Supplementary Figures

Reconciling the Entomological Hazard and Disease Risk in the Lyme Disease System

Max McClure 1 and Maria Diuk-Wasser 2,*

- ¹ Vagelos College of Physicians & Surgeons, Columbia University, New York City, NY 10032, USA; mam2477@cumc.columbia.edu
- ² Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York City, NY 10027, USA
- * Correspondence: mad2256@columbia.edu;

Figure S1. Cont.

(b)

(c)

Figure S1. Cont.

(e)

Figure S1. Cont.

Figure S1. Relations between Modified Random Clusters parameters (habitat occupancy and percolation probability) and traditional fragmentation statistics in simulated landscapes. (a) Patch isolation as a function of habitat occupancy A. (b) Patch isolation as a function of percolation probability p. (c) Mean patch area as a function of A. (d) Mean patch area as a function of p. (e) Number of patches as a function of p. (f) Number of patches as a function of A.

Figure S2. Predicted LD risk of simulated landscapes (excluding one-cell forest patches) as a function of habitat occupancy (forest cover). Each curve is evaluated for a landscape with a different percolation probability *p*.

Figure S3. Predicted LD risk as a function of number of forest patches.

Figure S4. Frequency distribution of log-transformed deciduous and mixed forest patch areas.

Figure S5. Lyme disease incidence (LDI) correlogram. Plot of Moran's I for LDI as a function of distance class within study region.