natural sources in the environment include volcanic eruptions, forest fires, diagenesis
and biosynthesis [2,17]. The predominant anthropogenic source is incomplete combustion of organic
substances, such as coal, petroleum, natural gas, wood, grass, straw, and tobacco [2,17–24]. They are
characterized by their high toxicity as well as the potential effects of carcinogenicity, teratogenicity,
and mutagenicity, which are associated with human health, such as cataracts, kidney/liver damage,
and jaundice [18,24]. Therefore, the U.S. Environmental Protection Agency (USA EPA) [25] has
classified sixteen PAHs as priority pollutants. Meanwhile, USA EPA [25] and the International Agency
for Research on Cancer [26] have also considered seven of sixteen priority PAHs as probable/possible
human carcinogens. In addition, they are considered as candidates of persistent organic pollutant
(POP) that merit further investigation for possible early inclusion into the Stockholm Convention on
POPs [27]. Thus, more attention has been paid to PAHs in recent years.

Xi’an is not only the capital of Shaanxi Province and the largest city in Northwest China, but also
a typical semi-arid city. It suffers from serious environmental pollution problems because of rapid
industrialization and urbanization. Chen et al. [28,29] have conducted some studies on heavy metal
pollution in urban soil in Xi’an. However, limited data on PAHs pollution in urban soil in Xi’an are
available. Therefore, this study aims to determine the concentrations of PAHs in urban soil of Xi’an,
assess the pollution level and ecological risk of PAHs to aquatic/soil organisms, and evaluate the
toxicity and health risk of human exposure to PAHs from urban soil.

2. Materials and Methods

2.1. Description of Studied Area

Xi’an lies in the middle part of the Guanzhong Plain surrounded by the Qinling Mountains
in the south and by the Loess Plateau in the north. It spans an urban area of some 1066 km2 with
an urban population of 5.8 million [30]. The climate is characterized by large seasonal variations
associated with the East Asian monsoons. The northerly Asian winter monsoon prevails in winter,
transporting Asian dust from Chinese deserts and nearby loess area. The southeast monsoon brings
moisture to the region in summer [31]. The annual air temperature is approximately 13 ◦C with an
annual precipitation of 558–750 mm. Xi’an is also an important center of economy, education, culture,
manufacturing, and high-tech industries in Northwest China. The sum of motor vehicles in Xi’an
ranges from 0.52 million in 2003 to 1.86 million in 2013 [30]. Domestic heating by coal combustion in
Xi’an occurs from November of a year to the next March.

2.2. Sample Collection and Pre-Treatment

A total of sixty-two soil sampling sites were set up in Xi’an City in Northwest China (Figure 1),
including six urban functional districts, i.e., industrial areas, traffic areas, mixed commercial and
traffic areas, residential areas, educational areas, and parks. Five sub-topsoil samples (0–20 cm) were
collected at each sampling site from the four corners and center in a 2 m × 2 m grid with a stainless
steel shovel. They were mixed into a composite topsoil sample of ~1 kg by a quartile method on
the spot. Each composite topsoil sample was stored in a brown glass bottle, and then taken back to
laboratory. All collected topsoil samples were air-dried in a cool, dark, and ventilated place at room
temperature. The air-dried topsoil samples were first crashed, then sieved through a 1 mm stainless
steel sieve to remove small stones, plant debris and other refuses, and finally stored in brown glass
bottles at 4 ◦C before analysis.
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Figure 1. Location of study area and sampling sites of urban soil in Xi’an.

2.3. Analysis of PAHs

PAHs in urban soil were first extracted using a Soxhlet extraction apparatus with a solution
of n-hexane and acetone (1:1, v:v), then purified by using a glass chromatography column of
silica gel/neutral alumina (2:1, m:m), and finally separated at a fused silica capillary column
(30 m × 0.25 mm × 0.25 µm, Alltech, Chicago, IN, USA) via an 7890A gas chromatograph (Agilent,
Palo Alto, CA, USA) equipped with a flame ionization detector (GC-FID). The details of extraction,
purification, and instrumental analysis as well as quality control and assurance were described in
our previous studies [32,33]. The results of process blank experiments showed that PAHs were not
detected in rinsates. The instrument detection limit (LDL) calculated as the ratio of three times signal
to noise was 0.003 µg/mL for acenaphthylene (Acy), acenaphthene (Ace), fluorene (Flu), phenanthrene
(Phe) and anthracene (Ant), 0.005 µg/mL for fluoranthene (Fla), 0.006 µg/mL for naphthalene (Nap)
and pyrene (Pyr), 0.012 µg/mL for benzo[a]anthracene (BaA), chrysene (Chy), benzo[b]fluoranthene
(BbF) and benzo[k]fluoranthene (BkF), 0.015 µg/mL for benzo[a]pyrene (BaP), 0.017 µg/mL for
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indeno[1,2,3-cd]pyrene (InP), 0.020 µg/mL for dibenz[a,h]anthracene (DBA), and 0.023 µg/mL for
benzo[g,h,i]perylene (BghiP), respectively. The recovery of decafluorobiphenyl as a surrogate standard
varied between 79% and 113% with an average of 102%. The recovery of matrix addition standard
ranged 67% to 119%. Ten percent of urban soil samples were duplicated, and the relative standard
deviation (RSD) was below 11%.

2.4. Ecological Risk Assessment

PAHs accumulated in urban soil may enter water bodies and plants, posing a potential ecological
risk. Kalf et al. [34] proposed assessing ecological risk of some organic substances using a risk quotient
(RQ). Cao et al. [35] improved the method by considering toxic equivalency factors. This improved
method was used to assess the ecological risk of PAHs in the urban soil. The risk level posed by certain
PAHs was characterized by the risk quotient (RQ), which was calculated with Equation (1):

RQ =
CPAHs

CQV
(1)

where CPAHs is the concentration of certain PAHs in soil and CQV is the corresponding quality values
of certain PAHs in soil. In the present study, the negligible concentrations (NCs) and the maximum
permissible concentrations (MPCs) of PAHs in soil reported by Kalf et al. [34] were used as the quality
values in soil. MPCs are the concentrations in the environment above which the risk of adverse effects
is considered unacceptable to ecosystems, and NCs are the concentrations in the environment below
which the occurrence of adverse effects is considered to be negligible [36]. Therefore, RQNCs and
RQMPCs were defined as follows:

RQNCs =
CPAHs

CQV(NCs)
(2)

RQMPCs =
CPAHs

CQV(MPCs)
(3)

where CQV(NCs) is the quality values of the NCs of PAHs in the medium and CQV(MPCs) is the quality
values of the MPCs of PAHs in the medium. The RQΣPAHs, RQΣPAHs(NCs) and RQΣPAHs(MPCs) is defined
as follows:

RQΣSPAHs =
16

∑
i=1

RQi RQi ≥ 1 (4)

RQΣPAHs(NCs) =
16

∑
i=1

RQi(NCs) RQi(NCs) ≥ 1 (5)

RQΣPAHs(MPCs) =
16

∑
i=1

RQi(MPCs) RQi(MPCs) ≥ 1 (6)

The RQ(NCs) and RQ(MPCs) of individual PAHs which were not less than 1 were summated to
calculate the RQΣPAHs(NCs) and the RQΣPAHs(MPCs) of total PAHs to fully consider the ecological risk of
individual PAHs. The ecological risk classification is listed in Table 1. RQ(NCs) < 1.0 indicated that the
single PAHs might be of negligible concern, RQ(MPCs) > 1.0 would indicate that the contamination of the
single PAHs posed severe risk, and RQ(NCs) > 1.0 and RQ(MPCs) < 1.0 indicated that the contamination
of the single PAHs was of moderate risk.
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Table 1. Ecological risk classification of individual and total PAHs.

Individual PAHs ΣPAHs

RQ(NCs) RQ(MPCs) RQΣPAHs(NCs) RQΣPAHs(MPCs)

Risk-free 0 Risk-free =0
Low-risk ≥1; <800 =0

Moderate-risk ≥1 <1 Moderate-risk1 ≥800 =0
Moderate-risk2 <800 ≥1

High-risk ≥1 High-risk ≥800 ≥1

2.5. Health Risk Evaluation

USA EPA [37] has developed a standard model of cancer risk assessment, i.e., incremental lifetime
cancer risk (ILCR). ILCR was widely used in many studies [24,38–45]. ILCR was used to quantitatively
estimate the cancer risk of human exposure to PAHs in the environment. Humans can be exposed to
PAHs in urban soil through ingestion, inhalation, and dermal adsorption of soil dust. Equations (7)–(9)
were used to evaluate the ILCR of each exposure pathway:

ILCRsIngestion =
CS × (CSFIngestion × 3

√
BW
70 )× IRIngestion × EF × ED

BW × AT × 106 (7)

ILCRsInhalation =
CS × (CSFInhalation × 3

√
BW
70 )× IRInhalation × EF × ED

BW × AT × PEF
(8)

ILCRsDermal =
CS × (CSFDermal × 3

√
BW
70 )× SA × AF × ABS × EF × ED

BW × AT × 106 (9)

where CS is the total of toxic equivalency quantities (TEQs) of sixteen PAHs relative to BaP using the
toxic equivalency factors (TEFs) listed in Table 7 below [46,47], the TEQ of certain PAH equals to its
measured concentration times its corresponding TEF; CSF is the cancer slope factor, (mg/kg/day)−1,
the CSFs of BaP were determined by the cancer-causing ability of BaP and were 7.3 (mg/kg/day)−1

for ingestion, 3.85 (mg/kg/day)−1 for inhalation, and 25 (mg/kg/day)−1 for dermal adsorption,
respectively [41]; BW is body weight, kg; AT is the average life span, day; EF is the exposure frequency,
day/year; ED is the exposure duration, year; IRIngestion is the soil intake rate, mg/day; IRInhalation is
the inhalation rate, m3/day; SA is the dermal surface exposure area, cm2; AF is the dermal adherence
factor, mg/cm2; ABS is the dermal adsorption fraction, unitless; PEF is the particle emission factor,
m3/kg. The values of assessment parameters in this study were from U.S. EPA and related literatures
(Table 2).

Table 2. Values of parameters used in health risk assessment models.

Parameters Unit Children Adults References

Ingestion rate (IngR) mg/day 200 100 [48]
Exposure frequency (EF) day/year 180 [49]
Exposure duration (ED) year 6 24 [48]

Body weight (BW) kg 15 58.6 [48,50,51]
Average time (AT) day Carcinogen 70 × 365 = 2550 [49]

Inhalation rate (InhR) m3/day 7.6 12.8 [50–52]
Particle emission factor (PEF) m3/kg 1.36 × 109 1.36 × 109 [48]

Skin surface area (SA) cm2 1150 2145 [50,53]
Skin adherence factor (AF) mg/cm2 0.2 0.07 [54]

Adsorption factor (ABS) unitless 0.13 0.13 [48,54]
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3. Results and Discussion

3.1. Concentration of PAHs in Urban Soil

The descriptive statistics of U.S. EPA sixteen priority PAHs in urban soil in the semi-arid city
of Xi’an in Northwest China are given in Table 3. As shown in the table, all sixteen priority PAHs
studied were detected in the urban soil, indicating that PAHs were ubiquitous pollutants in the
environment. The concentrations of individual PAHs in the urban soil varied from undetected to
1897.6 µg/kg. The total concentration of sixteen PAHs (Σ16PAHs) in the urban soil ranged from
390.6 to 10,652.8 µg/kg with an average of 2052.6 µg/kg. These suggested that PAHs in the urban soil
presented a relatively large variation. The total concentrations of seven carcinogenic PAHs (Σ7CPAHs)
were in range of 103.9 to 5112.7 µg/kg with a mean of 937.0 µg/kg, averaging 45.7% of Σ16PAHs.

Table 3. Concentration of PAHs in urban soil of Xi’an (µg/kg).

PAHs Min Max Mean SD CV AC

Nap ND 140.3 16.8 20.2 0.83 15
Acy 32.9 538.7 63.3 66.9 0.95
Ace 24.3 523.5 62.0 68.8 0.90
Flu 10.3 477.3 63.0 95.4 0.66
Phe 11.0 1633.4 145.2 231.8 0.63 50
Ant 18.1 1090.9 78.7 143.3 0.55 50
Fla 56.8 1303.0 351.8 280.0 1.26 15
Pyr 21.7 1697.4 225.4 381.0 0.59
BaA 5.9 1897.6 122.4 274.0 0.45 20
Chy ND 1620.3 147.6 274.0 0.54 20
BbF ND 1026.2 110.2 170.0 0.65
BkF ND 878.4 100.4 151.7 0.66 25
BaP ND 938.3 97.3 186.3 0.52 25
InP ND 871.0 77.9 136.2 0.57 25

DBA ND 1477.8 281.2 273.5 1.03
BghiP ND 1116.9 109.5 175.6 0.62 20

Σ16PAHs 390.6 10652.8 2052.6 2207.6 0.93
Σ7CPAHs 103.9 5112.7 937.0 1065.2 0.88
ΣCOMB 149.2 8183.4 1342.5 1783.6 0.75

LMWPAHs 121.0 4288.5 429.0 587.1 0.73
HMWPAHs 214.6 8618.6 1623.7 1812.0 0.90

ND: not detected; SD: standard deviation; CV: coefficient of variation; AC: acceptable concentrations [55]; Σ16PAHs:
the sum of sixteen individual PAHs; Σ7CPAHs: the total of seven carcinogenic PAHs including BaA, Chy, BbF, BkF,
BaP, DBA, and InP; ΣCOMB: the sum of major combustion-specific compounds containing Fla, Pyr, BaA, Chy, BbF,
BkF, BaP, BghiP, and InP [44,56,57]; LMWPAHs: the total of low molecular weight PAHs, i.e, NaP, Acy, Ace, Flu, Phe,
and Ant; HMWPAHs: the sum of high molecular weight PAHs, i.e, Fla, Pyr, BaA, Chy, BbF, BkF, BaP, DBA, BghiP,
and InP.

It is very common to compare the concentration levels of ΣPAHs in soil from different
cities [13,15,41]. A comparison of ΣPAHs concentrations in soil from different cities worldwide
is given in Table 4, where it may be seen that the mean concentration of Σ16PAHs in urban soil
of Xi’an was lower than that in urban soil from some other Chinese cities such as Beijing [9,11,58],
Nanjing [2], and Shanghai [10] as well as Dhanbad (India) [59], London (UK) [60], New Orleans
(USA) [61], and Lisbon (Portugal) [62]. It was comparable with that in urban soil in Lanzhou (China) [1],
Bratislava (Slovakia) [63], and Isfahan (Iran) [40]. However, it was higher than that in urban soil from
some Chinese cities such as Beijing [41,64,65], Dalian [12], Hong Kong [66], and Shanghai [14,15,67]
as well as from Sevilla (Spain) [68], Kragujevac (Serbia) [69], Kumasi (Ghana) [3], Kathmandu
(Nepal) [7], Lisbon and Viseu (Portugal) [8], Ulsan (South Korea) [70], and San Mateo Ixtatan
(Guatemala) [71]. The concentration comparison showed that PAHs in urban soil of Xi’an corresponded
to a moderate level.
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Table 4. Concentration comparison of ΣPAHs in soil from worldwide different cities (µg/kg).

Cities Number of PAHs Soil Types Min Max Mean References

Xi’an, China 16 urban soil 390.6 10,652.8 2052.6 In this study
Beijing, China 16 urban soil 16 3884 1347 [64]
Beijing, China 16 urban soil 366 27,825 3917 [58]
Beijing, China 16 urban soil 467 5470 1637 [65]
Beijing, China 15 urban soil 112 27,800 6440 [11]
Beijing, China 16 urban soil 8.5 13,126 1802.6 [9]
Beijing, China 16 urban soil 93 13,141 1228 [41]
Dalian, China 14 urban, suburban and rural soil 219 18,727 1104 [12]

Hong Kong, China 16 urban soil 42.9 410 169 [66]
Lanzhou, China 16 urban soil 82.2 10,900 2360 [1]
Nanjing, China 16 urban soil 56.8 18,000 3330 [2]

Shanghai, China 16 urban soil 347 17,900 3290 [10]
Shanghai, China 16 urban soil 62.4 31,900 1700 [67]
Shanghai, China 16 urban soil 83.3 7220 1970 [14]
Shanghai, China 16 urban and suburban soil 18.8 6320 807 [15]

Bratislava, Slovakia 16 urban soil 45 12,151 2064.8 [63]
Dhanbad, India 13 urban traffic soil 1019 10,856 3488 [59]

Isfahan, Iran 16 urban soil 57.70 11,730.08 2000.56 [40]
Kragujevac, Serbia 15 urban soil 38 3136 240 [69]

Kumasi, Ghana 22 urban soil 14.78 2084 442.5 [3]
Kathmandu, Nepal 20 urban soil 184 10,279 1556 [7]

Lisbon, Portugal 16 urban soil 6 73,395 2717 [62]
Lisbon, Portugal 16 urban soil 6.3 22,670 1544 [8]

London, UK 16 urban soil 4000 67,000 18,000 [60]
New Orleans, USA 16 urban soil 2927 [61]

Sevilla, Spain 15 urban soil 89.5 4004.2 810.2 [68]
Ulsan, South Korea 16 urban, industrial and rural soil 65 12,000 960 [70]

Viseu, Portugal 16 urban soil 6.0 790 169 [8]
San Mateo Ixtatan 17 urban and peri-urban soil 460 3251 1401 [71]

3.2. Pollution of PAHs in Urban Soil

The concentrations of PAHs in soil have not yet been limited in China. Meanwhile,
few recommendations or guidelines for soil PAHs are available in the world. In this study, the Dutch
Target Values of Soil Quality [55] was used to compare with the present concentration of some
individual PAHs in the urban soil for obtaining pollution levels. The concentrations of NaP, Phe, Ant,
BaA, Chy, BkF, BaP, BghiP, and InP in 21, 49, 23, 46, 52, 49, 41, 55, and 37 soil samples were higher
than the Dutch Target Values of Soil Quality, respectively, which were 15, 50, 50, 20, 20, 25, 25, 20,
and 25 µg/kg [55], respectively. The concentrations of Fla in all soil samples were greater than the Dutch
Target Value of Soil Quality, which is 15 µg/kg [55]. In addition, a soil contamination classification
standard on the basis of the Σ16PAHs was proposed by Maliszewska-Kordybach [72]. PAHs presented
non-contamination with the Σ16PAHs of <200 µg/kg, slight contamination 200–600 µg/kg, medium
contamination 600–1000 µg/kg, and heavy contamination >1000 µg/kg. According to this classification
standard, 44 soil samples were heavily polluted by PAHs, 13 soil samples were moderately
contaminated, and five soil samples were slightly polluted. Overall, PAHs in the urban soil represented
heavy pollution.

3.3. Ecological Risk of PAHs in Urban Soil

The assessment results of ecological risk of PAHs in the urban soil based on risk quotient are
given in Table 5, where the mean values of calculated RQ(NCs) and RQ(MPCs) for Pyr and BDA are
above 1, indicating that they present a high ecological risk to aquatic/soil organisms. The average
values of calculated RQ(NCs) for other PAHs were greater than 1, while the mean values of calculated
RQ(MPCs) for them were lower than 1, implying that other PAHs had moderately ecological risk to
aquatic/soil organisms. The mean value of calculated RQΣPAHs(NCs) was below 800, while the average
of calculated RQΣPAHs(MPCs) was higher than 1, suggesting that the total ecological risk of PAHs in
urban soil to aquatic/soil organisms was moderate levels. From the ecological risk of individual PAHs
and ΣPAHs in the urban soil in urban functional areas of Xi’an (Table 6), Pyr had high ecological
risk in urban functional areas except in mixed commercial and traffic areas and residential areas
(moderate); BaA presented high ecological risk in industrial areas, while moderate ecological risk in
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other functional areas; the ecological risk levels of Chy were moderate in the first and third ring roads
as well as industrial, traffic and educational areas, while low in other functional areas; the levels of InP
and BghiP were moderate ecological risk in urban functional areas except in mixed commercial and
traffic areas and residential areas (low); DBA showed high ecological risk in urban functional areas
except in the first ring road and industrial areas (moderate); and the ecological risk levels of other
individual PAHs were moderate in urban functional areas. The total ecological risk levels of ΣPAHs
were high in the second to third ring roads as well as industrial and traffic areas, while moderate in
other urban functional areas.

Table 5. Descriptive statistics of RQ(NCs) and RQ(MPCs) of PAHs in urban soil (µg/kg).

PAHs NCs MPCs RQ(NCs) RQ(MPCs)

Min Max Mean SD CV Min Max Mean SD CV

Nap 1.4 1400 0.00 100.23 11.97 14.43 0.83 0.00 1.00 0.12 0.14 0.83
Acy 1.2 1200 27.43 448.88 52.74 55.74 0.95 0.27 4.49 0.53 0.56 0.95
Ace 1.2 1200 20.27 436.25 51.69 57.30 0.90 0.20 4.36 0.52 0.57 0.90
Flu 1.2 1200 8.57 397.72 52.47 79.48 0.66 0.09 3.98 0.52 0.79 0.66
Phe 5.1 5100 2.16 320.27 28.47 45.44 0.63 0.02 3.20 0.28 0.45 0.63
Ant 1.2 1200 15.07 909.10 65.61 119.39 0.55 0.15 9.09 0.66 1.19 0.55
Fla 26 26,000 2.18 50.11 13.53 10.77 1.26 0.02 0.50 0.14 0.11 1.26
Pyr 1.2 1200 18.08 1414.51 187.85 317.49 0.59 0.18 14.15 1.88 3.17 0.59
BaA 2.5 2500 2.36 759.05 48.96 109.58 0.45 0.02 7.59 0.49 1.10 0.45
Chy 107 107,000 0.00 15.14 1.38 2.56 0.54 0.00 0.15 0.01 0.03 0.54
BbF 2.5 2500 0.00 410.49 44.08 67.99 0.65 0.00 4.10 0.44 0.68 0.65
BkF 24 24,000 0.00 36.60 4.18 6.32 0.66 0.00 0.37 0.04 0.06 0.66
BaP 2.6 2600 0.00 360.89 37.44 71.66 0.52 0.00 3.61 0.37 0.72 0.52
InP 59 59,000 0.00 14.76 1.32 2.31 0.57 0.00 0.15 0.01 0.02 0.57

DBA 2.6 2600 0.00 568.37 108.14 105.19 1.03 0.00 5.68 1.08 1.05 1.03
BghiP 75 75,000 0.00 14.89 1.46 2.34 0.62 0.00 0.15 0.01 0.02 0.62
ΣPAHs 183.51 4769.68 710.40 804.44 0.88 0.00 45.97 4.21 8.20 0.51

SD: standard deviation; CV: coefficient of variation.

Table 6. Ecological risk of individual and total PAHs in the urban soil in urban functional areas in Xi’an.

Functional Areas Nap Acy Ace Flu Phe Ant Fla Pyr BaA Chy BbF BkF BaP InP DBA BghiP ΣPAHs

The first ring road M M M M M M M H M M M M M M M M M2
The second ring road M M M M M M M H M L M M M M H M M2
The third ring road M M M M M M M H M M M M M M H M H

Industrial areas M M M M M M M H H M M M M M M M H
Traffic areas M M M M M M M H M M M M M M H M H

Mixed commercial and traffic areas M M M M M M M M M L M M M L H L M2
Residential areas M M M M M M M M M L M M M L H L M2
Educational areas M M M M M M M H M M M M M M H M M2

Parks M M M M M M M H M L M M M M H M M2

L: risk-free; M: moderate risk; H: high risk.

3.4. Toxicity Potential of PAHs in Urban Soil

Characterized by the high toxicity, potential carcinogenic, teratogenic, and mutagenic effects,
as well as endocrine disruptive activities, PAHs have received more concern. In this study, toxic
equivalence factors (TEFs) [46,47] were used to calculate toxic equivalence quantities (TEQs) of PAHs
in urban soil of Xi’an for quantifying the toxic potential of PAHs and further evaluating the health
risk of human exposure to PAHs. As shown in Table 7, the TEQs of sixteen PAHs in the urban soil
ranged from 21.16 to 1625.78 µg/kg with an average of 423.86 µg/kg. The TEQs of seven carcinogenic
PAHs in the urban soil varied between 20.63 and 1610.04 µg/kg with an average of 421.05 µg/kg.
The TEQs of seven carcinogenic PAHs were very close to that of sixteen PAHs, indicating that the
seven carcinogenic PAHs were the main contributor to the TEQs of sixteen PAHs. The contribution of
seven carcinogenic PAHs to the TEQs of sixteen PAHs decreased in the order of DBA (66.3%) >> BaP
(23.0%) >> BaA (2.9%) > BbF (2.6%) > BkF (2.4%) > InP (1.8%) > Chy (0.4%). The present results were
similar to that of urban surface dust: BaP (45%) > DBA (33%) � BbF (5.7%) > InP (5.0%) > BkF (4.9%)
> BaA (4.1%) � Chy (0.8%) [32]. The TEQs of sixteen PAHs and seven carcinogenic PAHs in 13 soil
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samples exceeded the safe level of 600 µg/kg based on the risk-based soil criterion for protection of
human health from Canadian Council of Ministers of the Environment [73]. In addition, the TEQs of
sixteen PAHs and seven carcinogenic PAHs in urban soil of Xi’an was larger than that in urban soil
from Beijing (range 0.7–3240 µg/kg, mean 180.7 µg/kg [9]; mean 27.75 µg/kg [13]), Shanghai (range:
7.02–869 µg/kg, mean 236 µg/kg [14]; range 1.1–620 µg/kg [15]), Lanzhou (range 5.93–1290 µg/kg,
mean 136 µg/kg [1]), Isfahan (Iran; range 1.00–900.53 µg/kg, mean 67.39 µg/kg [40]), Lisbon and
Viseu (Portugal; mean 229 and 24 µg/kg [8]), and Bratislava (Slovakia; range 7.4–2602 µg/kg, mean
376 µg/kg [63]). It was only lower than that in urban soil from Nanjing of China (mean 445 µg/kg [2])
and Dhanbad (India; mean 720 µg/kg [59]). These indicated that PAHs in urban soil of Xi’an presented
relatively high toxicity potency.

Table 7. Toxic equivalence quantities (TEQs) of PAHs in urban soil in Xi’an (µg/kg).

PAHs TEFs Min Max Mean SD CV

Nap 0.001 ND 0.14 0.02 0.02 0.83
Acy 0.001 0.03 0.54 0.06 0.07 0.95
Ace 0.001 0.02 0.52 0.06 0.07 0.90
Flu 0.001 0.01 0.48 0.06 0.10 0.66
Phe 0.001 0.01 1.63 0.15 0.23 0.63
Ant 0.01 0.18 10.91 0.79 1.43 0.55
Fla 0.001 0.06 1.30 0.35 0.28 1.26
Pyr 0.001 0.02 1.70 0.23 0.38 0.59
BaA 0.1 0.59 189.76 12.24 27.40 0.45
Chy 0.01 ND 16.20 1.48 2.74 0.54
BbF 0.1 ND 102.62 11.02 17.00 0.65
BkF 0.1 ND 87.84 10.04 15.17 0.66
BaP 1.0 ND 938.31 97.33 186.30 0.52
InP 0.1 ND 87.10 7.79 13.61 0.57

DBA 1.0 ND 1477.77 281.16 273.50 1.03
BghiP 0.01 ND 11.17 1.09 1.76 0.62

16PAHs 21.16 1625.78 423.86 363.65 1.17
7CPAHs 20.63 1610.04 421.05 361.80 1.16

ND: not detected; TEFs: toxic equivalency factors [46,47]; SD: standard deviation; CV: coefficient of variation.

3.5. Health Risk of PAHs in Urban Soil

As shown in Table 8, the cancer risk levels of human exposure to PAHs in urban soil through
ingestion and dermal adsorption ranged from 10−7 to 10−5, which were 104 to 105 times higher than
that through inhalation. Thus, inhalation of soil dust relative to ingestion and dermal adsorption of
soil dust was negligible. Similar results were observed in human exposure to heavy metals from dust
in an industrial area of Baoji, to phthalic acid esters in street dust of Xi’an, and to PAHs from urban
surface dust of Xi’an as well as from urban soil of Isfahan (Iran) and Shanghai (China) [15,32,40,74,75].

Table 8. Health risk of human exposure to PAHs in urban soil.

Items CS Children Adults

mg/kg Ingestion Inhalation Dermal Cancer risk Ingestion Inhalation Dermal Cancer Risk

Min 2.12 × 10−2 5.22 × 10−7 7.69 × 10−12 6.51 × 10−7 1.17 × 10−6 3.74 × 10−7 2.90 × 10−11 6.64 × 10−7 1.04 × 10−6

Max 1.63 × 100 4.01 × 10−5 5.91 × 10−10 5.00 × 10−5 9.01 × 10−5 2.87 × 10−5 2.23 × 10−9 5.10 × 10−5 7.97 × 10−5

Mean 4.24 × 10−1 1.05 × 10−5 1.54 × 10−10 1.30 × 10−5 2.35 × 10−5 7.49 × 10−6 5.81 × 10−10 1.33 × 10−5 2.08 × 10−5

Median 3.12 × 10−1 7.70 × 10−6 1.13 × 10−10 9.59 × 10−6 1.73 × 10−5 5.51 × 10−6 4.28 × 10−10 9.79 × 10−6 1.53 × 10−5

95%LCL 3.32 × 10−1 8.18 × 10−6 1.21 × 10−10 1.02 × 10−5 1.84 × 10−5 5.86 × 10−6 4.54 × 10−10 1.04 × 10−5 1.63 × 10−5

95%UCL 5.16 × 10−1 1.27 × 10−5 1.88 × 10−10 1.59 × 10−5 2.86 × 10−5 9.12 × 10−6 7.07 × 10−10 1.62 × 10−5 2.53 × 10−5

CS: the sum of toxic equivalency quantities (TEQs) of sixteen PAHs relative to BaP using the toxic equivalency
factors (TEFs) listed in Table 7 [46,47].

The cancer risk levels through ingestion for children and adults were on the same order of
magnitude (10−7 to 10−5) as through dermal adsorption, indicating that ingestion and dermal
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adsorption mainly contributed to the cancer risk to children and adults. However, the risk values
of ingestion for children were higher than the corresponding risk of ingestion for adults. Generally,
children are the most sensitive subpopulation because of their more hand-to-mouth activities relative to
adults. Thus, contaminated soil/dust in the urban environment can be readily ingested [15,39,40,45,76].
In addition, the PAH intake by a child is believed to be greater than that by an adult without raining
health effects because children have lower body weights relative to adults. Therefore, the health risks
of children exposure to PAHs from urban soil/dust are considerably greater than those of adults [15,45].
The health risk levels of adults through inhalation and dermal contact were greater than those for
children. Similar results were found in human exposure to PAHs from urban soil of Beijing and
Shanghai [15,41], from urban surface dust of Guangzhou [45], and from street dust of Lanzhou [39],
which could be related to the higher values of inhalation rate, dermal exposure area, and exposure
duration for adults [15,39,40,45].

The potential cancer risk is under the acceptance range with an ILCR value of 10−6 to 10−4, low
or negligible below 10−6, and a high cancer risk above 10−4 [15,38–40,45]. In this study, the 95%
confidence intervals of ILCRs for total cancer risk were 2.86 × 10−5 for children and 2.53 × 10−5 for
adults, respectively, which are in the range of 10−6 to 10−4. These values show that the total cancer risk
from human exposure to PAHs from urban soil of Xi’an is acceptable. Meanwhile, human exposure to
PAHs poses health risk via multimedia and multi-pathway. Wang et al. [32] reported that the ILCR
values of human exposure to PAHs from urban surface dust of Xi’an are 8.2 × 10−5 for children and
7.3 × 10−5 for adults, respectively, which are on the same order of magnitude as those in the urban
soil in the present study. These values indicate that the cancer risk of human exposure to PAHs from
urban soil is comparable to that from urban surface dust.

As shown in Figure 2, the total cancer risk of children and adults exposure to PAHs from urban
soil is relatively high in educational and traffic areas, followed by the first to third ring roads, industrial
areas and parks, and relatively low in mixed commercial and traffic areas as well as residential areas.
In addition, they decrease from the first to third ring roads. Therefore, more attention should be paid
to educational and traffic areas.

Figure 2. Cancer risk of human exposure to PAHs from urban soil in urban functional areas of Xi’an.

4. Conclusions

PAHs are ubiquitous environmental pollutants, posing potential threats to ecological environment
and human health. Sixty-two urban soil samples were collected in the typical semi-arid city of Xi’an
in Northwest China. They were analyzed for pollution level as well as ecological and health risk of
sixteen PAHs from the U.S. EPA priority list. The results showed that all sixteen priority PAHs were
detected in urban soil. The total concentrations of sixteen PAHs (Σ16PAHs) ranged from 390.6 to
10652.8 µg/kg with an average of 2052.6 µg/kg, belonging to the moderate level. The concentrations
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of some individual PAHs exceeded the Dutch Target Values of Soil Quality to different degree. Overall,
the Σ16PAHs presented heavy pollution. Pyr and DBA had high ecological risk to aquatic/soil
organisms, while other PAHs presented low ecological risk. The total ecological risk of PAHs to
aquatic/soil organisms was moderate. TEQs of sixteen PAHs in urban soil of Xi’an ranged from 21.16
to 1625.78 µg/kg with a mean of 423.86 µg/kg, and had relatively high toxicity potency resulting
mainly from seven carcinogenic PAHs. Ingestion and dermal adsorption of soil dust were the major
pathways of human exposure to PAHs from urban soil. The risk level of children exposure to PAHs
from urban soil through ingestion of soil dust was higher than that of adults, while the level of children
exposure via inhalation and dermal adsorption was lower than that of adults. The ILCRs for children
and adults were 2.86 × 10−5 and 2.53 × 10−5, respectively, which being in the range of 10−6 to 10−4,
suggesting the cancer risk of human exposure to PAHs from urban soil acceptable.
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