
International  Journal  of

Environmental Research

and Public Health

Review

Exposure to Environmental and Occupational
Particulate Air Pollution as a Potential Contributor to
Neurodegeneration and Diabetes: A Systematic
Review of Epidemiological Research

Eirini Dimakakou 1 ID , Helinor J. Johnston 1, George Streftaris 2 and John W. Cherrie 1,3,*
1 Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University,

Edinburgh EH14 4AS, UK; ed25@hw.ac.uk (E.D.); H.Johnston@hw.ac.uk (H.J.J.)
2 Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer Sciences,

Heriot-Watt University, Edinburgh EH14 4AS, UK; G.Streftaris@hw.ac.uk
3 Institute of Occupational Medicine (IOM), Riccarton, Edinburgh EH14 4AP, UK
* Correspondence: j.cherrie@hw.ac.uk

Received: 11 July 2018; Accepted: 7 August 2018; Published: 9 August 2018
����������
�������

Abstract: It has been hypothesised that environmental air pollution, especially airborne particles,
is a risk factor for type 2 diabetes mellitus (T2DM) and neurodegenerative conditions. However,
epidemiological evidence is inconsistent and has not been previously evaluated as part of a systematic
review. Our objectives were to carry out a systematic review of the epidemiological evidence on the
association between long-term exposure to ambient air pollution and T2DM and neurodegenerative
diseases in adults and to identify if workplace exposures to particles are associated with an increased
risk of T2DM and neurodegenerative diseases. Assessment of the quality of the evidence was carried
out using the GRADE system, which considers the quality of the studies, consistency, directness, effect
size, and publication bias. Available evidence indicates a consistent positive association between
ambient air pollution and both T2DM and neurodegeneration risk, such as dementia and a general
decline in cognition. However, corresponding evidence for workplace exposures are lacking. Further
research is required to identify the link and mechanisms associated with particulate exposure and
disease pathogenesis and to investigate the risks in occupational populations. Additional steps are
needed to reduce air pollution levels and possibly also in the workplace environment to decrease the
incidence of T2DM and cognitive decline.

Keywords: type 2 diabetes; neurodegeneration; cognitive function; dementia; Alzheimer’s disease;
Parkinson’s disease; air pollution; particulate matter; occupational; epidemiology

1. Introduction

Globally, there is an estimated 2.3 million deaths every year attributed to work, with 86.9% of
these attributed to work-related diseases [1]. In Britain, deaths from workplace exposure to chemicals,
dusts, and fibres have increased over the last 40 years, with currently around 13,000 premature deaths
each year from occupational lung disease and cancer [2]. The non-occupational environment can also
have detrimental impacts on health. More specifically, individuals are exposed to many risk factors
in their homes and in the environment such as air pollution, chemicals, ionising and non-ionising
radiation, and noise. Exposure to air pollution is a particular concern to the public; with 91% of the
world’s population living in areas where air quality is poor and exceeds World Health Organisation
(WHO) guideline limits [3].
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Overall occupational and environmental exposures account for around 12.5% of the total global
mortality each year. Within this, it is estimated that air pollution is responsible for around 3.2% of
the disease burden, which, according to WHO, accounts for an estimated 4.2 million deaths per year
worldwide due to stroke, heart disease, lung cancer, and chronic respiratory diseases [3,4]. Outdoor
air pollution contributes about 40,000 early deaths each year in the UK [5].

Ambient particulate air pollution, such as PM10, has been a public health concern in Britain
since the ‘London Smog’ in 1952, when increased mortality and morbidity were reported soon after
the event [6]. Similar incidents have occurred in Belgium (1930) and in Pennsylvania (1948) [7].
PM10 is particulate matter 10 micrometres or less in diameter and has a complex composition, with the
ultrafine particle component held principally accountable for eliciting much of the toxicity associated
with PM10 exposure [8,9]. Epidemiological studies indicate links between PM10 and PM2.5 with both
short-term and long-term health effects [10]. Furthermore, both short-term (e.g., hours) and long-term
exposure (e.g., months, years) can increase morbidity and mortality [11]. The link between PM10

and adverse health effects was first established in the 1990s, where epidemiological studies found a
positive association between the level of particulate air pollution in cities and increased morbidity and
mortality rates in both adults and children, with adverse health effects being manifested predominantly
in susceptible individuals who had pre-existing pulmonary or cardiovascular disease [12,13]. It is
now widely accepted that exposure to PM10 may cause or exacerbate allergic respiratory diseases (e.g.,
asthma) [14], chronic obstructive pulmonary disease, pneumonia, and cardiovascular disease [15] and
is also defined as a definite carcinogen by International Agency for Research on Cancer (IARC) [16].
The cellular and molecular mechanisms underlying the toxicity of inhaled particles has been extensively
investigated, and hypothesised to be driven by the stimulation of inflammation and/or oxidative
stress [9].

More recently, there has also been evidence from epidemiological and laboratory studies that
long-term exposure to particulate air pollution is associated with T2DM [17–25], dementia [26–28],
and other neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease
(PD) [28,29]. The ability of inhaled particles to stimulate adverse effects in extrapulmonary sites has
been reviewed previously [30], and likely to manifest due to (i) the translocation of particles from
the lung to other target sites, or (ii) release of mediators (e.g., cytokines) from the lung which act
systemically [30,31].

The WHO estimates that 422 million people worldwide have diabetes, 47 million people are living
with dementia and more than 10 million people are living with PD with increasing incidence expected
over coming years.

As the world’s population is ageing, dementia has become a major public health concern.
Most cases of neurological diseases are sporadic, and thus identification that particulate air pollution
may be an important environmental risk factor may help better understand the aetiology of
neurodegenerative disorders.

Diabetes is a metabolic disease, with different types (type 1 and type 2). Type 1 is often diagnosed
in childhood and cannot be controlled without taking insulin, whereas type 2 is usually diagnosed in
over 30 year olds and can generally be controlled with medication, or diet and exercise. Increasing
evidence indicates that environmental exposures may cause diabetes and more recently T2DM [32].

In addition to particle exposure via the environment, workplace exposures to particles can also
occur. Workplace exposures can include a range of fine dusts and diesel exhaust. Accordingly, it is
possible that exposure to particles in an occupational setting may also increase risk of T2DM and
neurodegenerative disease.

The aim of this review is to systematically explore the association between long-term exposure
(years/decades) to airborne particulate matter, both from ambient environmental pollutants and
workplace exposures, and T2DM and cognitive impairment; earlier onset of greater than age-related
decline and/or neurodegeneration in adults. The information from the review is discussed in
relation to occupational exposure to particulate matter and fumes, and risk of dementia and diabetes.
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We hypothesise that exposure to ambient fine airborne particles is associated with an increased risk of
neurodegenerative conditions and T2DM, and that these risks also apply to workplace exposures to
particulate matter.

2. Methods

2.1. Search Strategy and Study Selection

PubMed, Web of Science, Scopus, and Google Scholar were searched (last search, March 2018)
for studies using different combinations of search terms, related to diabetes (‘diabetes mellitus’,
‘type 2 diabetes mellitus’, ‘diabetes mellitus’, and ‘insulin resistance’), neurodegenerative diseases
(‘dementia’, ‘neurodegeneration’, ‘Alzheimer’s Disease’, ‘Parkinson’s Disease’, ‘cognitive decline’,
‘cognitive impairment’, and ‘neurocognitive disorders’), air pollution (‘air pollution’, ‘outdoor air
pollution’, ‘traffic-related air pollution’, ‘air pollutants’, ‘ambient air pollution’, and ‘environmental
pollution’), airborne particles (‘particulate matter’, ‘PM10’, ‘PM2.5’, ‘fine particulate matter’, ‘airborne
particulate matter’, ‘ambient particulate matter, ‘ultrafine particles’, ‘black carbon’, ‘black smoke’,
and ‘elemental carbon’), and finally occupational exposure (‘occupational exposure’, ‘work exposure’,
‘employment exposure’, and ‘exposure at workplace’).

There were five combinations of search. First, air pollution and airborne particle terms were
combined with diabetes terms and then with neurodegeneration disease terms. The third and
fourth searches combined occupational exposure and diabetes and then neurodegeneration diseases,
while the fifth search was a combination of diabetes and neurodegeneration disease terms. These five
categories identified 10,084 articles. After de-duplication 7778 articles remained. First titles and
then abstracts were screened for eligibility and potentially relevant articles were retrieved as full
texts. The target population was adults, therefore all the studies that examined the associations in
children were excluded. Articles were also excluded if they focused on pulmonary disease, chronic
obstructive pulmonary disease (COPD), cardiovascular disease, lung disease, atherosclerosis, type-1
diabetes, vascular dementia, chemical exposures, organic solvents and pollutants, metals, smoking,
asthma, birth outcomes, children, hypertension, different types of cancer, organic dust, bio-aerosols,
allergic respiratory diseases, myocardial infraction, multiple sclerosis, diet, stroke, disease because
of virus, asbestos, short-term (months) exposure to particles, pesticides, magnetic fields, welding
fumes, bacterial inflammation, ozone, and nitric oxides. For articles without an abstract or enough
information in the abstract to make a decision, the full text, and where necessary supplementary
materials, were reviewed before a decision was made. We ended with 305 articles, separated into
the five categories, according to the combinations described above. However, for practical reasons
and to be able to compare the articles within one systematic review, we took into account only the
epidemiological studies (toxicology studies and reviews were excluded), and we constructed two
categories of publications for pollution and disease (‘air pollution/airborne particles and diabetes’
and ‘air pollution/airborne particles and neurodegenerative diseases’). In addition, two categories
for occupational exposure and disease were included in the final appraisal. We ended up with 36
environmental epidemiological studies and only one occupational study (Figure 1).
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Figure 1. Flow chart of the literature search.

2.2. Evaluation of the Systematic Review and Quality of the Studies

The internationally recognised GRADE system for the scientific evaluation of the quality of
the identified studies was used to appraise the quality of the studies identified [33]. This system
was developed for assessing interventions in health care contexts, and it has also been adapted
to epidemiological studies [34,35]. In our case, an environmental/occupational factor or exposure
can replace the clinical intervention [35]. The GRADE system classifies the quality of evidence
as high, moderate, low, and very low and according to GRADE, evidence based on randomised
controlled trials begins as ‘high quality’, and observational studies start as ‘low quality’. All of the
cohort and case-control studies epidemiological studies identified for this study were observational.
A well-designed observational study can be upgraded and provide a quality grading similar to a
randomized controlled trial (RCT), and an RCT can be downgraded if certain aspects are missing.
GRADE looks at studies individually, but also considers the whole evidence base.
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The following aspects of quality were considered in this study [36]:

1. Representativeness and size of the study sample, as well as the duration of follow-up period.
High number of participants, many years of follow-up, no attrition and lost during follow-up
and participants that were members of a bigger cohort, could upgrade the quality of the studies.

2. Publication bias or other kinds of bias, such as selection bias, misclassifications, selective reporting,
or conflict of interest diminish the quality of a study. The quality may be downgraded if authors
presented incomplete or selectively reported the tested hypothesis, compared to their aim and
objectives. If there was no declaration of funder and involvement of the funding body in the
research or if the authors had indicated a conflict of interest the quality was also downgraded.

3. Potential confounders such as age, sex, physical activity, education level, alcohol intake, smoking
status, socioeconomic status (SES) should have been considered. There is a need of an adequate
control of confounding and adjustment in the statistical analysis. If more appropriate potential
confounders were taken into account, then the quality of the study could be upgraded.

4. For both exposure and outcome assessment, standardized and validated methods were required.
Well established methods enable the comparison between studies and as a result they can
contribute to higher quality rating.

This systematic review follows the PRISMA guidelines (Appendix A).

3. Results

The available research uses many different methodological designs to explore the associations
between environmental or occupational particle exposures and the health-related outcomes.
The approaches mostly quantify particle exposures using various measures of environmental pollution,
and the outcome measures are quite disparate.

3.1. Air Pollution and Neurodegeneration

The characteristics of all the included studies focused on investigating the relationship between
air pollution exposure and dementia are summarized in Tables 1 and 2. Of these, 10 studies were
cohort studies, 4 studies were cross-sectional, 1 case-control, 2 nested case-control studies, and 1 was a
time-series analysis. These were all recent studies, conducted after 2008, in North America (US, n = 10,
Canada, n = 1), Europe (Germany, n = 3 and UK, n = 1), and Asia (Taiwan, n = 3). For the cohort studies
the range of the follow up periods ranged from 5 to 30 years.

Most studies (17 out of 18) examined airborne particulate matter, four studies also included NOx

and two studies considered both PM and traffic noise or proximity to a major road. Five studies
quantified black carbon (BC) as a measure of PM. Exposure estimates—assessments based on
measurement data—were mostly based on data from air monitors at fixed monitoring sites, using either
the participant’s postcode [26,37], address of residence [38–42], county [43] or the community [44].
Half of the studies (9 out of 18) considered traffic-related air pollution (BC, NOx, NO2, traffic noise,
proximity to a major road, traffic PM), and their findings supported an association between air pollution
exposure and dementia-related outcomes. Furthermore, one study supported a positive association
of mild cognitive impairment (MCI) with road traffic noise [45] and a second study supports an
association between shorter distance to a very busy road (10,000 cars per day) and poorer performance
in a general assessment of cognition and a selective attention test [40].

Two studies used neuroimaging to show an adverse association between PM exposure
and neurodegeneration (PD and white matter (WM) loss) [38,46]. One study supported an
adverse association between PM and performance on a general ability test (working memory and
orientation) [47], another supported an adverse association with visuo-spatial ability [41], another
supported an adverse association with reasoning, short term memory, and verbal fluency [37].
Other studies identified adverse associations between cognitive decline and performance of mini
mental state examination (MMSE) [42,48] and an adverse association between PM and hospitalization
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for neurodegenerative diseases [44]. Four studies found no association between PM exposure and the
health outcomes of interest based on examining medical records or participant’s reports [43,49–51].

There was a wide range of techniques used to assess neurodegeneration and here we discuss
the validity of different approaches. There is no single test that can provide a definitive diagnosis
of Alzheimer’s or other neurodegenerative disease in life. Diagnosis considers a range of cognitive
abilities and functions and there is a need to look at them longitudinally. Physical and neurological
examination, mental status tests (cognitive test scores, tests within a battery), neuroimaging,
and medical history may all provide an insight into dementia-related endpoints. Information from
laboratory tests or a physical examination can help identify health issues that can cause symptoms of
dementia. Imaging technologies have revolutionized the understanding of the structure and function
of the living brain to better track and diagnose the progress of Alzheimer’s disease. Each method
of detecting the dementia-related outcome has advantages and disadvantages. Cognitive test scores
are informative and easy to use in epidemiology studies [52], whereas using a battery of tests
offer considerable advantage over traditional measures (MMSE) “for predicting and discriminating
stable from deteriorating forms of suspected dementia at an individual level” [21]. Furthermore,
neuroimaging plays a crucial part in the diagnosis of dementia and provides a perception of the
underlying pathologic process. Neuroimaging is important not only to exclude non-AD pathologies,
but also to indicate biological markers to support the AD diagnosis [53].

Chen and co-workers [46] used a neurological examination and imaging to assess cognitive
decline and Chen et al. [38] included tomography scans as an outcome measure, along with a battery
of validated cognitive tests. Tomography scans and especially WM loss measurement is quantitative
and specific to identify cognitive decline. Jung and colleagues used both history examination and
neuroimaging [26]. However, most of the studies use a variety of different cognitive tests to measure
cognitive decline [37,39–43,45,47,48], medical records [49–51], or other self-reports [29].

As mentioned above, the size of the study sample, as well as the years of follow-up
period were considered in the quality rating and high number of participants, many years of
follow-up, and participants that were members of a larger cohort, can upgrade the studies.
Kioumourtzoglou et al. [44] had the largest sample size, which included 9,817,806 adults, both men
and women. The follow up period of the study was about 10 years and the study showed positive
associations with all the three outcomes (PD, AD, and dementia). Chen et al. [54] had the second largest
sample size, which again included men and women, 20–85 years, and had a long follow-up period
(12 years). Both studies of Palacios et al. included thousands of participants and had more than 15 years
of follow-up. Weuve et al. [42] had 19,409 female participants, who were part of the Nurses’ Health
Study Cognitive Cohort, and a follow up period of approximately 10 years. Ranft et al. [40], which was
based on the SALIA cohort, studied proximity to a major road and had a 20 year of follow up period.
Jung et al. [26] performed a study of 95,690 participants over 10 years, by using history, examination,
lab tests and MRI to examine the associations between air pollution exposure and the health outcome.
Studies of Kirrane et al., Tonne et al. and Power et al. [29,37,39] had adequate sample size and follow
up period of 17 years, 5 years, and 10 years accordingly. Ranft et al. and Power et al. found no
association with PM10 and the cross-sectional study of Chen & Schwarts was statistically significant
only for O3. The remaining studies are cross-sectional studies of Tzivian et al., Chen & Schwarts,
Schikowski et al. and Ailshire & Clarke, with the last study having a lost to follow-up from 1986.
There is also one small case control study from Wu et al. comprised of 871 participants and only three
years of follow-up. All of the other studies found statistically significant results, as mentioned above,
except for three that found no statistically significant associations between particulate air pollution
and PD.

Most of the reviewed studies adjusted for age, sex, smoking status, and physical activity, although
several studies failed to adjust for sociodemographic factors, such as education or SES, which may
potentially be confounders [26,29,43,47]. Lower education and low annual income have been associated
with a greater risk for dementia [55–57] and it is plausible that people with low income live in areas
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with high levels of pollution. Although it is clear that people with cardiometabolic diseases tend to
be more vulnerable to air pollution and that cardiometabolic diseases are a risk factor for cognitive
dysfunction, only a few studies adjusted for such conditions [38,39,44,54]. Moreover, exposure to
high levels of noise impairs cognitive abilities [54], and a large fraction of ambient pollution is traffic
generated, making noise a possible confounder; only two studies adjusted for environmental noise
exposure [39,45].

Bias, misclassification, and selective reporting can diminish the study quality. From our 18 studies,
two mentioned selection bias [40,45], where people who were cognitively impaired were less likely
to participate. Five studies [37,39,49–51] mentioned misclassification of personal exposure levels
(exposure misclassification), because the exposures were estimated from residential address, and one
study [44] mentioned outcome misclassification; the measures of the diseases were based on hospital
admission records, with the possibility of misclassification of diagnosis.

Most of the studies do not report a conflict of interest and were funded by a national agency
[26,29,37–39,41–43,45,46,48–51,54]. However, two publications [40,47] did not contain any conflict of
interest statement.

Taken together, the results from existing epidemiological studies suggest that there is a relationship
between PM exposure and cognitive decline.

3.2. Air Pollution and Diabetes (T2DM)

The characteristics of all the epidemiology studies which have assessed the link between PM
exposure and T2DM are summarized in Tables 3 and 4. These mostly comprise cohort studies, except
for five cross-sectional studies [17,58–61]. They were conducted in North America (Canada, n = 2 and
US, n = 6), Europe (UK, n = 1, Switzerland, n = 2, Denmark, n = 1 and Germany, n = 3), and Asia (Korea,
n = 1 and China, n = 2). For the cohort studies, the length of the follow up ranged from 3 to 22 years.

Most studies of environmental exposure (17 out of 18) examined associations with airborne
particulate matter, although 12 studies also considered NOx, or traffic noise and proximity to a major
road, and two studies considered annual mean residential BC concentration. Exposure estimates
were mostly based on air monitors at fixed locations. There was one publication that investigated
occupational exposure to environmental pollution, which was amongst traffic police. This study
estimated exposure from PM monitors at fixed locations in different areas with various intensities of
vehicle traffic [62].

A previous comprehensive meta-analysis of 12 studies, which also reviewed the study of
Brook et al. [63] has shown that ambient PM and exposure to air pollutants, such as NO2 and
O3, were significantly associated with an increased risk of diabetes mortality [64]. Therefore,
the findings from this meta-analysis add evidence for the adverse effect of particulate air pollution on
diabetes- associated mortality and although diabetes is a risk factor for many other conditions (e.g.,
cardiovascular disease), this meta-analysis shows what it is already established; that higher levels of
air pollutants, such as PM10, PM2.5, and NO2 are associated with T2DM.

There are two studies ([63,65]) in our review that examined diabetes mortality. Other studies
investigated this association by assessing the incidence of T2DM from hospital admissions [66],
or hospital diagnosis [67], or self-reports [20]. Diabetes status can be measured directly from
biomarkers [68], such as fasting blood glucose (FBG), but also because insulin resistance (IR) and
inflammation are important hallmarks of T2DM, biomarkers of inflammation, such as C-reactive
protein (CRP), are also relevant. Most of the studies in this review used questionnaires and interviews,
that collected information on treatment, blood glucose measurements, insulin, leptin, HbA1c, and CRP
levels [69–72], but some studies carried out only blood tests of the above biomarkers [17,58,73], or used
both methods [24,59,74].

In five studies [24,59,69,71,74] the outcome was measured using both questionnaires, completed
by the participants and blood samples taken by them. There were two studies [66,67] based on hospital
admission and diagnosis, four studies [32,58,61,73] that relied on samples taken by health specialists
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and one [60] based on a physical examination. Finally, there were three studies [20,70,72] that only
used questionnaires, which may result in misclassification because of the use of self-reported diagnosis,
and could not identify undiagnosed cases of diabetes.

In terms of study sample size and follow-up, Brook et al. [63] had the largest sample size
(2.1 million adults) and a 10-year follow-up period. Pope and colleagues [65] also had a very large
sample size (669,046 adults) and a 22-year follow-up. Puett and co-workers [72] had 74,412 participants
and Chen et al. [66] had 62,012 participants, both with a 14-year follow-up. Five studies [24,32,67–72,74]
reanalysed data from existing cohorts. Studies of Eze et al., Liu et al., Wolf et al., and O’Donovan
et al. [17,58–61] are all cross-sectional studies and Liu et al. [58] and both O’Donovan et al. [61] and
Wolf et al. [59] had one and three years of follow-up, respectively. All of the studies found statistically
significant results, as mentioned above, except for Chen et al. [73], who found that exposure to PM10

was associated with an increased level of FBG in the univariable analysis, whereas the results in the
multipollutant model were not significant and Puett et al. who found no strong evidence between PM
and T2DM.

It is known that an unhealthy diet can lead to obesity, one of the biggest risk factors of diabetes.
Moreover, some studies indicate that the effects of PM and NO2 are more noticeable in females [75].
Almost all the studies adjusted for BMI, sex, age, education, and physical activity. Some also adjusted
for family history of diabetes [20,32]; or genes and genetic predisposition already known as risk factors
of T2DM. It is hypothesised from animal studies and limited human subjects’ studies, that air pollutants
can decrease the normal synthesis of insulin [62], therefore in studies investigating environmental
pollution it is important to adjust for occupational exposure to vapours, gases, dusts, and fumes,
that are similar to urban air pollutants; only two studies did so [60,70]. Moreover, exposure to physical
agents, such as noise -both indoor and outdoor-, can also modify the levels of the insulin, therefore
adjustment for noise could be important, as Eze and colleagues [17] did.

All the studies mentioned limitations that can downgrade study quality, particularly information
bias. Ten studies mentioned exposure misclassification [32,58–60,63,67–69,71,74] and two outcome
misclassification [70,72], due to self-reporting of diagnosis. Two studies [63,65] measured the disease
outcome from a mortality database and death certificates, possibly underestimating the true prevalence
of T2DM. Underestimation of the effect, because of a selected sample of study subjects, was
mentioned in two studies [24,65]. All the studies declared no conflict of interest and were funded by
national agencies.

Taken together the results from existing epidemiological studies suggest that there is a relationship
between PM exposure and T2DM.
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Table 1. Details of studies investigating the relationship between exposure to air pollution and cognitive function.

No. Author’s Name
& Year

Study
Design/Type of

Study

Population
Participated Location

Study Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef (95%
CI) Associations of Air

Pollution with the
Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

1
Ailshire and
Clarke, 2014
[47]

Cross-sectional
from the ‘Changing
Lives Study’

N = 780
55 years or older
Men + women
White + black
U.S.
15 years

PM2.5 measured
by air monitoring
within 60 km of
residence (data
from EPA AQS)

Working memory
and orientation
(Serial 3 s
subtraction test
SPMSQ
questionnaire)

Age, sex, race, education,
income, employment
status, residential tenure,
and marital status

10 µg/m3 increase in PM2.5
associated with increased
incidence rate: OR: 1.53
(1.02, 2.30).

Adverse effect of
exposure to PM2.5 on
cognitive function
among older adults

Neighbourhood based
measure of exposure may not
fully capture individual
exposure. Screening test
lacks word recall tasks to
assess memory. Lost to
follow up from 1986 and
only a selective group
survived to respond. Unable
to determine effects of
long-term exposure. Unable
to control other confounders
such as diet.

2
Chen &
Schwartz, 2008
[43]

Cross sectional (3rd
National Health
and Nutrition
Examination
Survey)

N = 1764
20–59 years
U.S.
4 years

Annual home
PM10 and O3
assigned to
participants via
geocoding (data
obtained from US
EPA AIRS)

Three
neurobehavioral
tests (SRTT, SDST,
SDLT)

Age, sex, ethnicity, SES
(education and
employment status, annual
family income,
poverty-income ratio,
family size), lifestyle
(smoking, alcohol
consumption, physical
activity), urban/rural
residence, cardiovascular
risk factors (BMI,
hypertension, diabetes
mellitus, HDL). Indoor air
pollutant sources.

Increase in PM10 by
10-µg/m3 associated with:
SRTT (β: −0.36, −2.58 to
1.85);
SDST (β: 0.00, −0.04 to
0.05);
SDLT trials to criterion (β:
0.09, 0.00 to 0.17);
SDLT total (β: 0.12, −0.07
to 0.31)

Adverse effects of
ambient air pollutants
on CNS in
adults/statistically
significant only O3 with
SDST and SDLT, all the
other no significant

Cross-sectional study design.
The one-time residential
information does not allow
to characterize life-course
cumulative exposure. No
personal air pollution
exposure monitoring data.
Possibility that the observed
effect of ozone may represent
other photoreactive
pollutants. Possibility of
other confounders.

3 Chen et al., 2015
[38] Prospective study

N = 1403
Women (65–80)
U.S.
10 years

Spatiotemporal
model
(BME)-based
estimated PM2.5
concentration

Annual screening
using 3MS
Examination,
CERAD,
tomography scans,
laboratory tests

Age, race, SES, smoking,
alcohol, physical activity,
clinical characteristics,
hypertension, diabetes,
CVD

WM with fine particulate
matter exposures linear
regression coefficients:
−5.52 ± 1.22

PM2.5 exposure may
contribute to WM loss
in older women

One-time assessment of
brain volume. Not
generalized findings because
of sample. Only focus on
PM2.5. Not include genetic
determinants of brain
structure. Only late-life
exposure because of PM2.5.

4 Chen et al., 2017
[46]

Nested case-control
study (National
Health Insurance
Research Dataset)

N = 54,524
≥40 years
Taiwan
14 years

Concentrations
from 76
monitoring
stations across
Taiwan (data from
EPA of Taiwan)

Neurological
examination and
imaging

Age, gender, air pollution
levels, urbanization levels,
comorbid disease
(hypertension, diabetes,
dementia, stroke,
depression, renal disease,
sleep disorder,
alcohol-related disease,
head injury)

PM10 and PD: OR (95% CI)
1.35 (1.12, 1.62)

PM10 significantly
affected the incidence
of PD, but O3, CO, NO,
NOx, NO2 did not

Lack of data on related
biomarkers or risk factors.
Diagnostic bias because of
cases identified by ICD-9-CM
codes. Possible attendance
bias (subsequent diagnosis).
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Table 1. Cont.

No. Author’s Name
& Year

Study
Design/Type of

Study

Population
Participated Location

Study Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef (95%
CI) Associations of Air

Pollution with the
Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

5 Chen et al., 2017
[54]

Population based
cohort study

N = 2,165,268
20–85 years
Ontario, Canada
12 years

Residential
proximity to
major roadways
or high ways
based on postal
code—PM2.5 from
a global
atmospheric
chemistry
transport model
and NO2 from
national land-use
regression model

Dementia and PD
diagnoses from
validated databases

Age, sex, pre-existing
comorbidity (coronary
heart disease, stroke,
congestive heart failure,
diabetes, hypertension,
arrhythmia, traumatic
brain injury), SES,
education, income,
unemployment,
immigration status, urban
residency

Association between major
road and dementia HR
(95% CI)
Less than 50 m: 1.07 (1.06,
1.08)
50–100 m: 1.04 (1.02, 1.05)
101–200 m: 1.02 (1.01, 1.03)
201–300 m: 1.00 (0.99, 1.01)

Living near major
roadways was
associated with
increased dementia
incidence (but not PD
or multiple sclerosis).
NO2 and PM2.5 were
positively associated
with dementia

Did not examine factors such
as noise or additional
pollutants, could not identify
undiagnosed cases
(incomplete diagnosis might
lead to underestimation of
the true effect), no
information on medications
that may influence dementia
risk, lack of information on
individual SES and
behavioural variables, no
personal exposure
assessment (assessment
based on postal-code
address).

6 Jung et al., 2014
[26]

Prospective Cohort
study

N = 95,690
≥65
Taiwan
10 years

Hourly PM10 and
O3 from
monitoring
stations—geographic
info
system—spatial
resolution 100.00
m (from EPA
Taiwan)

From database:
coding was
assigned by
physician (history,
examination, lab,
CT, MRI)

Age, sex, income, diabetes,
hypertension, myocardial
infarction, stroke, PAD,
asthma, COPD

HRadj (95% CI)
corresponding to 4.34
µg/m3 increase in PM2.5
exposure:
Change CO 2.17 (2.03, 2.33),
Change NO2 2.23 (2.07,
2.41),
Change O3 2.43 (2.30, 2.57),
Change SO2 2.34 (2.17,
2.52)

Higher concentrations
of O3 were associated
with increased risk of
newly diagnosed AD
and long-term exposure
to O3 and PM2.5 are
associated with
increased risk of AD

Not able to adjust for
confounders such as genetic
information, BMI, smoking,
metals, occupational
exposure. Did not evaluate
subtypes of AD. Unable to
investigate how pollutants
influenced AD (no info on
compositions and source of
PM2.5).

7 Kioumourtzoglou
et al., 2016 [44]

Time series analyses
from Medicare
open cohort

N = 9,817,806
Men + women
More than 65 years
U.S. (50 cities)
10 years

Average of all
monitors for
estimation of
annual PM2.5
(data from US
EPA AQS)

Admission records
for PD, AD, and
dementia by using
codes from the
ICD-9-CM

Sex, age, race, ZIP code of
residence, median income,
diabetes, COPD, CHF, MI

For PD: HR: 1.08 (1.04,
1.12), for AD: HR:1.15 (1.11,
1.19) and for dementia:
HR:1.08 (1.05, 1.11)

Significant positive
associations between
long-term PM2.5 and
PD, AD and
dementia/air pollution
likely accelerates the
progression of
neurodegeneration

Outcome misclassification
(hospital admissions might
be recorded with
misclassifications). Mobility
issues due to average age.
Some subjects could have
been hospitalized before
turning 65.

8 Kirrane et al.,
2015 [29]

Cohort
(Agricultural
Health Study)

N = 82,935
North Carolina& Iowa
Min 8 years–max 17
years.

Annual averages
of pollutant
concentrations by
using geocoded
addresses 12 × 12
km
grids/hierarchical
Bayesian model

Self-reports of PD
Age, sex, state, race,
education, smoking status,
pesticide use

O3 and PD in NC: OR (95%
CI) 1.39 (0.98, 1.98)
PM2.5 and PD in NC: 1.34
(0.93, 1.93)

Positive associations
between PD and O3
and PM2.5
concentrations in NC.
In IA, associations were
generally weak

Possibility of residual
confounding by pesticide
exposure or confounding by
other occupational risk
factors for PD that are
different in applicators and
spouses.
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Table 1. Cont.

No. Author’s Name
& Year
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Design/Type of

Study

Population
Participated Location

Study Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef (95%
CI) Associations of Air

Pollution with the
Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

9 Liu et al., 2016
[51]

Nested case-control
analysis based on
National Institutes
of Health-American
Association of
Retired Persons
Diet and Healthy
Study prospective
cohort

N = 4869
(case: 1556 and control:
3313)
U.S.
12 years

Used residential
locations to
estimate outdoor
pollutant
concentrations/daily
PM10, PM2.5 and
hourly NO2 were
obtained from
U.S.
EPA/regionalized
national universal
kriging& land use
regression model

Medical records
and diagnostic
questionnaire
obtained by
physician/neurologist
and then reviewed
by research team

Age, sex, race, smoking
status, caffeine intake,
physical activity, education,
residential setting

PM2.5 and risk of PD: OR
(95% CI) 1.02(0.94, 1.10)
PM10 and risk of PD: 1.02
(0.97, 1.09)
NO2 and PD: 1.01 (0.93,
1.10)

No statistically
significant associations
between exposures to
ambient PM10, PM2.5,
or NO2 and PD
risk/although they
found a higher risk of
PD among both women
and never smokers
with exposures to high
levels of PM2.5 and
PM10

Possible misclassification.
No info on concentrations in
microenvironments.
Pollutant estimates only in
adulthood and not earlier.
Only collected residential
address (pollutants in
workplace were not
available). PD diagnosis
asked only once at the
follow-up survey. PD case
identification based on
self-reports.

10 Palacios et al.,
2014 [50] Prospective cohort

N = 115,767
Women
U.S.
18 years (average
follow up 16.6 years)

Spatio-temporal
models/estimation
of PM10 and
PM2.5 (data from
EPA’s
AQS-IMPROVE)

Medical records
and questionnaire
from neurologist
and then reviewed
by movement
disorder specialist

Age, region, pack years
smoking, smoking status,
population density, caffeine
consumption, use of
ibuprofen, income

PM10 and risk of PD: RR
(95% CI)
1.03 (0.78, 1.37)
PM2.5 and risk of PD
1.10 (0.83, 1.45)

No statistically
significant associations
between air pollution
and PD risk

Information on air pollution
from 1988 onwards (only
adulthood exposure). No
personal air pollution
measurements (indirect
measures of air pollution).
Misclassification of
biologically relevant levels of
individual exposure.
Potential occupational
exposure (only info on
residential address).

11 Palacios et al.,
2017 [49] Prospective cohort

N = 50,352
40–75 years old
Male
U.S.
30 years

Monthly average
PM10 and PM2.5
Questionnaires
using
spatiotemporal
models (data
from EPA’s AQS)

Participant reports
PD and then contact
the neurologist who
completes a
questionnaire to
confirm diagnosis
and send medical
record which were
reviewed by a
movement disorder
specialist

Age, time period, smoking,
region, population density

PM10 and PD: HRadj: 0.85
(0.63, 1.15)
PM2.5: 0.97 (0.72, 1.32)
PM2.5–10: 0.88 (0.64, 1.22)

No statistically
significant association
between PM10, PM2.5,
PM2.5–10, and PD risk

No personal air pollution
measurements,
misclassification of
biologically relevant levels of
individual exposures, not
able to account for
occupational exposure to air
pollution or neurotoxins,
study based in U.S. only,
estimate exposure only
during adulthood, not
generalizable results because
of the sample used (highly
educated male US
professionals).
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Table 1. Cont.

No. Author’s Name
& Year
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Design/Type of

Study

Population
Participated Location

Study Period (Average
Duration of
Follow-Up)

Measures of
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Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef (95%
CI) Associations of Air

Pollution with the
Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

12 Power et al.,
2011 [39]

Cohort 12 years
prospective of the
Normative Aging
Study

N = 680
men only 51–97 years
old
Boston Massachusetts
area
12 years

Black carbon from
land use
regression model,
monitoring sites

Global cognitive
functioning MMSE;
digit span
backwards test,
verbal fluency,
constructional
praxis, immediate
recall, delayed
recall, pattern
comparison task
(7 cognitive tests)

Age, education, alcohol
intake, physical activity,
diabetes, dark fish
consumption, computer
experience, first language,
percentage of participant’s
census tract that is
non-white, % of
participant’s census tract
with at least a college
degree, cognitive data from
first cognitive assessment,
part time resident of
greater Boston area,
smoking, BMI

Doubling of black carbon
concentration associated
with increased risk of
having a low MMSE score
(ORadj: 1.3, 1.1–1.6)
Doubling of black carbon
concentration associated
with reduced overall
cognitive test score (−0.054,
−0.103 to−0.006)

Significant association
of higher BC with
greater risk of poor
cognition and worse
general cognitive
performance. (No
association with
PM10)/traffic related
air pollution may have
adverse effect on
cognition in older men

Exposure estimates based on
residential address may
misclassify personal
exposure levels. Inability to
attribute findings to a
particular traffic-related
exposure.

13 Ranft et al., 2009
[40]

Cohort prospective
(SALIA: Study on
the Influence of air
pollution on Lung
function,
Inflammation and
Aging)

N = 402
68–79 years old Female
Germany
20 years

PM10 by
monitoring
stations 8 km grid
and Distance of
address to next
busy road with
10,000 cars per
day monitoring
stations by State
Environment
Agency

Cognitive function
CERAD-Plus;
Stroop test, sniffing
sticks (validated)

Age, education, regular
sporting activities, obesity,
smoking, ETS, indoor air
pollution exposure,
depression, diabetes,
hypertension, cholesterol,
stroke, morbidity

Traffic exposure associated
with CERAD test: β = −3.8
(−7.8, 0.1)
Stroop: β = −5.1 (−8.2,
−2.0)
Sniffing: β = −1.3 (−2.4,
−0.2)
PM exposure associated
with CERAD: 0.4 (0.0, 0.9),
Stroop: −0.0 (−0.4, 0.4),
Sniffing: 0.0 (−0.1, 0.1)

Significant association
of shorter distance to
road with worse
performance on a
general assessment of
cognition and a test of
selective attention. No
association with
PM10/chronic exposure
to traffic-related PM
may be involved in the
development of MCI

Selection bias (due to
increase of AD incidence
after 74 years and disability
to participate). Results are
the consequence of traffic
noise. Only subjects of a
bigger cohort (SALIA) who
were able and willing to
attend follow-up 2007–2008.

14 Schikowski et
al., 2015 [41]

Cross-sectional
(from the SALIA
cohort)

N = 789
Female
Germany
27 years

NO2, NOx, PM2.5,
and PM10
estimated using
land use
regression models.
Daily traffic load
within 100 m of
residential
address

Global cognition
CERAD-plus,
MMSE

Smoking status, ETS
exposure, educational level,
SES, physical activity,
chronic respiratory
diseases, cardiovascular
diseases, body mass index,
emotional state

Increased traffic load
associated with CERAD: β
= (−0.40; −2.16, 1.36) and
MMSE (0.04; −0.18, 0.26)
Increased NO2 associated
with CERAD (−1.10; −2.37,
0.18) and MMSE (0.00;
−0.16, 0.16)
Increased NOx with
CERAD (−1.35; −2.59,
−0.10) and MMSE (−0.04;
−0.19, 0.12)
Increased PM10 with
CERAD (0.32; −0.68, 1.33)
and MMSE (0.07; −0.06,
0.20)
Increased PM2.5 with
CERAD (0.31; −1.11, 1.72)
and MMSE (0.07; −0.10,
0.25)

Markers of air pollution
associated with
cognitive
impairment/air
pollution may affect
only specific areas on
the brain and result in
lower performance in
the subtest of the
CERAD test battery

Only cross-sectional analysis
of air pollution exposure and
cognitive function (even if
applied back-extrapolation
they did not know if pattern
remained the same for the
entire study period). Only
one assessment of cognitive
function at a single time
point.
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Study Period (Average
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OR/RR/HR/β Coef (95%
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Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

15 Tonne et al.,
2014 [37]

Longitudinal cohort
study

N = 2867
66 ± 6 years
London, UK
5 years

Average PM10,
PM2.5; average
exposures from
vehicle exhaust
PM10; PM2.5
measured over 5
years (at 20 × 20
resolution)

Reasoning, short
term memory,
verbal fluency
(Alice Heim 4-I Test,
20-word free recall,
semantic and
phonemic verbal
fluency)

Age, sex, ethnicity, marital
status, educational
achievement,
socioeconomic position,
smoking status, alcohol
use, frequency of fruit and
vegetable consumption,
physical activity, systolic
and diastolic blood
pressure, serum cholesterol
levels, prevalence of stroke,
coronary heart disease and
diabetes, frequency of
depressive symptoms, year
of screening

Higher PM2.5 of 1.1 µg/m3

was associated with a 0.03
(95% CI 0.002–0.06) 5-year
decline in standardized
memory score and a 0.04
(−0.07–0.01) decline when
restricted to participants
remaining in London
between study waves

Association between
PM and reasoning and
decline over time in
memory, no conclusive
findings for verbal
fluency

Exposure misclassification
(exposure was based only at
residence (not take into
account workplace etc) and
the role of air conditioning).
No data on traffic noise
exposure (confounder). Only
two cognitive assessments.

16 Tzivian et al.,
2016 [45]

Cross-sectional
(based on Heihz
Nixdorf Recall
study)

N = 2050
45–75 years old
German Ruhr Area (3
cities)
5 years

PM was
measured in 20
sites, NOx was
measured at 40
sites over 1
year—noise
exposure
assessment (land
use regression)

Verbal memory,
speed of processing,
verbal fluency,
abstraction (MCI
diagnosed
according to
Petersen/International
working group on
MCI criteria)

Age, sex, SES, alcohol
consumption, smoking
status, ETS, physical
activity, BMI, CHD, T2DM,
APOEε4, depression

PM10 OR (95% CI): 1.11
(0.99, 1.23)
PM2.5: 1.16 (1.05, 1.27)
NOx: 1.10 (0.96, 1.26)
Traffic noise:
Lden: 1.40 (1.03, 1.91)
Lnight: 1.80 (1.07, 3.04)

Long-term exposure to
both air pollution and
road traffic noise was
associated with overall
MCI-strongest
associations for PM2.5

Cross-sectional design.
Selection bias (cognitively
impaired people less likely to
participate). Underreporting
(questionnaires). Possible
exposure misclassification
and residual confounding
between air pollution and
noise.

17 Weuve et al.,
2012 [42]

Prospective
(Nurses’ Health
Study Cognitive
Cohort)

N = 19 409
Age 70–81 years
Female
U.S.
7–13 years

Quintiles of PM2.5
and PM2.5–10 in
preceding month,
year, 2 years, 5
years, and since
1988 (monitor
data obtained
from USEPA
AQS)

Cognitive
functioning TICS,
East Boston
Memory Test
(immediate and
delayed paragraph
recall)

Age, education, husband’s
education, physical activity,
smoking status, alcohol
consumption, history of
diabetes, coronary diseases,
high blood pressure,
emphysema

PM2.5 highest vs. lowest
quintile of long-term
exposure associated with
greater 2-year decline in
global cognition (−0.018;
95% CI: −0.034, −0.002)
PM2.5–10 highest vs. lowest
quintile of long-term
exposure associated with
greater 2-year decline in
global cognition (−0.024;
95% CI: −0.040, −0.008)

Higher levels of
exposures to ambient
PM are associated with
worse cognitive decline

Indirect estimates of PM
results due to confounding.

18 Wu et al., 2015
[48] Case-control study

N = 871
≥60 years old
Taiwan
3 years

Estimation of
spatiotemporal
distribution of
PM10 (and ozone)
concentration
(data from EPA
Taiwan)

Mini mental state
examination
(Diagnostic and
Statistical Manual
of Mental
Disorders)

For AD: age, gender, APOE
ε4 status, PM10 level, ozone
level, education years, BMI

Association of PM10 and
risk of dementia: OR (95%
CI) 4.17 (2.31, 7.54) p <
0.0001

Elevated long-term
PM10 level was
significantly associated
with an increased risk
of AD and VaD in the
elderly

Explored only two air
pollutants. Assumption that
participants tended to live in
the same places after
retirement. Survival bias
(people who did not survive
for 12 to 14 years).

EPA AQS = Environmental Protection Agency’s Air Quality System, SPMSQ = Short Portable Mental Status Questionnaire, AIRS = Aerometric Information Retrieval System, SRTT = Simple
Reaction Time Test, SDST = Symbol-Digit Substitution Test, SDLT = Serial-Digit Learning Test, CERAD = Consortium to Establish a Registry for Alzheimer’s Disease, MMSE = Mini Mental
State Examination, ETS = Environmental Tobacco Smoke, MCI = Mild Cognitive Impairment, CHD = Coronary Heart Disease, USEPA = US Environmental Protection Agency.
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Table 2. Summaries of exposure and dementia-related outcome considered.

No. Author’s Name and Year
Exposure/Pollutants Outcomes

PM10 PM2.5 NOx/NO2
BC and Others

(such as O3, CO, SO2) Cognitive Decline MCI A.D. P.D. Dementia Neurodegeneration

1 Ailshire and Clarke, 2014 [47] × ×
2 Chen & Schwartz, 2008 [43] × × ×
3 Chen et al., 2015 [38] × × (WM loss)
4 Chen et al., 2017 [46] × × × ×
5 Chen et al., 2017 [54] × × × ×
6 Jung et al., 2014 [26] × × ×
7 Kioumourtzoglou et al., 2016 [44] × × × ×
8 Kirrane et al., 2015 [29] × × ×
9 Liu et al., 2016 [51] × × ×
10 Palacios et al., 2014 [50] × × ×
11 Palacios et al., 2017 [49] × × ×
12 Power et al., 2011 [39] x ×
13 Ranft et al., 2009 [40] × × ×
14 Schikowski et al., 2015 [41] × × × ×
15 Tonne et al., 2014 [37] × × ×
16 Tzivian et al., 2016 [45] × × × × ×
17 Weuve et al., 2012 [42] × × ×
18 Wu et al., 2015 [48] × ×
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Table 3. Details of studies investigating the relationship between exposure to air pollution and diabetes mellitus.

No. Author’s Name
& Year

Study
Design/Type of

Study

Location/Population
Participated Study

Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef
(95%CI) Associations of
Air Pollution with the

Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

1 Brook et al.,
2013 [63] Prospective cohort

N = 2.1 million adults
Canada
10 years

Average
concentrations of
PM2.5 from
satellite data with
a spatial
resolution of 10 ×
10 km

Diabetes mortality
from Canadian
Mortality Database

Sex, age, any aboriginal
ancestry, marital status,
education level,
employment status,
occupation classification,
income

HR (95% CI) stratified by
age & sex: 1.10 (1.03, 1.18)
Measured at individual
level: 1.30 (1.21, 1.39)
Including community size:
1.51 (1.39, 1.64) Other
contextual variables: 1.49
(1.37, 1.62)

PM2.5 was significantly
associated with
diabetes mortality

Cross-coding and
misclassification because
underlying cause of death
may be difficult to establish.
Underestimation of true
prevalence of diabetes
because of use of death
certificates. Possibility of
confounding by regional
differences in coding.
Diabetes-related deaths were
not capture in this study.
Exposure misclassification.

2 Chen et al., 2013
[66]

Population-based
cohort

N = 62,012
≥equal to 35 years
(mean age: 54.9)
Ontario, Canada
14 years max (mean
follow up: 8 ± 3.2
years)

Satellite-based
estimates of
surface
concentrations of
PM2.5 (NASA”
satellite) at a
resolution of
approximately 10
× 10 km

Enter Diabetes
database if at least
one hospital
admission with
diabetes diagnosis
or 2 or more
physicians claims
for diabetes (2 year
period)

Marital status,
race/ethnicity, education,
household income, BMI,
smoking status, alcohol
consumption, daily
consumption of fruits and
vegetables, physical
activity, urban/rural
residence, hypertension,
area-level unemployment,
COPD, heart failure, acute
myocardial infarction,
asthma

For a 10 µg/m3 increase in
PM2.5 HRadj (95% CI): 1.11
(1.02, 1.21)

Long-term exposure to
PM2.5 was associated
with an increased risk
of incidence diabetes
after controlling for
various individual and
neighbourhood
covariates

Not differentiate between
type 1 and 2 diabetes. Could
not identify undiagnosed
cases of diabetes in cohort.
Unable to estimate
associations at finer spatial
scale. No info on daily
activity. Do not consider the
mixture of air pollutants. No
family history of diabetes or
occupational exposure.

3 Chen et al., 2016
[73]

Prospective
population-based
cohort (Kailuan
cohort)

N = 27,685
(18 to 90 years
Mean of 47 years)
Tangshan City, China
5 years

PM10 and NO2
obtained from
Tangshan
Environmental
Monitoring
Centre

Fasting blood
samples were
assayed for
concentrations of
glucose etc. by
specialist

Age, sex, BMI, drinking
status, smoking status,
annual family income,
education, BP, history of
diabetes and hypertension
and stroke, exercise activity,
marital status, work type,
seasonality

Univariate PM10 p value<
0.001
Multipollutant model (SO2
+ NO2 + PM10) PM10
−0.047 (−0.11, 0.01) p
value 0.094

Exposure to PM10 (and
NO2 and SO2) was
associated with an
increased level of
FBG/univariate
analysis significant
results, whereas
multipollutant model
was not significant

Ozone and PM10 not
assessed. Used fixed
monitoring data rather than
personal air pollution
exposure. Sex distribution
not balanced.

4 Chen et al., 2016
[69] Cohort

N = 1023
(17.9–65.6 years Mean
age 34.5)
Mexican American
women
Los Angeles, California,
U.S.
7 years

PM2.5 and NO2
data collected
spatial
interpolation of
data from air
quality monitors
(FRM)/ambient
info from U.S.
Environmental
Protection
Agency’s Air
Quality System
data max
interpolation
radius of 50 km

DXA and oral and
intravenous glucose
tolerance test
(FSIGT) and
completed dietary
and physical
activity
questionnaires

SES, income, poverty rate,
unemployment rate,
education, physical activity,
and dietary intakes

Between PM2.5 and fasting
glucose: β(p): 0.08 (<0.001)
HOMA-IR: 5.81 (0.016)

Higher annual average
PM2.5 exposure was
significantly associated
with higher fasting
glucose, HOMA-IR,
and lower insulin
resistance

Limitation on
generalizability of our results
(only overweight Mexican
American). Nondifferential
misclassification (personal
air pollution exposure levels
were not monitored).
Individual-level info on SES
was not available. No info on
covariates of interest such as
sleep, noise, smoking, and
indoor sources of air
pollution.
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Table 3. Cont.

No. Author’s Name
& Year

Study
Design/Type of

Study

Location/Population
Participated Study

Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef
(95%CI) Associations of
Air Pollution with the

Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

5 Coogan et al.,
2012 [20]

Prospective
Cohort (Black
Women’s Health
Study)

N = 4204
(21–69 years)
Women
Los Angeles, U.S.
10 years

PM2.5 and
NOx-Participants’
residential
address with land
use regression
models and
interpolation
from monitoring
station
measurements

A self-report of
doctor diagnosed
DM (then
physicians
provided data from
their medical
records)

Age, height, weight,
smoking and alcohol
consumption, household
income, family size,
education, neighbourhood
SES, physical exercise

The IRRs for diabetes
mellitus were 1.63 (95% CI,
0.78, 3.44) and 1.25 (95% CI,
1.07, 1.46)

Exposure to air
pollutants may increase
the risk of T2DM

Not feasible to identify
undiagnosed cases of
diabetes in the cohort.
Pollutant exposures were
assessed for only 1 year and
assigned to all years of
follow-up. Only residential
address (not work address).

6 Donovan et al.,
2017 [61]

Cross-sectional
(CHAMPIONS
study)

N = 10,443
(40–75 white European
25–75 other)
UK
3 years

1 × 1 km grids of
pollutant
concentrations
from DEFRA

Oral glucose
tolerance test based
on WHO 2011
criteria

Age, sex, smoking habit,
urban or rural location,
area social deprivation
score, ethnicity, cholesterol,
physical activity,
neighbourhood green
space

OR for T2DM was 1.10
(0.92, 1.32) after adjustment
for lifestyle factors and 0.91
(0.72, 1.16) after further
adjustment for
neighbourhood green
space

PM and NO2 were
associated with T2DM
in unadjusted models,
no associations after
certain adjustments

Causal relationships cannot
be inferred because of study
design. Exposure to air
pollution based on
residential location (may not
reflect actual exposure).
Associations not adjusted for
confounders such as noise.
Possibility of
over-adjustment, bias due to
missing data.

7 Eze et al., 2014
[17]

Cross-sectional of
the cohort
(SAPALDIA)

N = 6392
29–73 years
Switzerland
11 years

PM10 and NO2
Validated
dispersion models
of 200 × 200 m
resolution/Annual
trends at fixed
monitoring sites
and participant
residential
histories were
used to estimate
residential levels

Health
examinations
(computer-assisted
interviews, lung
function, allergy
testing), blood
samples taken

Age, sex, BMI, education,
neighbourhood SES,
physical activity, smoking,
alcohol, occupational
exposure, raw vegetables
consumption,
co-morbidities (COPD),
road traffic noise exposure

Fully adjusted OR for
prevalent diabetes was 1.40
(95% CI: 1.17, 1.67)
Unadjusted: 1.46 (1.20,
1.77)

Long-term exposure to
PM10 and NO2 were
positively associated
with prevalent diabetes
mellitus

The inclusion of all cases of
self-reported, physician
diagnosed diabetes
irrespective of the time of
diagnosis. Potential bias due
to differential
non-participation.

8 Eze et al., 2015
[60]

Cross-sectional
(SAPALDIA)

N = 3769
29–73 years
Switzerland
10 years

Estimates of PM10
and NO2
dispersion
models (200 ×
200 m)/land use
regression

Physical
examination

Sex, age, smoking status,
physical activity, SES,
occupational status of
household head, alcohol
intake, educational level,
consumption of raw
vegetables, fruits,
occupational exposures to
vapours/dust/fumes

Association between PM10
and MetS:
OR (95% CI):
1.64 (1.35, 1.98)
1.58 (1.29, 1.95)
1.72 (1.46, 2.02)
(3 different models)

Strongest association
with MetS and PM10
(than NO2)/ positive
associations between
markers of long-term
AP exposure and MetS

Cross-sectional design. No
estimates of indoor or
occupational air pollution for
our participants. Physical
activity not objectively
measured.
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Table 3. Cont.

No. Author’s Name
& Year

Study
Design/Type of

Study

Location/Population
Participated Study

Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef
(95%CI) Associations of
Air Pollution with the

Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

9 Hansen et al.,
2016 [67]

Cohort (Danish
Nurse Cohort)

N = 28,731
44–95 years
Female
Denmark
20 years (mean follow
up 15.3 years)

PM2.5, PM10, NO2
and NOx
concentrations air
pollution
dispersion
modelling system

Hospital
diagnosis-5 blood
glucose
measurements
within a
year—second
purchase of insulin
or oral anti-diabetic
drugs

Age, BMI, neighbourhood
SES, physical activity,
smoking, alcohol,
consumption of fruit and
vegetables, employment
status, marital status, MI,
hypertension

HR for PM2.5 and diabetes
1.14 (1.04, 1.24)
1.11 (1.02, 1.22)
1.11 (1.01, 1.22)
(3 different models)

- Long-term exposure
to PM2.5 was associated
with increased risk for
diabetes
- Weak positive
insignificant
associations between
diabetes incidence and
PM10, NO2, NOx

Exposure misclassification.
Lack of info on indoor
exposures-air pollution at
work-commuting
habits-personal activity
patterns. Lack of noise
exposure data. Not
distinguish type 1 from type
2 diabetes.

10 Kim et al., 2012
[71]

Longitudinal study
(Korean Elderly
Environmental
Panel)

N = 560
≥60 years
Seoul, Korea
3 years

PM10 and NO2
were obtained
from ROK
(concentrations
nearest to the
residence of each
subject were used
to estimate
individual
exposures,
average distance
monitor and
residence <1 km)

Medical
examinations,
fasting blood
samples,
questionnaire about
demographics,
lifestyle habits and
medical history
(measure fasting
glucose—hexokinase
method and insulin
levels—double
antibody batch
method and
HOMA)

Age, BMI, sex, cotinine
level, outdoor temperature,
dew point

PM10 and HOMA: 0.14
(−0.003, 0.29)

Positive associations of
PM10, O3, NO2 with
fasting glucose, insulin,
and HOMA indices,
indicating that these
pollutants may affect
the development of DM

Results not generalizable to
younger people. No
measurement of individual
exposure. Exposure
misclassification. No SES
adjustment.

11 Kramer et al.,
2010 [70]

Cohort (SALIA:
Study on the
Influence of Air
Pollution on Lung,
Inflammation and
Aging)

N = 1775
54–55 years old women
Germany
16 years

PM and
NO2-Data from
monitoring
stations (State
Environment
Agency) in an 8
km grid, and
emission
inventories to
assess motor
vehicle exhaust,
land use
regression
models, baseline
investigation to
next major road

Questionnaire
(physician
diagnosis of
diabetes,
antidiabetic
treatment) and
interview

Age, BMI, SES, education,
smoking, workplace
exposure, hypertension

Adjusted HR (95% CI)
Monitoring stations:
PM10 1.16 (0.81, 1.65)
NO2 1.34 (1.02, 1.76)
Emission inventory:
PM 1.15 (1.04, 1.27), NO2
1.15 (1.04, 1.27)
Land-use regression model:
NO2 1.42 (1.16–1.73)

- Traffic-related air
pollution is associated
with increased risk to
develop T2DM
- Stronger associations
with NO2 than
PM-related exposure
assessments

Self-report only. Outcome
misclassification—under
diagnosis (no glucose
measurements). Not
complete follow-up and
higher education
overrepresented.
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Table 3. Cont.

No. Author’s Name
& Year

Study
Design/Type of

Study

Location/Population
Participated Study

Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef
(95%CI) Associations of
Air Pollution with the

Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

12 Liu et al., 2016
[58]

Cross- sectional
study (China
Health and
Retirement
Longitudinal
Study)

N = 11,847
≥45 years
China
1 year

PM2.5-Satellite-based
spatial statistical
model 10 × 10 km
resolution

Blood test HbA1c:
Boronate affinity
HPLC method
Glucose levels:
enzymatic
colorimetric
method

Age, sex, BMI, educational
status, location of
residence, smoking status,
drinking, indoor air
pollution, ambient O3

PRadj (95% CI) of T2DM
associated with PM2.5:
1.14 (1.08, 1.20)
Fasting glucose: 0.26 (0.20,
0.32)
HbA1c:
0.08 (0.06, 0.10)

Long-term exposure to
PM2.5 was positively
associated with
significant increases in
diabetes prevalence,
fasting glucose, and
HbA1c levels

Not completely exclude
exposure measurement
errors cause spatial
resolution of PM2.5 was still
not very high. Did not have
long-term PM2.5
measurements before survey
for several years. Failed to
have info about how long
they had T2DM. Unable to
control physical activity
confounding. Not able to
evaluate medication as
possible effect modifier.
Uncertainty to exposure
assessment because of
change in address.

13 Park et al., 2015
[32]

Prospective Cohort
(Multi-Ethnic Study
of Atherosclerosis)

N = 5135
45–84 years
U.S.
12 years max (median 9
years follow-up)

PM2.5 and NOx
concentrations
hierarchical
spatiotemporal
model (US
Environmental
Protection
Agency’s Air
Quality System)

Fasting serum
glucose levels
measurements

Age, sex, race, family
history of DM, educational
level, smoking, alcohol
consumption, physical
activity, NSES index, BMI,
site

PM2.5 and DM: ORadj (95%
CI): 1.09 (1.0, 1.1)

Long-term exposures to
PM2.5 and nitrogen
oxides estimated as the
annual averages were
significantly associated
with prevalent DM at
baseline (not incidence)

Exposure measures were
based on annual averages
from year 2000 and assumed
that the exposures were time
constant.

14 Pope et al., 2015
[65] Cohort

N = 66,046
U.S.
22 years

PM2.5-Land use
regression and
BME
interpolation
model

Deaths linked to
diabetes
death/certificates

BMI, smoking habits,
occupational exposures,
marital status, education,
alcohol

Per 10 µg/m3 increment in
PM2.5 and diabetes
mellitus:
HR (95% CI):
1.13 (1.02, 1.26)

PM2.5 is associated
with diabetes mellitus
mortality

Not random sample
(included friends and family
members). Underestimation
of the effect. Reduce
precision of control for risk
factors. Use of
cause-of-death info.

15 Puett et al., 2011
[72]

Two prospective
cohorts (Nurses’
Health Study &
Health
Professionals
Follow-up Study)

74,412 women and
15,048 men
U.S.
14 years

PM
questionnaires to
geocoded address
and
spatiotemporal
models
developed/using
monitoring data
(from US EPA
AQS, VIEWS,
IMROVE,
CASTNet)

Reported diagnosis
of DM on
questionnaire

Age, season, calendar year,
state of residence,
time-varying cigarette
smoking, hypertension,
BMI, alcohol intake,
physical activity, diet

HR (95% CI): 1.03 (0.96,
1.10) for PM2.5, 1.04 (0.99,
1.09) for PM10, 1.04 (0.99,
1.09) for PM10–2.5

No strong evidence for
an association between
exposure to PM2.5,
PM10, or PM 10–2.5 in
the 12 months before
diagnosis and T2DM
incidence

Misclassification because of
self-reported diagnosis.
Meta-analyses and combined
analyses were dominated by
the NHS because of number
of participants. Need of more
acute exposures and
exposures during childhood.
No generalizability of results
(narrow range of SES).
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Table 3. Cont.

No. Author’s Name
& Year

Study
Design/Type of

Study

Location/Population
Participated Study

Period (Average
Duration of
Follow-Up)

Measures of
Exposure

Measures of
Outcome/Disease

Confounding
Factors/Adjusted for:

OR/RR/HR/β Coef
(95%CI) Associations of
Air Pollution with the

Disease

Summary of
Findings/Conclusions

Potential Bias (Limitations
of Study)

16 Wang et al.,
2014 [74]

Prospective cohort
(MOBILIZE Boston
Study)

N = 765
≥65 years mean age:
78.1 Boston, U.S.
1 year

PM2.5-ArcGIS
spatial-temporal
land-use
regression model
Euclidean
distance from
residence to
nearest major
roadway

Interview/clinic
examination (blood
samples)

Age, sex, race, season,
physical activity, alcohol
consumption, smoking,
household income,
education, neighbourhood
SES, BMI, diabetes,
hypertension,
hyperlipidaemia

Fully adjusted model: 0.12
(0.03, 0.22) leptin levels
associated with increase in
BC

Evidence that leptin
was associated with
annual mean
residential BC, but not
residential distance to
major road/long-term
exposure to at least
some aspects of traffic
pollution may
adversely impact
cardiometabolic health

Measured leptin in
non-fasting serum samples
(do not know when
participants last ate),
measure leptin not with
conventional ELISA. No info
about residential history
prior to enrolment. Only one
leptin measurement.
Exposure misclassification or
residual confounding (no
info about indoor home or
combustion-derived
pollution). No generalizable
results.

17 Weinmayr et al.,
2015 [24]

Cohort (Heinz
Nixdorf Recall
Study)

N = 3607
45–75 years old
Germany
Mean follow-up 5.1
years

PM10 and PM2.5
chemistry
transport model
(EURAD-CTM)
on a spatial
resolution of 1
km2 grid cells

Questionnaire, face
to face interviews,
clinical and lab
tests, clinical
examination,
glucose
measurements

Sex, age, BMI, smoking
status, physical activity,
area-level and
individual-level SES, and
city

Association of total and
traffic-specific pollutants
and diabetes incidence:
RR (95% CI)
Total PM10: 1.05 (1.00, 1.10)
Total PM2.5: 1.03 (0.95, 1.12)
Traffic PM10: 1.36 (0.98,
1.89)
Traffic PM2.5: 1.36 (0.97,
1.89)

Possible effect of total
PM on type 2 diabetes
risk/clear effect for
living near a busy
road/long-term
exposure to total PM
increases type 2
diabetes risk in the
general population

The availability of only
modelled values. Could not
account for the mobility of
study participants.
Underestimation of real risk
if air pollution higher.

18 Wolf et al., 2017
[59]

Cross-sectional
(KORA:
Cooperative Health
Research in the
Region Augsburg)

N = 2944
mean age: 56.2
Germany
3 years

PM10, PM2.5,
NO2, and NOx
monitoring sites
land use
regression

HOMA-IR, glucose,
insulin, HbA1c,
leptin, C-reactive
protein from fasting
samples/interview,
questionnaires

Sex, age, BMI, smoking
status, physical activity,
waist-to-hip ratio, month of
blood withdrawal, SES, per
capita income, years of
education, occupational
status, alcohol intake

7.9 µg/m3 increment in
PM10 was associated with
higher HOMA-IR change
(95% CI) 0.16 (0.04, 0.29)
and insulin 0.15 (0.36, 0.27)

Positive associations
between PM10, PM2.5,
NO2, and NOx and
HOMA-IR and insulin
levels/association
between traffic-related
air pollution and
biomarkers related to
IR, subclinical
inflammation and
adipokines in the
general population

One-time measurements
because of cross-sectional
study design. Not possible to
infer causation (biomarkers
determined up to 3 years
before air pollution
measurements). Exposure
misclassification.

Details of a study investigating the relationship between occupational exposure to air pollution and diabetes mellitus

19 De Sio et al.,
2005 [62] Case-control

N = 488
Rome, Italy
2 months (March–April
2001)

PM10 in fixed
stations located in
districts with
different
intensities of
vehicle traffic

Sample of venous
blood/measure the
insulin
concentration using
radio-immunoassay

Early risk factor for
diabetes or for reduced
glucose
tolerance→cumulative
effect of urban pollutants

In male traffic police mean
plasma insulin levels were
significantly lower
compared with controls (p
= 0.000).
In female were also
significantly lower (p =
0.002).

Plasma insulin level
was altered in traffic
police who are exposed
to chemical and
physical stressors

Not mentioned.

FRM = Federal Reference Method, BME = Bayesian Maximum Entropy, U.S.EPA = U.S. Environmental Protection Agency, AQS = Air Quality System, VIEWS = Visibility Information
Exchange Web System, IMPROVE = Interagency Monitoring of Protected Visual Environments, CASTNet = Clean Air Status and Trends networks, NSES = neighbourhood socioeconomic
status, EURAD-CTM = European Air Pollution Dispersion and Chemistry Transport Model.
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Table 4. Summaries of exposure considered in diabetes studies.

No. Author’s Name and Year
Exposure/Pollutants

PM10 PM2.5 NOx/NO2 BC and Others (such as O3, CO, SO2)

1 Brook et al., 2013 [63] ×
2 Chen et al., 2013 [66] ×
3 Chen et al., 2016 [73] × × ×
4 Chen et al., 2016 [69] × × ×
5 Coogan et al., 2012 [20] × × ×
6 De Sio et al., 2005 [62] × ×
7 Donovan et al., 2017 [61] × × ×
8 Eze et al., 2014 [17] × ×
9 Eze et al., 2015 [60] × ×

10 Hansen et al., 2016 [67] × × ×
11 Kim et al., 2012 [71] × × ×
12 Kramer et al., 2010 [70] × × × ×
13 Liu et al., 2016 [58] ×
14 Park et al., 2015 [32] × ×
15 Pope et al., 2015 [65] ×
16 Puett et al., 2011 [72] × ×
17 Wang et al., 2014 [74] ×
18 Weinmayr et al., 2015 [24] × × ×
19 Wolf et al., 2017 [59] × × ×

3.3. Rating the Quality of Evidence According to GRADE

GRADE considers quality, publication bias, consistency, directness, and effect size and we discuss
each in turn. In this system, observational studies start as low-quality evidence, but they can be
rated down in a case of high risk of publication bias. There may be some doubt when the evidence
derives from many small studies and especially if these studies have been commercially funded [76].
The evidence in this review comes from large observational studies and none of the studies was funded
by industry. We have found some studies with statistically significant results and other ‘null studies’
of similar size; there is little evidence of publication bias.

In the GRADE scheme, the quality of evidence decreases when essential differences occur between
the populations studied, or the outcomes measured, particularly if the outcomes are indirectly related
to the disease [77]. For example, in our systematic review, the population of interest in all the 37 studies
was adults, but some studies were conducted in women or men only [38–42,49,50,67–69], which might
influence the generalisability of the reported results, as studies of both sexes do not always examine
risks separately for males and female and as the two genders may have different exposures because of
different occupations for example, or because, as mentioned above, some effects are more noticeable
in women. Also, there is a possibility that the desired outcome may be different from the measured
outcome. The use of surrogate endpoints instead of ‘patient-important outcome of interest’ can be a
source of indirectness [77]. For example, in diabetes-related studies the patient-important outcomes
may be the hospital admission, diabetic symptoms, or complications because of diabetes and the
surrogate outcome measures blood glucose or HbA1c concentration. In our review, there are studies
that assess T2DM by looking at hospital admissions [66,67], or questionnaires [70,72], but there are
also studies that measure the fasting blood glucose and other blood biomarkers [32,58,61,73]. In the
dementia-related studies, the patient-important outcome may be the patient’s function and behaviour,
whereas the surrogate outcomes may be measures of cognitive function. In most of our dementia studies
the measurement of the health outcome was cognitive function not a patient-important outcome.

GRADE also examines the consistency of the evidence; are there conflicting results in groups
between studies, for example do the majority shows associations, do the studies have similar results,
or is there a lack of agreement between studies? Existing evidence from meta-analysis indicates an
association between air pollutants and both T2DM [75] and cognitive decline [78]. The studies that
examined neurodegeneration-related outcomes mostly reported positive associations of particulate air
pollution exposure and only three studies found no association [49,51,79]. We judge there is convincing
evidence for consistency in the association of particulate ambient air pollution, cognitive decline,
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and dementia (AD), although there are conflicting results for an association between air pollution and
PD. More specifically, seven studies indicated associations between fine particulate and traffic related
air pollution and cognitive decline and impairment [37,39–42,45,80], two studies identified association
between air pollution and AD and dementia [48,54], two studies evaluated the association between
air pollution exposure and only PD positively [29,46] and one study used a time-series-like approach
to link particulate matter pollution with both PD, AD, and dementia [44]. Generally, a causal role
of particulate matter can be concluded from many studies and also traffic emissions and living near
busy roads can be a health threat. Increased daily levels of air pollution are related to higher hospital
admissions and adverse health conditions [81,82].

Exposure to air pollution has already been suggested as a contributing factor to the increasing
incidence and prevalence of diabetes [83,84] and all of the diabetes-related studies but one [72], reported
positive associations between particulate air pollution exposure and diabetes-related outcomes.

It is also important to look at the effect of all possible confounding factors. In our systematic
review, not all the possible confounders have been accounted for. In some cases, it is hard to exclude
the possibility of social confounders. Moreover, most of the studies do not address indoor sources of
air pollution, which cannot be calculated using geospatial models of air pollutants, therefore personal
monitoring should take place at future studies to give us a clearer picture of the impact of different
sources of pollutants. Another potential confounding variable that should be better explored in future
studies is noise pollution, because of the possible association with memory loss.

Effect size, according to the GRADE approach, is based on the reported odds ratio, or relative risk
or hazard ratio (OR/RR/HR) for comparison. However, it is somewhat unreliable to assess the odds
ratios, due to different methodological approaches in the studies, but for most studies the observed
risks were all modestly increased. There are no studies with an RR or OR of 2 or more, although most
of them were statistically significant (except for [49–51]).

The GRADE evidence is discussed further in the following section.

4. Discussion

T2DM and dementia are common multi-causal conditions. An unhealthy diet, obesity, stress,
culture, physical inactivity, and genetic predisposition may lead to cardio-metabolic diseases, such as
T2DM [25]. Furthermore, both environmental and genetic factors play a crucial role in the aetiology of
neurodegenerative diseases (e.g., AD) [26], depression, delirium, stroke, traumatic brain injury, ageing,
and family history [85]. There are some familial cases (that are associated with genetic abnormalities)
and some environmental factors have been identified as risk factors for neurological disease (e.g.,
pesticide exposure), but most of these cases are idiopathic [86].

Epidemiological evidence suggests that long term exposure to particulate air pollution is a risk factor
for T2DM and dementia. The mechanism underlying this is currently unknown, but it may involve the
translocation of inhaled particles to the target site (e.g., CNS), or the release of (inflammatory) mediators
from the lung which impact on the function of extrapulmonary organs [10,30,31] (Figure 2). In the
lung, it is established that PM stimulates inflammatory and oxidative responses, which drive its toxicity
(reviewed in [10,87,88]). Accordingly, both these processes are likely to be important in mediating the
detrimental outcomes of PM in other organs.

More specifically, inflammation and oxidative stress are implicated in the pathogenesis of
neurodegenerative diseases and T2DM. Therefore, exposure to PM may contribute to the initiation of
disease pathogenesis or accelerate disease development potentiating existing responses.
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Figure 2. Following inhalation, particles may stimulate local or systemic effects. The hypothesised 
mechanism of toxicity of inhaled particles to the central nervous system (CNS) is summarized in (A). 
Impacts of inhaled particles on the CNS may emerge due to (i) particle translocation (via neurones or 
blood) to the CNS following inhalation or (ii) the release of systemically acting factors from the lung 
which impact on neurone function. Examples of the clinical impacts of inhaled particles at different 
target sites (lung, extrapulmonary organs, and CNS) are summarised in blue boxes. (B) The cellular 
and molecular events underlying particle toxicity to the lungs have been extensively investigated and 
hypothesised to involve the stimulation of inflammation and oxidative stress. More specifically, it is 
hypothesized that inhaled ultrafine particles interact with pulmonary cells (e.g., epithelial cells, 
alveolar macrophages) to stimulate an increase in intracellular ROS and Ca2+ concentration which 
leads to the expression of pro-inflammatory genes (e.g., cytokines) via the activation of transcription 
factors (such as NFκB). BBB = blood brain barrier. COPD = chronic obstructive pulmonary disease. 

Chronic inflammation has been found to be associated with the development of T2DM in 
humans [89]. Furthermore, a chronic inflammatory response is associated with obesity [90], one of 
the main risk factors for T2DM. Insulin resistance (IR) is one of the most important hallmarks in the 
pathogenesis of T2DM. IR is directly linked with a variety of inflammatory responses and these 
responses play a crucial role in the development of the condition [91]. Indeed, quantification of 
inflammatory mediators in blood is used as a biomarker for T2DM [92]. Individuals with T2DM have 
elevated cytokine levels in blood compared to people without diabetes and there is mounting 
evidence that supports that diabetes and particulate air pollution are associated with inflammatory 
dysregulation [22,93,94]. In addition, there is evidence that increased exposure to PM is significantly 
associated with increased fasting blood glucose (a biomarker for diabetes) in humans [73,95]. Whilst 
epidemiological evidence suggests that PM exposure is a risk factor for T2DM development, further 

Figure 2. Following inhalation, particles may stimulate local or systemic effects. The hypothesised
mechanism of toxicity of inhaled particles to the central nervous system (CNS) is summarized in (A).
Impacts of inhaled particles on the CNS may emerge due to (i) particle translocation (via neurones or
blood) to the CNS following inhalation or (ii) the release of systemically acting factors from the lung
which impact on neurone function. Examples of the clinical impacts of inhaled particles at different
target sites (lung, extrapulmonary organs, and CNS) are summarised in blue boxes; (B) The cellular
and molecular events underlying particle toxicity to the lungs have been extensively investigated
and hypothesised to involve the stimulation of inflammation and oxidative stress. More specifically,
it is hypothesized that inhaled ultrafine particles interact with pulmonary cells (e.g., epithelial cells,
alveolar macrophages) to stimulate an increase in intracellular ROS and Ca2+ concentration which
leads to the expression of pro-inflammatory genes (e.g., cytokines) via the activation of transcription
factors (such as NFκB). BBB = blood brain barrier. COPD = chronic obstructive pulmonary disease.

Chronic inflammation has been found to be associated with the development of T2DM in
humans [89]. Furthermore, a chronic inflammatory response is associated with obesity [90], one of
the main risk factors for T2DM. Insulin resistance (IR) is one of the most important hallmarks in
the pathogenesis of T2DM. IR is directly linked with a variety of inflammatory responses and these
responses play a crucial role in the development of the condition [91]. Indeed, quantification of
inflammatory mediators in blood is used as a biomarker for T2DM [92]. Individuals with T2DM
have elevated cytokine levels in blood compared to people without diabetes and there is mounting
evidence that supports that diabetes and particulate air pollution are associated with inflammatory
dysregulation [22,93,94]. In addition, there is evidence that increased exposure to PM is significantly
associated with increased fasting blood glucose (a biomarker for diabetes) in humans [73,95]. Whilst
epidemiological evidence suggests that PM exposure is a risk factor for T2DM development, further
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research is required to better understand the cellular and molecular events underlying this as few
studies have investigated the mechanism of toxicity, to date.

Numerous studies have established the role of neuroinflammation in both AD and PD
pathology [28,96]. When inflammation is activated, neurones, and microglia cells release
pro-inflammatory mediators (e.g., cytokines) which can stimulate an inflammatory response which
damages neuronal cells and ultimately brain tissue [97,98]. The stimulation of inflammation is key
to the pathogenesis of dementia. For example, the degree of inflammation correlates with brain
atrophy and the severity of dementia in early AD [99]. There are also markers of inflammation, such as
C-reactive protein levels (CRP) and interleukin-6 (IL-6) that are elevated in the blood plasma of patients
with AD and vascular dementia [100]. An increase in the levels of the inflammatory markers in blood
is associated with an increase in the risk of all types of dementia [101]. Moreover, it is already known
that higher levels of inflammatory markers are associated with greater brain atrophy than expected for
age [102].

Exposure to particulate air pollution, has been linked also with brain inflammation [103]. The first
indications that inhaling polluted air could cause neurodegeneration came from an experiment with
demented dogs in Mexico City. In this experiment, canines were exposed to significant concentrations
of ozone, PM, and other pollutants. The researchers identified inflammation in the brains of the
dogs along with endothelial damage, which prompted the hypothesis that the initial inflammatory
source was the respiratory tract [104]. There is now evidence from several in vivo studies that PM
can stimulate inflammatory and oxidative responses in the CNS [104–110]. Furthermore, Hullmann
et al. [111] demonstrated that diesel exhaust particles accelerated the development of hallmarks of
Alzheimer’s Disease in a mouse disease model. In addition, Finch and Morgan [112] showed in
mice that inhalation of particulate polluted air activated the brain’s microglia, which stimulated an
inflammatory response that was linked to memory loss and the pollution-exposed mice showed signs of
brain damage. They suggested that the fine airborne particles might travel from the nasal cavity to the
brain. Interestingly, few in vitro studies [48,109,113–115] have investigated the response of neurones
to PM10 despite evidence from epidemiology and in vivo studies that PM10 can cause neurotoxicity.

Exposure to environmental toxicants (such as air pollutants) increases the risk of Parkinson’s
disease [116] and there is evidence that neuroinflammation is the etiopathogenesis not only for
Alzheimer’s disease, but also of Parkinson’s disease [28,117]. Long-term exposure to particulate air
pollution may cause damage to dopaminergic neurons and lead to chronic brain inflammation to
accelerate AD and PD development [29].

Epidemiological evidence has identified that diabetes and neurodegenerative diseases are linked,
for example it is known that people with a metabolic syndrome, such as diabetes, are at higher risk of
developing cognitive impairment [118] and Alzheimer’s disease. IR links obesity with pre-diabetes and
diabetes and is associated with an increased risk for cognitive decline [119] and age-related memory
impairment and AD [120]. Metabolic syndrome is considered as an independent risk factor for pre-AD
syndrome and AD [121–124] and generally diabetes is a known risk factor for cognitive dysfunction
and all-cause dementia [125]. T2DM is similar to AD in many ways. They are both associated with
impaired glucose uptake, increased oxidative stress, inflammation, ageing, brain atrophy and they may
both cause impaired cognition and dementia. This suggests that these two diseases share many factors
in terms of pathophysiology and clinical outcome and due to the similarity and the pathophysiological
bridge between them, AD is often referred as “type 3 diabetes” [126,127]. There is also a link between
diabetes and Parkinson’s disease [128]. Individuals with T2DM are at increased risk of developing
PD [129,130].

The relationship between diabetes and neurodegenerative disease may arise as a consequence of
a common inflammatory mechanism [131]. For example, among individuals with metabolic syndrome,
those with a higher level of inflammation are at higher risk of developing cognitive impairment
compared to those with low inflammation [132]. Whilst there is evidence that inflammation is linked
to both T2DM and neurodegenerative diseases, it is uncertain whether T2DM is a prerequisite to
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develop neurodegenerative disease from this inflammatory mechanism, or whether inflammatory
processes act independently to cause these diseases. Furthermore, the hormone insulin plays an
important role in memory and in brain function [120] and thus dysregulation of insulin signalling has
been linked to metabolic and neurodegenerative disorders [133,134]. Accordingly, several conditions,
including T2DM, activate a range of inflammatory, metabolic, and oxidative changes that might
contribute to deleterious effects on the brain and other metabolic changes that might potentially drive
neurodegenerative processes [135].

In this systematic review, we considered 37 studies and both levels and assessment of exposure and
outcome definitions varied. The majority of the studies (31 out of 37) indicated a positive association
between particulate traffic-related air pollution and cognitive impairment and/or T2DM. However,
the quality of the epidemiological evidence is considered ‘poor’ because of the observational nature of
the studies and there are not RCT studies that would increase the quality of the evidence. The quality
of the evidence base is also poor either because it is often based on self-reports rather than on objective
cognitive tests, clinical examination or neuroimaging. Furthermore, diabetes-related studies that were
based on mortality data, could have underestimated the true prevalence of the disease.

Noise exposure is closely correlated with traffic related air pollution, and noise exposure is
an independent risk factor for neurodegenerative diseases [136,137]. Moreover, when investigating
noise or traffic proximity, which is an indicator of traffic noise, it is important to consider hearing
impairment with ageing in the adult population. It is important that epidemiological studies adjust
for noise exposure, although the majority of existing studies did not. It is also important that studies
consider established risk factors of the disease such as obesity, nutrition, and active and passive
smoking. The majority of the studies adjusted for smoking status, but only few adjusted for certain
food consumption; such as fish consumption, which is associated with the risk for dementia [138].
A healthy survivor effect may also be important in some studies, because with ageing, some diabetes
or dementia patients could die prematurely and no longer participate. Other lifestyle factors or other
health status covariates should also be considered, such as activities of everyday life—i.e., computer
experience or depression symptoms—because they play a crucial role in cognitive performance and
only few studies considered them. Lack of information on these could lead to a risk of bias. Moreover,
family history of cardiovascular disease can also be important and should be considered, but some
studies only mentioned cardiovascular risk factors or already existing cardiovascular disease.

We were not able to perform a meta-analysis because of the variety of different outcomes that
were described in the studies. However, previous review studies on T2DM have done meta-analysis
for different exposure subgroups and all support an association of air pollutants with an increased
risk for T2DM [18,75,139]. In practice a meta-analysis would be feasible with any of the morbidity
or mortality endpoints provided there were sufficient contributing studies with consistency in the
definition of the outcomes.

There are many occupations that are exposed to airborne particles, but there is only one
epidemiological study that is informative about possible risks of T2DM and dementia from such
exposure [62]. In workplaces, ultrafine particles are found in metal and polymer fumes and both can
induce acute inflammation responses in the lung upon inhalation [140]. Many other occupational
aerosol exposures can cause chronic lung inflammation—some closely related to air pollution,
such as diesel engine exhaust particulate and others, such as respirable crystalline silica, that cause
inflammation because of chemical or surface properties. Carbon black workers may show lung
function reduction along with pro-inflammatory cytokines secretion [141]; exposure to dust can
cause pulmonary reactions in dairy farmers, cotton workers, and wood workers; and inhalation of
irritants can demonstrate pulmonary inflammation [142]. Also ultrafine particles can affect the nasal
epithelium and produce inflammation that damages the brain [31].

As we have seen, inflammation is the key biological process linked to T2DM and
neurodegeneration. By analogy, we judge that occupational particulate exposure that causes
inflammation is a ‘possible’ cause of T2DM and neurodegenerative diseases due to the relatively
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high exposures that are likely to occur in the work environment. However, further research is needed
to clarify whether there is a risk from workplace particulate exposures.

5. Conclusions

Despite the various studies investigating the association between air pollution and T2DM and
cognitive impairment and neurodegeneration, the role of air pollution in the causation of these
disorders is not fully understood and remains unclear. Available evidence indicates a positive
association of ambient particulate air pollution and both T2DM and neurodegeneration risk,
but corresponding evidence for similar workplace exposures is lacking. However, it is plausible
that such an association between fine aerosols in the workplace are associated these diseases. Further
research is required to identify the link and toxicological mechanisms associated with particulate
exposure and T2DM and neurodegenerative disease. Future studies could fill key evidentiary gaps and
thereby lead to additional steps to decrease air pollution levels and improve policies in the workplace
environment to decrease the incidence of T2DM and cognitive decline, creating a healthier and more
sustainable future.
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Title 1 Identify the report as a systematic review, meta-analysis, or both. 1

ABSTRACT

Structured summary 2 Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and
synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. 1

INTRODUCTION

Rationale 3 Describe the rationale for the review in the context of what is already known. 1–2

Objectives 4 Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). 1–2

METHODS

Protocol and registration 5 Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. -

Eligibility criteria 6 Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility,
giving rationale. 3

Information sources 7 Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. 3

Search 8 Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. 3

Study selection 9 State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). 3

Data collection process 10 Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. 3

Data items 11 List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. 8–25

Risk of bias in individual studies 12 Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this
information is to be used in any data synthesis. 4–5

Summary measures 13 State the principal summary measures (e.g., risk ratio, difference in means). 8–15, 17–24

Synthesis of results 14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I2) for each meta-analysis. 4–5

Risk of bias across studies 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies). 5, 7, 8–15, 17–24, 26

Additional analyses 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. -

RESULTS

Study selection 17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram. 4

Study characteristics 18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations. 8–25

Risk of bias within studies 19 Present data on risk of bias of each study and, if available, any outcome level assessment (see Item 12). 8–15, 17–24

Results of individual studies 20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals,
ideally with a forest plot. 8–15, 17–24

Synthesis of results 21 Present results of each meta-analysis done, including confidence intervals and measures of consistency. -

Risk of bias across studies 22 Present results of any assessment of risk of bias across studies (see Item 15). 7, 26
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Additional analysis 23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression (see Item 16)). -

DISCUSSION

Summary of evidence 24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and
policy makers). 8–25, 30

Limitations 25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias). 30

Conclusions 26 Provide a general interpretation of the results in the context of other evidence, and implications for future research. 31

FUNDING

Funding 27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. 31
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