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Abstract: The method of Three-Dimensional Excitation Emission Matrix Fluorescence Spectrophotometer
was used to identify the interaction mechanism between humic acid (HA) and antibiotics. The effects
of antibiotic concentration, temperature, and pH on the bonding strength between HA and antibiotics
were investigated. The results showed that with the increase of antibiotics concentration, the
quenching effect on HA was enhanced. The quenching of HA by both oxytetracycline (OTC) and
sulfadiazine (SD) is a single static quenching of the complexes, and the interaction forces are mainly
a hydrogen bond and the van der Waals force. The quenching constant KsvOTC > KsvSD and the
binding constant KbOTC > KbSD, indicates that HA has a more obvious quenching effect on OTC.
The Kb of HA by OTC ranged from 3.223 × 103 to 12.784 × 103 L·mol−1 in the range of 298 K to
313 K, while the Kb of HA by SD ranged from 2.051 × 103 to 5.533 × 103 L·mol−1. With the increase
of temperature, the quenching constant Ksv and binding constant Kb of both OTC and SD by HA
gradually decrease, and the low temperature is beneficial to the interaction. The composite of OTC
and HA is more stable than SD. Under neutral alkaline conditions, both OTC and SD had the strongest
quenching effect on HA, and the resulting complex was the most stable. However, the Ksv and Kb of
HA by OTC were greater than SD in the pH range of the experiment and the pH effect on quenching
of HA by OTC (Ksv) was greater than that of SD.
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1. Introduction

Soil organic matter (SOM) widely existing [1,2] is the sum of all natural and thermally altered
biologically derived organic material found in the soil or on the soil surface irrespective of its
source [1–5]. As SOM has various chemical compositions and functional groups [6], they play an
important role in the fate and transport of organic contaminants in the environment [7,8]. Despite the
long term of research, the chemical composition of SOM and its impact on contaminant transportation
and migration still persist [3]. Currently, soil scientists argue that these substances do not exist in
the environment as that they are extractable by a strong alkaline method [9–11]. Current research
is still focused on simple substances such as humic acid (HA), which reveal the mechanism of the
SOM interaction with contaminant and migration, and the transformation and ecological effects of
the pollutants under the interaction between HA and the contaminants remain hotspots in the field of
environmental biogeochemistry [6,8,12,13].

The key techniques in these studies include: the ion selective electrode method [14,15],
voltammetry [16–18], potentiometric titration [19], and three-dimensional fluorescence spectroscopy [20,21].

Int. J. Environ. Res. Public Health 2018, 15, 1458; doi:10.3390/ijerph15071458 www.mdpi.com/journal/ijerph

http://www.mdpi.com/journal/ijerph
http://www.mdpi.com
https://orcid.org/0000-0002-3350-776X
http://www.mdpi.com/1660-4601/15/7/1458?type=check_update&version=1
http://dx.doi.org/10.3390/ijerph15071458
http://www.mdpi.com/journal/ijerph


Int. J. Environ. Res. Public Health 2018, 15, 1458 2 of 13

Among these methods, fluorescence quenching turned out to be an accurate method for analyzing the
interactions between contaminants and HA, as it is not limited by extraction, purification, or other
physical treatments [22,23] and can directly measure changes in fluorescence intensity before and after
the action of humic substances and contaminants, to obtain parameters such as the binding constant.

Antibiotics, as a typical ionic organic pollutant, often contain one or more functional groups, such
as carboxyl and amino, etc., belong to the hydrophilic substances [8]. Because of their strong polarity
and low volatility, antibiotics widely exist in water and soil environments [24–26]. The migration
and transformation of antibiotics in the environment are strongly affected by humus [27,28].
Thus, people are also increasingly concerned about the environmental behavior of antibiotics with
humus coexistence. Currently, the use of three-dimensional fluorescence spectroscopy to study the
interaction between substances is mainly focused on the interaction of humic substances with heavy
metals and hydrophobic organics [14,17,18,21]. Therefore, the use of three-dimensional fluorescence
spectroscopy to study the role of humus and different types of antibiotics is of great significance for
understanding the mechanism of humus and antibiotics in a water environment and its migration and
transformation patterns.

In this study, humic acid was selected as the representative substance of humus, and two different
types of antibiotics, oxytetracycline (OTC) and sulfadiazine (SD), were used as target contaminants.
The interaction between humic acid and two antibiotics was studied by three-dimensional fluorescence
spectroscopy, and the effects of antibiotics concentration, temperature, and pH and on the bonding
strength between HA and antibiotics was discussed.

2. Materials and Methods

2.1. Instruments and Chemicals

Oxytetracycline and sulfadiazine standard samples (purity > 95%) (Figure 1) were purchased
from the German BBI company, and the Milli-Q water was used in all experiments. Other chemical
reagents are of analytical grade. The main instruments are: Fluorescence spectrophotometer (Hitachi,
Tokyo, Japan, F-7000), Elementar vario EL cube.
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Figure 1. The molecular structures of (a) oxytetracycline (OTC) and (b) sulfadiazine (SD).

2.2. Preparation of Humic Acid

To purify the HA, a certain amount of biochemical reagent humic acid was weighed. The solution
was first dissolved in 2% NaOH solution and then filtered through 0.45-µm filters three times. The pH
of the filtrate was adjusted to less than 1.5 with 6 mol·L−1 hydrochloric acid. The precipitate was
centrifuged at 2500 r/min for 30 min to remove the supernatant, washed with distilled water, then
centrifuged for another 10 min. The precipitate was dried and stored at 277 K.
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Different amounts of purified humic acid were weighed. The pH was adjusted to about 8.00 with
2% NaOH, and then filtered through a 0.22 µm membrane to obtain dissolved humic acid of different
concentrations (in TOC content).

2.3. Experimental Methods

1 mL of 200 mg/L HA solutions were add in several 10 mL colorimetric tubes, then different
amounts of 10 mg/L OTC or SD were added to keep a series of initial concentrations of 1.5, 3.0, 6.0,
7.5, 9.0 mg/L, respectively. The pH was adjusted to 8.0 with 0.1 mol·L−1 HCl and 0.1 mol·L−1 NaOH.
The reaction tubes were then placed at constant temperatures of 288 K, 298 K, and 313 K respectively.
Three samples were sacrificed to examine the fluorescence intensity. Also, adjusted the reaction pH to
4.0, 5.0, 6.0, 7.0, 8.0, 9.0, and 10.0, respectively, while a constant temperature of 298 K was maintained.
The fluorescence intensity was tested at Ex/Em = 375 nm/460 nm.

Three-Dimensional Fluorescent scanning conditions were: excitation wavelength 300–600 nm,
5 nm increases, emission wavelength 400–700 nm, 10 nm increases, a scan rate of 1200 nm min−1, and
the voltage amplifying of 700 V. The spectra were obtained by subtracting an ultrapure water blank
spectrum, recorded in the same condition, to eliminate the Raman scatter peaks.

2.4. Data Analysis

The fluorescence quenching coefficients of OTC to HA were calculated using the Stern–Volmer
equation [29]:

F0

F
= 1 + Kqζ0[Q] = 1 + Ksv[Q] (1)

where F and F0 are the fluorescence intensity of the standard HA with and without quencher presence.
[Q] is the quencher concentration (mg/L), Kq is the quenching rate, Ksv is the Stern–Volmer quenching
constant, which is associated with the quencher’s ability to quench the fluorescence signal regardless
of the mechanism. The Ksv was determined through the linear regression of the F0/F values with the
quencher concentration ([Q]). The linear slope was the Ksv (L ·mol−1). ζ0 is the average life of the
molecule when the quencher is absent, and the fluorescence lifetime of the biomacromolecule is about
10−8 s. Thus, the relationship of Ksv and Kq is

Ksv = Kqζ0 (2)

In addition, in static quenching process, the Stern–Volmer equation changed as

log
F0 − F

F
= logKb + nlog[Q] (3)

where Kb is the binding constant, n represented the amount of sorption sites. Therefore, if the
appropriate quencher concentration range that provided a linear Stern–Volmer plot was selected, the
binding constant and sorption site amounts could be evaluated by comparing the intercept and slope
of the plot directly.

3. Results and Discussion

3.1. Spectroscopic Characteristics of HA

The three-dimensional fluorescence spectrums of different concentrations of HA (2, 4, 6, 10, 15, and
20 mg/L in total) were determined firstly and some typical concentrations (4, 10, and 20 mg/L) are
illustrated in Figure 2. The different humus peak wavelength positions are listed in Table 1 [30–32]. At the
concentrations of 2 and 4 mg/L, there was only one peak A appeared at Ex/Em = 410–470 nm/470–540 nm
assigned to humic acid-like fluorescence. At concentrations of 6 and 10 mg/L, there was a shoulder peak
with weak fluorescence intensity appeared at Ex/Em = 290–330 nm/370–450 nm besides peak A, which is
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assigned to fulvic acid. When the concentration increased to 15 and 20 mg/L, the shoulder peak occurred
clearly and there are two distinct fluorescence peaks, peak A (Ex/Em = 350–410 nm/430–490 nm) and
peak B (Ex/Em = 290–330 nm/370–450 nm). This indicated that the higher concentration (>6 mg/L) of
HA contained not only humic acid-like but also ulvic acid fluorescence. Zhu et al. [33] reported the
analogous results, that is, the humic acid-like and fulvic-like acid peaks were identified. However, it is
known that humic acid-like substances play a major role in HA since they have a higher molecular
weight, stronger aromaticity and hydrophobicity than fulvic acid. Consequently, the quenching
experiment is mainly based on humic acid-like fluorescence quenching.

In addition, the fluorescence intensity gradually increased and the maximum emission of the
peak A shifted slightly with a shift in the excitation wavelength for about 80 nm as the concentration
of HA increased, which may be due to the possible energy transfer processes and fluorescent inner
filter effects [34].
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Figure 2. Three-Dimensional fluorescence spectrum of humic acid (HA) with different concentrations.
(a) 4 mg/L; (b) 10mg/L; (c) 20 mg/L.

Table 1. The fluorescence peak location of different humus.

Peak Ex Em Substances

peak A 350~440 nm 430~510 nm Humic acid-like
peak B 310~360 nm 370~450 nm Fulvic acid-like (Visible)
peak C 260~290 nm 300~350 nm Protein like
peak D 240~270 nm 370~440 nm Fulvic acid-like (UV)
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3.2. Quenching of HA Fluorescence by Antibiotics

The quenching of HA by different concentrations of OTC and SD at the temperature of 298 K and
pH = 7 are shown in Figure 3. The fluorescence peak position was hardly shifted while its intensity
was obviously and regularly reduced with the concentration of OTC increase, indicating that the
presence of OTC can quench the HA (Figure 3a). Similarly, the fluorescence intensity of HA was
reduced with the presence of SD (Figure 3b) suggesting that it can be quenched by SD. Magdalena
reported the xanthine and porphyrin compounds have an aromatic structure, thus the interactions
between them result in the formation of π-stacked complexes showing a red-shift of the fluorescence
peak on the spectrum [35–37]. In this study, since SD and HA also own an aromatic structure, a
red-shift of the fluorescence peak may occur through the π-stacked complex formation between SD
with HA. Furthermore, some current studies found that the changes appeared in HA conformation and
molecular stiffness during the fluorescence quenching of metal ions [38–40], because the quenching
process, including the peak shift, in this study was similar to the interaction of HA with metal ions, we
inferred that the HA conformation and molecular stiffness would alter in the interaction between HA
and SD.
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Figure 3. The fluorescence intensity (Ex/Em = 375 nm/400–650 nm) of HA with the presence of
different concentration of (a) OTC and (b) SD.

The fluorescence quenching plots were fitted with Equation (1) and Figure 4 shows the linear
regression of the F0/F values with the OTC/SD concentration ([Q]), thus the quenching constant
could be obtained and the fitted parameters are shown in Table 2. F0/F with OTC or SD concentration
had a significant single linear relationship, indicating that the sorption process was single quenching
and the quenching intensity increased with augmented antibiotic concentration. The Kq of OTC
and SD were both higher than the average dynamitic quenching constant (2.0 × 1010 L·mol−1·s−1).
Hence, the interaction between HA and OTC/SD was static quenching; i.e., the non-fluorescent
complex formed by two kinds of antibiotics with HA. Wang et al. [41] suggested that the aromatic
components of phenanthrene and naphthalene showed static quenching, while carboxyl groups
primarily showed dynamic quenching, which was exactly in agreement with our study since the two
quenchers only had an aromatic structure. In addition, the binding constant Kb and the amount of
binding sites could be acquired by Equation (3). The binding site number of OTC and SD with HA was
1.207 and 0.997 respectively, indicating that they formed conjugates at 1:1 proportions. However, the
Ksv and Kb of HA by OTC were higher than SD, indicating that the quenching intensity by the former
is higher than the latter, which was determined by the different structure of two kinds of antibiotics.
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Both of the fitted coefficients of OTC and SD were greater than 0.9, performing as the higher linear
relationship between F0/F with OTC and SD concentration (Figure 4).Int. J. Environ. Res. Public Health 2018, 15, x 6 of 13 
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Figure 4. Stern–Volmer plots of OTC and SD for HA at temperature of 298 K.

Table 2. The fitted association constant of the interaction between HA, OTC, and SD.

Quencher Ksv (103·L·mol−1) Kq (1011·L·mol−1·s−1) Kb (103·L·mol−1) n R2

OTC 9.811 9.811 7.183 1.207 0.9708
SD 5.271 5.271 3.123 0.997 0.9470

3.3. Temperature Effect

At pH 7.0, three different temperatures of 288 K, 298 K, and 313 K were set in the reaction system to
investigate the effect of temperature on the interaction between OTC, SD, with HA. The Stern–Volmer
plot at varied temperature is the simplest way to determine whether static or dynamic quenching is
the main quenching process in the system. In the dynamic quenching process, a temperature increase
leads to increasing collisional frequency and thus the Ksv. In the static quenching process, on the other
hand, the temperature increase tends to dissociate the fluorophore–quencher complex, resulting in
a decrease of Ksv [42]. In this study, the Ksv values of OTC-HA and SD-HA systems decreased as
the temperature increases (Figure 5), suggesting that the main quenching mechanism is the static
process. The number of binding sites that OTC or SD combined with HA at the three temperatures
was approximately 1, indicating that both antibiotics formed a conjugate with HA in 1:1 proportions
(Table 3). The value of KbOTC ranged from 3.223 × 103 to 12.784 × 103 L·mol−1 in the range of 298 K
to 313 K, while the value of KbSD ranged from 2.051 × 103 to 5.533 × 103 L·mol−1, and both gradually
decrease with increasing temperature, which is consistent with the changes of Ksv.

The value of KbOTC was higher than KbSD at three temperatures, that is, the complex formed
between OTC and HA was more stable. On the other hand, the Kb value of OTC at 313 K decreased
9.561 × 103 L·mol−1 compared to 298 K, while the Kb value of SD only decreased 3.482 × 103 L·mol−1,
indicating that the complex formed by OTC and HA is more sensitive to temperature changes.
The majority temperature conditions related to a better liner relationship between the F0/F with
antibiotics concentrations since the fitted coefficients of both were higher than 0.9, whereas a worse
liner relationship was found for SD at 288 K (R2 < 0.9).
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Figure 5. Stern–Volmer plots of fluorescence quenching of HA by antibiotics at different temperatures
(a) OTC; (b) SD.

Table 3. The interaction constants between antibiotics and HA at different temperatures.

Antibiotics T (K) Ksv (103·L·mol−1) Kq (1011·L·mol−1·s−1) Kb (103·L·mol−1) n R2

OTC
288 13.174 13.174 12.784 0.974 0.9732
298 9.811 9.811 7.183 1.207 0.9708
313 5.055 5.055 3.223 1.023 0.9510

SD
288 7.513 7.513 5.533 1.104 0.8763
298 5.271 5.271 3.123 0.997 0.9469
313 3.163 3.163 2.051 1.045 0.9617

Thermodynamic parameters for a binding interaction were proved to be a powerful tool to
determine the nature of intermolecular forces. Gibbs free energy (∆H) can be calculated by equation:

∆G = −RTlnK (4)

The enthalpy changes (∆H) and the entropy change (∆S) can be obtained from the intercept and
slope of the deformed Van’t Hoff equation:

∆G = ∆H − T∆S (5)

R is the ideal gas constant, 8.314 J/mol·K; T (K) is the absolute temperature and K is the partition
coefficient Kd. In fluorescence quenching, K is the binding constant Kb.

It can be seen from Table 4 that ∆G value of OTC and SD interacted with HA less than 0,
indicating that the interact process was a spontaneous reaction [43]. According to the association of
the thermodynamic parameters with various interactions summarized by Ross and Subramanian [44],
∆S > 0 and ∆H > 0 indicate that the main force is the hydrophobic force, ∆S > 0 and ∆H < 0 indicate
that the main force is electrostatic attraction, and ∆S < 0 and ∆H < 0 indicate that the main force is the
van der Waals force or hydrogen bonds. Since both of the values are ∆H (−41.306 kJ·mol−1) < 0 and
∆S (−29.750 kJ·mol−1) < 0, the interaction forces of the two antibiotics with HA are mainly hydrogen
bonds or van der Waals forces.
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Table 4. The thermodynamic parameters.

Antibiotics T (K) ∆G (kJ·mol−1) ∆H (kJ·mol−1) ∆S (J·mol−1·K−1)

OTC
288 −22.642

−41.306
−64.807

298 −22.000 −64.787
313 −21.021 −64.807

SD
288 −20.636

−29.750
−31.645

298 −19.936 −32.933
313 −19.845 −31.645

3.4. pH Effect

The different fluorescence intensities of the HA, HA-OTC, and HA-SD system at different pH
values are shown in Figure 6. For HA, its fluorescence intensity increases as the pH value increases
until to pH = 8.0, while a further increase of pH will slightly reduce the fluorescence intensity. Since
the humic acid is a negatively charged polymer [33], its configuration is long-tail stretched due to the
repulsion between the humic molecules under neutral and alkaline pH conditions [45,46], and more
fluorescent groups are exposed to the solution, strengthening the fluorescence intensity [47]. While
under the acidic pH conditions, the protonation of acidic groups not only quenches the fluorescence,
but also leads to the polymerization of the molecules due to the strengthening of the hydrogen bond
binding ability [20,45], resulting in a decrease in the solubility of HA and a sharp decrease in the
fluorescence intensity [48]. The fluorescence intensity change of the HA-OTC and HA-SD system
under different pH conditions is confirmed with that of HA. When the pH is 4–6, the impact of the
antibiotics on the fluorescence intensity is weak, while they have a significant quenching effect on HA
under neutral and alkaline pH conditions, and this quenching effect reached the strongest at pH = 8.
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Figure 6. The different fluorescence intensity of the HA, HA-OTC, and HA-SD system. ∆F was the
fluorescence intensity changes of HA with the presence OTC and SD. The concentration of antibiotics
was 6 mg/L. The concentration of HA was 20 mg/L.

Figure 7 shows the Stern–Volmer plots of HA-OTC and HA-SD system at different pH values
and the acquired Ksv and Kb values are summarized in Table 5. The results show that both of the Ksv

values of OTC and SD increased with the pH increases until pH = 8. A further increase of pH would
not relate to a higher Ksv, suggesting that the fluorescence quenching of HA by OTC and SD were
favorable with neutral and alkaline pH conditions. This was in agreement with the change of Kb values
of two antibiotics, indicating that the formed complex of HA with OTC and SD were more stable under
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neutral and alkaline pH conditions. HA is most likely to form a “pseudo micelle” structure under
neutral and alkaline conditions [49], which is an advantageous combination of antibiotics. At an acidic
pH condition, HA will agglomerate and exhibit an aggregated and bound state, forming a hydrophobic
region because of charge neutralization [50], so that the interaction between HA with the hydrophilicity
quencher is weak but the hydrophobicity quencher is strong on the contrary [46,51]. With the pH
increases, the charge neutralization ability decreases, more hydrophilic groups are exposed, and the
interaction obviously arouses [21,52] and reaches its highest at pH = 8.0. However, further increases of
pH will bring about the electrostatic repulsion increases between molecules due to the deprotonation
of HA [50], and OTC and SD are in the anionic form at this time, which affects the binding of HA to
OTC and SD. In this study, when pH was 4 and 10, all of the fitted regression coefficients (R2) of OTC
and SD were less than 0.9, performing as the lower linear relationship between F0/F with OTC and SD
concentration (Figure 7) and a lower binding constant, which consisted of the mechanism. Therefore,
we now present the probable mechanism of HA quenched by OTC and SD shown in Figure 8.

Different, statistically insignificant coefficients (p-value greater than 0.1) of OTC while significant
coefficients (p-value less than 0.1) of SD were excluded from the analysis when pH = 4, indicating
that there may not only exist static quenching for OTC under acidic pH conditions, but also dynamic
quenching. When pH ranged from 4 to 10, the KbOTC value was significantly greater than that of SD
(p < 0.05), suggesting that the binding of OTC with HA was stronger. Furthermore, the Kb value of
OTC changed more obviously with pH, while there was a little change of the KbSD at the acidic range,
which may be due to the different combined effects of pH on the morphology of the two antibiotics
and the conformation of the HA molecule [33].
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Figure 7. The Stern–Volmer plots of (a) HA-OTC and (b) HA-SD system at different pH values.

Table 5. The fitted association constant of the interaction between HA, OTC and SD at different
pH values.

Quencher pH Ksv (103·L·mol−1) Kq (1011·L·mol−1·s−1) Kb (103·L·mol−1) n R2

OTC
4 7.282 7.282 6.430 0.944 0.5115
8 10.916 10.916 9.872 0.914 0.9217

10 10.363 10.363 8.890 1.288 0.7982

SD
4 3.894 3.894 3.724 1.340 0.8836
8 4.043 4.043 4.015 0.690 0.9229

10 3.946 3.946 3.824 0.810 0.8263
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4. Conclusions

The interaction mechanism between humic acid (HA) with two antibiotics, OTC and SD, and the
interaction intensity under the influence of environmental factors was investigated.

(1) Both OTC and SD can quench HA. The quenching mechanism assigned to a single static
quenching of the complex and formed conjugates at 1:1 proportions. The interaction forces
were mainly hydrogen bonding or van der Waals forces; the value of KsvOTC and KbOTC were
all greater than that of SD. That is, OTC had a stronger quenching effect on HA fluorescence, and
the new formed complex was more stable.

(2) The influence of environmental factors on the experiment showed that: with the increase of
temperature, the Ksv and Kb value of two antibiotics quench HA gradually decreased, and the
low temperature was beneficial to the interaction. The complex formed between OTC and HA
was more stable than that of SD. Under neutral alkaline conditions, both OTC and SD had the
strongest quenching effect on HA, and the formed complexes were the most stable. Both the
value of KsvOTC and KdOTC were greater than SD in the experiment pH. The quenching effect of
OTC and HA (Ksv) is significantly affected by pH, while less affected for SD.
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