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Abstract: There is increasing evidence from the developed world that air pollution is significantly
related to residents’ depressive symptoms; however, the existence of such a relationship in developing
countries such as China is still unclear. Furthermore, although neighbourhood social capital
is beneficial for health, whether it is a protective factor in the relationship between health and
environment pollution remains unclear. Consequently, we examined the effects of cities’ PM2.5

concentrations on residents’ depressive symptoms and the moderating effects of neighbourhood
social capital, using data from the 2016 wave of China Labourforce Dynamics Survey and the
real-time remote inquiry website of Airborne Fine Particulate Matter and Air Quality Index. Results
showed that PM2.5 concentrations and neighbourhood social capital may increase and decrease
respondents’ depressive symptoms, respectively. Notably, neighbourhood social capital decreased
the negative effect of PM2.5 concentrations on respondents’ depressive symptoms. These analyses
contributed to the understanding of the effect of air pollution on mental health in China and confirmed
that neighbourhood social capital were protective factors in the relationship between health and
environment hazards.

Keywords: PM2.5 concentrations; depressive symptoms; neighbourhood social capital; moderate
effect; China

1. Introduction

Depressive symptoms are a fundamental problem globally and are considered one of the most
severe mental health problems [1]. As of 2010, depressive disorder was the 11th leading cause of
disability-adjusted life years globally [2]. Depression is not only associated with physical illnesses
like cardiovascular problems [3,4], decreased quality of life [5], and decreased work productivity [6,7],
but also increases the mortality and suicide rate [3,4]. Data from the China Health and Retirement
Longitudinal Study showed that the rate of depression among the elderly in China reached 31.2% in
2013 [8]. Therefore, depression has become a notable problem in China. Most previous research has
indicated that depressive symptoms are significantly related to socioeconomic status and health-related
behaviour [2–5]. For example, people with higher educational attainment and household income are
less likely to suffer from depression than those who are less affluent and educated [2–5]. Similarly,
people who drink alcohol or smoke frequently and engage in fewer physical activities are more likely
to suffer from depression than those who refrain from drinking, smoking and regularly exercise [2–5].
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Recent studies in developed countries have reported that higher air pollution may decrease
residents’ mental health, especially increasing the risk of experiencing depression [9–16]. Although the
biological mechanisms for this association are not completely understood [12], possible pathological
pathways are that: (1) air pollution may increase the risk of cardiovascular illness and thus increases
the risk of depression [11,12,17]; and (2) air pollution influences mental health by affecting the nervous
and digestive system [12,18]. In addition, another possible biological pathway is that air pollution may
reduce the volume of sunlight which may be a stressor for residents’ nervous system and contributes
to the development of depression [19–21]. Besides biological effects, air pollution may also affect
depression through other health-related behaviours. One possible pathway is that air pollution may
pose a barrier to involvement with outdoor physical exercises, which is an effective way to cope
with the risk of mental health problems [16,22–24]. Another explanation is associated with access to
face-to-face social contact. Some studies have shown that air pollution discouraged face-to-face social
contact among neighbours and therefore increased the risk for depression [25–27]. Although a growing
body of literature has investigated the health effect of Particulate Matter 2.5 (PM2.5) in Chinese cities,
this body of research is largely related to the effects on physical health rather than those on mental
health [9,10].

Social capital has been defined as a type of resource that provides people with convenience,
and it has become essential for the maintenance of population health over the last two decades [28].
Thus, many studies have reported that social capital including social trust, social reciprocity, and
social group membership can improve residents’ health, as people living in neighbourhood with
higher neighbourhood social capital could more easily acquire emotional or material support from
others [1,28]. In recent years, social capital research has posited that neighbourhood social capital
may also be protective for mental health, as it weakens the negative influences of neighbourhood
social hazards [29–37]. For example, Feng et al. have noted that neighbourhood social trust can
improve residents’ mental health, since people in communities with high neighbourhood social trust
can get more health information [31]. Lindström et al. have pointed out that neighbourhood social
group membership and participation may benefit residents’ mental health, as residents are more
likely to get support from other neighbourhood group members [32]. Abbott et al. have found
that neighbourhood social reciprocity may increase people’s health by strengthening social ties and
regulating residents’ health related behaviours [33]. Further, neighbourhood social capital may be a
buffer between social environmental hazards and residents’ mental health [29,34–37]. For example,
Niedzwiedz et al. have indicated that neighbourhood group membership may act as a buffer between
the inequity of household income and older people’s mental health [29]. Murayama et al. have also
reported that the presence of both neighbourhood social trust and social reciprocity can weaken the
negative effects of neighbourhood social environment on residents’ depressive mood [37]. However,
other researchers have recently argued that social capital may not only act as a protective factor for
social environmental hazards but also for physical environmental hazards [38]. For instance, social
capital may moderate the effect of industrial pollution exposure on residents’ self-reported health
because air pollution may contribute to feelings of stress in residents, and social capital can be a buffer
its effects [38].

Although earnest efforts have been adopted to investigate the relationship between air pollution
and depressive symptoms in developed countries, the relationship is still unclear in developing
countries, such as China. Furthermore, although there is a consensus that neighbourhood social capital
is beneficial for mental health, its protective benefits in the relationship between depressive symptoms
and air pollution is still unclear. To bridge these gaps, this study investigated the relationship between
PM2.5 concentrations and depressive symptoms in China using data from the 2016 wave of the China
Labourforce Dynamics Survey (CLDS 2016). We further examine whether neighbourhood social capital
has a protective influence on the relationship between depressive symptoms and PM2.5 concentrations.
This study contributes to the body of literature in two respects: first, it improves our understanding of
how air pollution negatively influences people’s mental health in China; and, second, it provides a
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deeper understanding of the protective function of neighbourhood social capital for mental health.
The conceptual model is presented in Figure 1.
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Figure 1. Conceptual model of the moderating relationship of neighbourhood social capital on the
relationship between air pollution and depressive symptoms.

Based on the conceptual model and the review of existing literature, we propose the
following hypotheses:

Hypothesis 1. Residents who live in cities with higher levels of air pollution are more likely to have higher
levels of depressive symptoms compared to residents in other cities.

Hypothesis 2. Residents who live in neighbourhood with higher neighbourhood social capital are likely to have
lower levels of depressive symptoms than residents who live in neighbourhood with lower social capital.

Hypothesis 3. Neighbourhood social capital weakens the negative effect of air pollution on residents’
depressive symptoms.

2. Data and Methods

2.1. Data

The CLDS 2016 conducted by the Centre for Social Science Survey of Sun Yat-sen University [39]
was the primary source of the data. Respondents from this survey were chosen by using a probability
proportional to size sampling technique. First, 158 prefecture-level divisions from 29 provinces were
randomly selected. Second, 401 neighbourhoods were randomly chosen from the prefecture-level
divisions. In China, neighbourhoods refer to basic administrative divisions nested within prefectures
(prefecture-level division means the second-level administrative divisions). Overall, 20,861 individuals
nested within 401 neighbourhoods nested within 158 prefectures were included in the final dataset.

Average annual PM2.5 concentrations of each prefecture were acquired from a real-time remote
inquiry website—Airborne Fine Particulate Matter and Air Quality Index [40]—which provides a
quantitative hourly index of air pollutants such as AQI, CO, NO2, SO2, O3, PM10, and PM2.5. By calling
the API of the website, the AQI observation data from January to December 2015 in 1613 monitoring
stations were collected and cleaned. However, there was a lot of missing data and noise in the
observation data. Therefore, a Kalman filter was used for the optimal estimate of PM2.5 observation
values [41]. A Kalman filter is a time-domain filtering algorithm, which can obtain the optimal
estimation of the next moment based on the state of the system and the observation value at the
next moment [42]. Another problem was that the recorded data had neither longitude nor latitude
information, which may make it difficult to represent spatial variation. To map the data into a
geographical space, geocoding was used to associate the observation data with spatial coordinates.
Figure 2a shows the locations of 1613 monitoring stations in China in 373 cities. Further, the ordinary
kriging interpolation method was used to generate a continuous raster surface (pixel size = 500 m), and
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zonal statistics was applied to extract the mean concentrations of PM2.5 in each prefecture. Figure 2b
shows the spatial interpolation of the average PM2.5 concentration in 2015, which was obtained by
applying the Kriging method to the ground-based observations average in 2015.
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2.2. Variables

The Center for Epidemiologic Studies Depression scale (CES-D) was used to calculate depressive
symptoms, which has been widely used in previous studies [1]. The CES-D has a Cronbach’s alpha
value of 0.95. Independent variables included PM2.5 concentrations and social capital indicators.
Following existing studies ,the average annual PM2.5 concentrations of each prefecture were used to
measure the severity of air pollution in cities in 2015 [11,12].

Based on the indicators used in previous studies, three main social capital indicators (i.e social
trust, social reciprocity, and social group membership) were included [28]. These three social
capital indicators were measured based on variables included in the questionnaire (Part six: Social
participation and support) that was collected in CLDS 2016. The question ‘Would you say most people
can be trusted?’ was used to measure respondents’ perceptions of social trust. The response ‘Neighbours
are extremely/very trustworthy’ was defined as high social trust. The question ‘Would you say most of
the time people try to be helpful?’ was used to assess respondents’ perceptions of social reciprocity.
The response ‘Neighbours always/often help each other’ was defined as high social reciprocity. Lastly,
respondents were asked about membership in a various kind of voluntary groups. Following existing
studies, the percentage of respondents being high trust and high reciprocity within each neighbourhood
were calculated and defined as aggregated neighbourhood social trust and aggregated neighbourhood
social reciprocity [22]. Furthermore, the average number of types of voluntary groups within each
neighbourhood was calculated and defined as aggregated neighbourhood social group membership.

Lastly, we controlled for a series of individual-level and neighbourhood-level variables including:
gender (dichotomous variable), age (continuous variable), marital status (categorical variables),
educational attainment (categorical variables), employment status (dichotomous variable), hukou
status (dichotomous variable), living area (dichotomous variable), smoking history (dichotomous
variable), drinking history (dichotomous variable), medical insurance status (dichotomous variable),
physical status (dichotomous variable), weekly physical exercise time (continuous variable), annual
household incomes per capita (continuous variable), and annual neighbourhood incomes per capita
(continuous variable). Table 1 shows the summary statistics of variables in the regression models.
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Table 1. Summary statistics of variables included in regression analyses.

Variables Proportion/Mean (SD)

Dependent variables

CES-D Score (0–60) 7.3 (9.24)

Independent variables

Neighbourhood social capital
Neighbourhood social trust 0.78 (0.12)
Neighbourhood social reciprocity 0.48 (0.23)
Neighbourhood social group membership 0.08 (0.15)
PM2.5 concentrations (µg/m3) 49.27 (19.74)

Control variables

Gender

Male 0.48
Female 0.52

Age 44.83 (14.61)

Marital status

Single, divorced, and widowed 0.19
Married and living with spouse 0.73
Married but living apart from spouse 0.08

Education

Primary school or below 0.35
High school 0.52
College and above 0.13

Employment

Employed 0.95
Unemployed 0.05

Hukou status

Local hukou 0.91
Non-local hukou 0.09

Living area

Living in urban neighbourhood 0.39
Living in rural neighbourhood 0.61

Smoking

Current smoker 0.27
Non-smoker 0.73

Drinking

Drinker 0.19
Non-drinker 0.81

Medical insurance

Having medical insurance 0.90
No medical insurance 0.10

Physical health status

Have a disease 0.11
No disease 0.89

Weekly physical exercise time (minutes) 97.51 (267.95)

Average annual household incomes per household member (Chinese yuan) 17991.68 (202477.08)

Average annual neighbourhood incomes per neighbourhood resident (Chinese yuan) 17814.06 (3.22)

Individual-level social capital

Trust in neighbours

Neighbours are extremely/very trustworthy 0.78
Neighbours are somewhat/slightly/not at all trustworthy 0.22
Neighbours are helpful
Neighbours always/often help each other 0.48
Neighbours sometimes/seldom/never help each other 0.52

Number of types of voluntary groups 0.08 (0.37)
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2.3. Statistical Analyses

We examined the effects of cities’ PM2.5 concentrations on respondents’ depressive symptoms
in China while we also tested whether neighbourhood social capital moderated the effect of PM2.5

concentrations on respondents’ depressive symptom, using three-level linear regression analyses.
Due to the hierarchical structure of this data set, multilevel models were suitable for this research.

We applied hierarchical liner regression analyses to estimate the effect of PM2.5 concentrations on
depressive symptoms and the moderating effect of neighbourhood social capital. Models presented
here are as follows: a baseline model estimating the effect of controlled variables on depressive
symptoms (Model 1), a model estimating the effect of neighbourhood social capital on depressive
symptoms (Model 2), a model estimating the effect of PM2.5 concentrations on depressive symptoms
(Model 3), and a model adding cross-level interaction variables into Model 3 while following the
multilevel analysis research (Model 4) [43]. All continuous variables were centred on the grand mean in
interaction part. The statistical models were of the following form and the mean value of the variance
inflation factor (VIF) was less than 3:

CES − Dihj = β0 +β1Neighbourhood social capital indicatorshj + β2PM2.5 concentrationsj
+β3Neighbourhood social capital indicatorshj·PM2.5 concentrationsj
+β4Covariatesh + β5Covariatesihj + εihj + µhj + ϕj

(1)

where i represents individuals, h represents neighbourhoods, and j represents prefectures. β0 is
the intercept. Neighbourhood social capital indicatorshj represents a vector of neighbourhood-level
variables of social capital. PM2.5 concentrationsj represents a vector of prefecture-level variables of
PM2.5 concentration. Social capital indicatorshj ·PM2.5 concentrationsj represents a vector of cross-level
interaction effect. Covariateshj represent a vector of neighbourhood-level covariates. Covariatesihj
represent a vector of individual-level covariates. εihj, µhj, ϕj represent random errors at the individual
level, neighbourhood level, and city level, respectively. The interaction effect of interest is expressed in
coefficients β3.

3. Results

Table 2 shows the results of the multilevel linear models on respondents’ depressive symptoms.
Model 1 included individual-level and neighbourhood-level control variables. Compared with women,
men had a lower CES-D score (coefficient = −1.243, standard error = 0.153). In addition, respondents’
CES-D scores increased with age (coefficient = 0.040, standard error = 0.005). Married respondents had
a lower CES-D score (married and living with a spouse, coefficient = −1.052, standard error = 0.179;
married and living apart with a spouse, coefficient = −0.718, standard error = 0.264). Respondents with
higher educational attainment had a lower CES-D score, compared with respondents who graduated
from primary school or below, (high school, coefficient = −1.065, standard error = 0.153; college and
above, coefficient = −1.064, standard error = 0.251). Compared with unemployed respondents, employed
respondents have lower CES-D scores (coefficient = −0.558, standard error = 0.265). What’s more,
respondents with medical insurance had lower CES-D scores (coefficient = −0.850, standard error =
0.203) than those without medical insurance. Respondents with physical diseases have higher CES-D
scores (coefficient = 5.897, standard error = 0.196) than those without physical diseases. Furthermore,
respondents’ CES-D scores decreased with physical exercise time (coefficient = −0.119, standard error
= 0.026). Interestingly, respondents’ CES-D scores decreased with the logarithm of household incomes
and neighbourhood incomes (logarithm of household incomes, coefficient = −0.579, standard error =
0.064; logarithm of neighbourhood incomes, coefficient = −1.150, standard error = 0.311). Lastly, CES-D
scores decreased with all three individual-level social capital indicators (neighbours are extremely/very
trustworthy, coefficient = −1.736, standard error = 0.148; neighbours always/often help each other,
coefficient = −1.133, standard error = 0.131; number of types of voluntary groups, coefficient = −0.261,
standard error = 0.131). Model 2 included control variables and neighbourhood social capital indicators.
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Table 2. Multilevel liner regression coefficients for the effects of PM2.5 concentrations, social capital, and individual characteristics on depressive symptoms.

Effects and Variables Model 1 (Baseline) Model 2 Model 3 Model 4

Fixed part

Logarithm of PM2.5 concentrations 2.167 ** (1.090) 2.670 ** (1.390)

Neighbourhood-level social capital

Neighbourhood social trust −4.152 *** (1.443) −4.247 *** (1.443) −4.271 *** (1.498)

Neighbourhood social reciprocity −1.959 *** (0.841) −1.878 *** (0.854) −2.083 *** (0.849)

Neighbourhood social group membership −0.968 ** (0.489) −0.962 ** (0.481) −0.146 ** (0.073)

Male (ref: female) −1.243 *** (0.153) −1.240 *** (0.153) −1.240 *** (0.153) −1.240 *** (0.153)

Age 0.040 *** (0.005) 0.040 *** (0.005) 0.040 *** (0.005) 0.040 *** (0.005)

Marital status and family organization(ref: single, divorced, and widowed)

Married and living with spouse −1.053 *** (0.179) −1.050 *** (0.179) −1.050 *** (0.179) −1.050 *** (0.179)
Married but living apart from spouse −0.718 *** (0.264) −0.719 *** (0.264) −0.718 *** (0.264) −0.719 *** (0.264)

Education (ref: primary school or below)

High school −1.065 *** (0.153) −1.075 *** (0.153) −1.077 *** (0.153) −1.074 *** (0.153)
College and above −1.064 *** (0.251) −1.078 *** (0.252) −1.081 *** (0.252) −1.082 *** (0.252)

Employed (ref: unemployed) −0.558 ** (0.265) −0.552** (0.265) −0.553 ** (0.265) −0.553 ** (0.265)

Local hukou (ref: non-local hukou) −0.324 (0.246) −0.273 (0.247) −0.273 (0.247) −0.279 (0.247)

Living in urban neighbourhood(ref: living in rural neighbourhood) 0.108 (0.345) −0.240 (0.424) −0.243 (0.424) −0.223 (0.427)

Current smoking status (ref: non-smoker) 0.100 (0.173) 0.091 (0.173) 0.092 (0.173) 0.088 (0.173)

Current drinking status (ref: non-drinker) −0.057 (0.171) −0.056 (0.171) −0.056 (0.171) −0.055 (0.171)

Medical insurance (ref: no medical insurance) −0.850 *** (0.203) −0.848 *** (0.203) −0.848 *** (0.203) −0.846 *** (0.203)

Have a disease (ref: no disease) 5.897 *** (0.196) 5.886 *** (0.196) 5.887 *** (0.196) 5.889 *** (0.196)

Logarithm of physical exercise time −0.119 *** (0.026) −0.120 *** (0.026) −0.120 *** (0.026) −0.120 *** (0.026)

Logarithm of household incomes per capita −0.579 *** (0.064) −0.588 *** (0.064) −0.588 *** (0.064) −0.587 *** (0.064)

Logarithm of neighbourhood incomes per capita −1.150 *** (0.311) −1.279 *** (0.315) −1.287 *** (0.316) −1.206 *** (0.316)

Individual-level social capital

Neighbours are extremely/very trustworthy (ref: neighbours are somewhat/slightly/not at all trustworthy) −1.736 *** (0.148) −1.698 *** (0.149) −1.698 *** (0.149) −1.698 *** (0.149)

Neighbours always/often help each other (ref: neighbours sometimes/seldom/never help each other) −1.133 *** (0.131) −1.094 *** (0.133) −1.094 *** (0.133) −1.095 *** (0.133)

Number of types of voluntary groups −0.261 ** (0.131) −0.250 ** (0.125) −0.250 ** (0.125) −0.250 ** (0.125)

Cross-level interaction

Neighbourhood social trust × logarithm of PM2.5 concentrations −0.846 ** (0.401)
Neighbourhood social reciprocity × logarithm of PM2.5 concentrations −1.019 *** (0.102)
Neighbourhood social group membership × logarithm of PM2.5 concentrations −0.924 ** (0.437)

Constant 16.929 *** (0.756) 20.021 *** (1.335) 19.482 *** (2.018) 19.111 *** (1.998)

Random part

Var (city-level constant) 2.020 *** 2.210 *** 2.190 *** 1.990 ***

Var (neighbourhood-level constant) 5.192 *** 4.922 *** 4.916 *** 4.917 ***

Var (Residual) 70.301 *** 71.299 *** 70.300 *** 70.300 ***

Number of cities 158 158 158 158

Number of neighbourhoods 401 401 401 401

Number of individuals 20,861 20,861 20861 20,861

AIC 148,666.800 148,664.500 148,662.300 148,660.500

** p < 0.05, *** p < 0.01. All continuous independent variables and covariates were grand-mean centred.



Int. J. Environ. Res. Public Health 2018, 15, 1160 8 of 13

Surprisingly, respondents’ CES-D scores decreased with all of neighbourhood social capital indicators
(neighbourhood social trust, coefficient = −4.152, standard error = 1.443; neighbourhood social reciprocity,
coefficient = −1.959, standard error = 0.841; neighbourhood social group membership, coefficient =
−0.968, standard error = 0.489). Model 3 included control variables, social capital indicators, and
PM2.5 concentrations. The results showed that respondents’ CES-D scores increased with logarithm of
PM2.5 concentrations (coefficient = 2.167, standard error = 1.090) which means PM2.5 concentrations had
significant negative effect on respondents’ mental health. Lastly, cross-level interaction effects were added
in Model 4. The effect of PM2.5 concentrations on respondents’ CES-D scores varied by neighbourhood
social capital indicators which means that neighbourhood social capital significantly moderated the
relationship between city’s PM2.5 concentrations and respondents’ depressive symptoms.

Figure 3 graphically displays the predicted PM2.5 concentrations-depressive symptoms differing
by neighbourhood social capital indicators in Model 4, where different neighbourhood social capital
indicators are represented by the Lower Quartile (LQ = 25%), the median (MQ = 50%) and higher
quartile (HQ = 75%). The result of Model 4 and Figure 3a shows that respondents living in cities with
higher concentrations of PM2.5 with higher neighbourhood social trust had lower CES-D scores than
respondents living in cities with higher concentrations of PM2.5 with lower neighbourhood social trust.
With the rise of neighbourhood social trust, its moderating effect was strengthened. Figure 3b shows
that respondents living in cities with higher concentrations of PM2.5 with higher neighbourhood social
reciprocity had lower CES-D scores than did respondents living in cities with higher concentrations of
PM2.5 with lower neighbourhood social reciprocity. With the rise of neighbourhood social reciprocity,
its moderating effect was strengthened.
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Figure 3. (a) Predicted relationship between PM2.5 concentrations and CES-D scores differing by social
trust; (b) Predicted relationship between PM2.5 concentrations and CES-D scores differing by social
reciprocity; (c) Predicted relationship between PM2.5 concentrations and CES-D scores differing by
social group membership.Lower Quartile (LQ = 25%), the median (MQ = 50%) and higher quartile
(HQ = 75%).
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Figure 3c shows that respondents living in cities with higher concentrations of PM2.5 with higher
neighbourhood social group membership had lower CES-D scores than respondents living in cities
with higher concentrations of PM2.5 with lower neighbourhood social group membership. With the
rise of neighbourhood social group membership, its moderating effect was strengthened; however,
the moderating effect of the difference of median (MQ = 50%) and higher quartile (HQ = 75%) of
neighbourhood social group membership is not obvious.

4. Discussion

In the present study, we investigated the relationship between PM2.5 concentrations and
depressive symptoms in China. First, as has been demonstrated in previous studies respondents’
depressive symptoms increased with cities’ PM2.5 concentrations [11,13,14,16]. Such a finding may be
due to the following reasons: (1) air pollution may increase the risk of cardiovascular diseases, and
cardiovascular diseases are closely related to depressive symptoms [17,44]; therefore, residents living
in cities with more air pollution are more likely experience both cardiovascular diseases and depressive
symptoms, thus continuing a vicious circle. (2) Air pollution may also decrease the frequency of
residents’ outdoor physical activities, and outdoor physical activities are associated with depressive
symptoms [38,39,45,46].

In addition, previous studies we found that neighbourhood social capital was beneficial to
residents’ health [1,28,30,47]. Social capital can increase access to local services and amenities [28]
and provide useful support for residents [28]. Rapid urbanization in China has eroded residents’
connection with friends and relatives [48]. Therefore, neighbourhood social capital has become
essential to residents’ health in China. For this reason, neighbourhood social capital benefits residents’
mental health in China.

Most importantly, the statistical significance of the interaction effect indicates that neighbourhood
social capital can weaken the negative impact of PM2.5 concentrations on depressive symptoms.
In other words, neighbourhood social capital exerts a protective effect on the relationship between
depressive symptoms and PM2.5 concentrations. There are several explanations for the protective
effect. First, as for neighbourhood social trust, previous studies have noted that health knowledge
spreads faster in high-social-trust neighbourhoods (vs. low) since people are more likely to share
health knowledge with others and accept others’ advice [28,30,49,50]. Therefore, residents experiencing
depressive symptoms caused by PM2.5 may acquire useful health knowledge about cardiovascular,
nervous, and digestive system disease prevention more easily and can learn how to cope with stressor
from lack of sunlight in a high-social-trust neighbourhood. Second, social interactions are more
frequent in high-social-trust neighbourhoods, since their residents are more likely to be in contact with
those whom they trust [28,30,49,50]. Thus, although PM2.5 concentrations may lead to a decrease in
face-to-face social contact among neighbours’ , residents living in high-social-trust neighbourhoods
maintain connections with their neighbours through indoor activities (for example, playing card games
or Mah-jong). As a result, the negative effect of PM2.5 may be weakened by neighbourhood social trust.

In addition, as for neighbourhood social reciprocity, residents can not only obtain emotional
support but also can receive material support from neighbours in a high-social-reciprocity
neighbourhood [28,30,51–53]. Therefore, residents experiencing depressive symptoms caused by
PM2.5 may garner emotional comfort by talking to their neighbours about their mood or also acquire
useful health knowledge of cardiovascular, nervous and digestive system disease prevention and
know how to cope with stressor from lack of sunlight. All this will make residents feel less depressed
even while still experiencing PM2.5.

Furthermore, as for neighbourhood social group membership, living in a high-social-group-
membership neighbourhood, residents are more willing to participate in group activities [28,29].
Although PM2.5 may decrease residents’ willingness to have physical activities outdoor, living in
high-social-group-membership neighbourhood may increase their willingness to have both outdoor
and indoor physical activities. Social interactions among group members are more frequent than that
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among non-group members [28,29]. Even with fewer daily interactions, group members can maintain
their interactions by attending routine group activities. In a word, the negative effect of PM2.5 is
weakened by neighbourhood social group membership.

Lastly, this study also revealed that the protective effect of neighbourhood group membership is
relatively weaker than the other two neighbourhood social capital effects, and this may be because
this research used the average number of types of voluntary groups within each neighbourhood to
measure neighbourhood group membership. However, we failed to measure the strength of the social
ties within each group, which means one may be a part of several social groups but fail to garner
strong ties in each respective group [28].

From a policy perspective, to decrease depressive symptoms, the government should pay attention
to the following three aspects. First, more trees and grass should be planted in cities to increase green
space. Green space can benefit residents’ health and reduce air pollution [54,55]. In addition, more
public medical insurance and subsidies should be provided to low-income residents to weaken the
negative effect of environmental hazards on poor residents’ health. Finally, neighbourhood social
capital should be promoted. Existing studies have found that neighbourhood social capital can be
improved by promoting residents’ educational attainment; therefore, more funding should be provided
to improve national education [56–58].

Despite this study’s advantages, some limitations should be noted. First, due to the cross-sectional
nature of the data, we were unable to capture time-fixed effects and only calculated average PM2.5

concentrations in 2015. Second, we used only PM2.5 concentrations as an indicator of air pollution;
previous studies have used other air pollution indicators related to ozone, nitrogen dioxide, and
sulphur dioxide [11,12]. Lastly, we measured the concentration of PM2.5 at the city level; future
research should utilize air quality index at a finer geographical level.

5. Conclusions

This study confirms that neighbourhood social capital plays a protective role in the relationship
between depressive symptoms and PM2.5 concentrations in China. PM2.5 concentrations may increase
respondents’ depressive symptoms, while neighbourhood social capital may decrease respondents’
depressive symptoms. Most importantly, neighbourhood social capital weakens the negative influences
of PM2.5 concentrations on respondents’ depressive symptoms. However, the mechanism through
which air pollution negatively impacts residents’ mental health is still unclear in developing countries.
Therefore, further studies are warranted.
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