

APPENDIX: Effectiveness and cost effectiveness of hepatitis C screening for migrants in the EU/EEA

Contents

APPENDIX 1. Figure S1: Analytic Framework for HCV Screening in Migrants	2
APPENDIX 2. Table S1: Effectiveness and Cost-effectiveness Search Strategy	3
APPENDIX 3. Table S2–S5: Study profile GRADE	5
APPENDIX 4. Table S6: Chronic HCV burden in migrants: The 10 migrant groups from intermediate/high HCV	
prevalence countries with the highest number of HCV cases in host EU/EEA countries	10

APPENDIX 1. Figure S1: Analytic Framework for HCV Screening in Migrants

Figure S1. Analytic Framework for HCV Screening in Migrants. EIA: enzyme immunoassay; ESLD: end-stage liver disease; HCC: hepatocellular carcinoma; HCV: hepatitis C virus; PCR: polymerase chain reaction.

APPENDIX 2. Table S1: Effectiveness and Cost-effectiveness Search Strategy

Table S1. Effectiveness and Cost-effectiveness Search Strategy.

Database: Ovid MEDLINE(R) 1946 to Present with Daily Update Search Date: 12 May 2016

- 1 exp Hepatitis C/ (52799)
- 2 (CHC or HCV or HepC).mp. (43097)
- 3 ((hep or hepatitis) adj3 C).mp. (70370)
- 4 or/1-3 (74482)
- 5 exp Mass Screening/ (108318)
- 6 (screened or screening? or tested or testing or tests).tw. (1693692)
- 7 Early Diagnosis/ (19242)
- 8 ((case? or early) adj2 (detected or detection? or diagnos\$ or discover\$)).tw. (150411)
- 9 exp Population Surveillance/ (56471)
- 10 (disease? adj2 surveillance).tw. (4099)
- 11 Contact Tracing/ (3546)
- 12 contact tracing.tw. (1157)
- 13 or/5-12 (1898063)
- 14 meta analysis.mp,pt. (92974)
- 15 review.pt. (2047386)
- 16 search\$.tw. (257066)
- 17 guideline.pt. (15756)
- 18 guideline/ (15756)
- 19 guidelines as topic/ (33974)
- 20 practice guideline.pt. (21165)
- 21 practice guideline/ (21165)
- 22 practice guidelines as topic/ (91485)
- 23 (CPG or CPGs or guidance or guideline? or recommend\$ or standard?).ti. (144070)
- 24 exp clinical pathway/ (5254)
- 25 exp clinical protocol/ (138943)
- 26 ((care or clinical) adj2 pathway?).tw. (4952)
- 27 or/14-26 (2545831)
- 28 4 and 13 and 27 (2387)
- 29 animals/ not (humans/ and animals/) (4208789)
- 30 28 not 29 (2378)
- 31 30 and (2010\$ or 2011\$ or 2012\$ or 2013\$ or 2014\$ or 2015\$ or 2016\$).ed. (810)
- 32 remove duplicates from 31 [reviews and guidelines] (788)
- 33 exp "costs and cost analysis"/ (197506)
- 34 cost\$.mp. (457033)
- 35 cost effective\$.tw. (80835)
- 36 cost benefit analys\$.mp. (67070)
- 37 health care costs.mp. (36863)
- 38 or/33-37 (466345)
- 39 4 and 13 and 38 (810)
- 40 animals/ not (humans/ and animals/) (4208789)
- 41 39 not 40 (808)

43 remove duplicates from 42 [costing] (313)

APPENDIX 3. Table S2–S5: Study profile GRADE

GRADE Table S2: Diagnostic accuracy of point-of-care tests for hepatitis C virus infection: a systematic review and meta-analysis.

		Outcome	Certainty of	Importance					
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations		evidence (GRADE)	
Sensitivity of point of	of care testing vs labo	ratory testing							
30	observational studies ª	serious ^b	serious ^c	not serious	not serious	none	Sensitivity = 97.5% (95% CI: 95.9–98.4)	⊕⊖⊖⊖ VERY LOW	CRITICAL
Specificity of point of	of care testing vs labor	ratory testing							
30	observational studies ª	serious ^b	serious ^c	not serious	not serious	none	Specificity= 99.6% (95%CI: 99.3–99.8)	⊕⊖⊖⊖ VERY LOW	CRITICAL
Positive likelihood r	atio of point of care te	esting vs laboratory t	esting						
30	observational studies ^a	serious ^b	serious ^c	not serious	not serious	none	Positive likelihood ratio= 80.2 (95% CI: 55.4– 116.1)	⊕○○○ VERY LOW	CRITICAL
Negative likelihood	ratio of point of care	testing vs laboratory	testing						
30	observational studies ª	serious ^b	serious °	not serious	not serious	none	Negative likelihood ratio= 0.03 (95% CI: 0.02– 0.04)	⊕○○○ VERY LOW	CRITICAL

Khuroo et al *PLoS ONE*. 2015;10:e0121450.; **CI**: Confidence interval; Explanations: a. 10 cross sectional, 20 case control; b. Many studies had patient selection bias and lack of blinding. Many studies scored poorly on quality scales.; c. Heterogeneity greater than 85%.

GRADE Table S3. Antiviral therapy for prevention of hepatocellular carcinoma in chronic hepatitis C: systematic review and meta-analysis of randomized controlled trials.

Quality assessment							№ of patients		Effect		Certainty of	Importance
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	Antiviral therapy	Placebo or no intervention	Relative (95% CI)	Absolute (95% CI)	evidence (GRADE)	
Hepatocellular carcinoma in those who took therapy												
8 a	randomised trials ^a	serious ^b	not serious	not serious	not serious	none	81/1156 (7.0%)	129/1174 (11.0%)	RR 0.53 (0.34 to 0.81)	52 fewer per 1,000 (from 21 fewer to 73 fewer)	⊕⊕⊕⊖ MODERATE	CRITICAL
Hepato	cellular carcino	ma in thos	se who achieve	ed SVR								
3	randomised trials	serious ^b	not serious	not serious	not serious	none	Not available ^c	Not available ^c	RR 0.15 (0.05 to 0.45)	Not available ^c	⊕⊕⊕⊖ MODERATE	CRITICAL
Hepato	Hepatocellular carcinoma in those who did not achieve SVR											
5	randomised trials	serious	not serious	not serious	not serious	none	Not available ⁵	Not available ^c	RR 0.57 (0.37 to 0.85)	Not available ^c	⊕⊕⊕⊖ MODERATE	CRITICAL

Kimer et al. BMJ Open 2012;2:e001313. doi:10.1136/bmjopen-2012-001313; **CI:** Confidence interval; **RR:** Risk ratio; Explanations: a. Study included 8 RCTS and 6 cohort studies. However, only higher quality RCT evidence is reported and is supported by cohort studies findings; b. Downgraded as none of the included trials were blinded and lack of trial registration; c. Data not available in systematic review; only relative risk provided.

GRADE Table S4. Long-Term Treatment Outcomes of Patients Infected With Hepatitis C Virus: A Systematic Review and Meta-analysis of the Survival Benefit of Achieving a Sustained Virological Response.

			Quality asses	sment	№ of p	atients	Ef	fect	Certainty	Importance		
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	[intervention]	[comparison]	Relative (95% CI)	Absolute (95% CI)	of evidence (GRADE)	
Mortality rates for General cohort (achieving SVR vs not achieving SVR)												
17	observational studies	not serious ª	serious ^b	not serious	not serious	none	502/12140 (4.1%)	708/16258 (4.4%)	HR 0.50 (0.37 to 0.67)	22 fewer per 1,000 (from 14 fewer to 27 fewer)	⊕○○○ VERY LOW	CRITICAL
Mortali	ty rates for Cirrl	hotic Coho	rt (achieving SV	/R vs not achi	eving SVR)							
9	observational studies	not serious ª	not serious	not serious	not serious	none	45/778 (5.8%)	404/2108 (19.2%)	HR 0.26 (0.18 to 0.74)	138 fewer per 1,000 (from 46 fewer to 154 fewer)	⊕⊕⊖⊖ LOW	CRITICAL
Mortali	ty rates for Coin	nfected Coh	ort (achieving	SVR vs not ac	hieving SVR)							
5	observational studies	not serious ª	not serious	not serious	serious	none	11/857 (1.3%)	161/1501 (10.7%)	HR 0.21 (0.10 to 0.45)	84 fewer per 1,000 (from 57 fewer to 96 fewer)	⊕○○○ VERY LOW	CRITICAL

Simmons et al *Clin Infect Dis.* 2015;61(5):730-740 ; **CI**: Confidence interval; **HR**: Hazard Ratio; Explanations: a. 68.2% of domains of all studies showed a low risk of bias based on Quality in Prognosis Studies (QUIPS) tool; b. Heterogeneity higher in this comparison, but decreased with subgroup analysis of non-treatment control groups and treatment control groups.

Quality assessment								№ of patients			Certainty of	Importance
№ of studies	Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	DAA-based treatment	PR (alone)	Relative (95% CI)	Absolute (95% CI)	evidence (GRADE)	
Hepatic Mortality												
1	randomized trials	not serious	serious ¹	not serious	not serious	publication bias strongly suspected strong association ²	29756/600000 (5.0%)	10990/100000 (11.0%)	RR 0.45 (0.44 to 0.46)	60 fewer per 1,000 (from 59 fewer to 62 fewer)	⊕⊕⊕⊖ MODERATE	CRITICAL
All-caus	e mortality		1	1	1		1	1		1		
5	randomized trials	serious _{3,4}	not serious	serious ⁵	serious ⁶	publication bias strongly suspected ²	2/1206 (0.2%)	0/644 (0.0%)	RR 2.14 (0.23 to 20.01)	0 fewer per 1,000 (from 0 fewer to 0 fewer)	⊕○○○ VERY LOW	CRITICAL
Hepatod	cellular Carcin	noma										
1	randomized trials	serious 3,4,7,8	serious ¹	serious ⁵	not serious	publication bias strongly suspected strong association ²	18456/600000 (3.1%)	4890/100000 (4.9%)	RR 0.63 (0.61 to 0.65)	18 fewer per 1,000 (from 17 fewer to 19 fewer)	⊕○○○ VERY LOW	CRITICAL
Sustaine	ed Virological	l Respon	se at 12 weeks	s (SVR 12)								
7	randomized trials	not serious	serious ⁹	serious ⁵	not serious	publication bias strongly suspected very strong association ²	1310/1606 (81.6%)	512/822 (62.3%)	RR 1.29 (1.22 to 1.37)	181 more per 1,000 (from 137 more to 230 more)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Sustaine	ed Virological	Respon	se at 24 weeks	s (SVR 24)								

GRADE Table S5. Efficacy of DAA-based treatment compared to PR (alone) for HCV treatment.

7	randomized trials	not serious	serious ⁹	serious ⁵	not serious	publication bias strongly suspected very strong association ²	1302/1606 (81.1%)	503/822 (61.2%)	RR 1.31 (1.23 to 1.39)	190 more per 1,000 (from 141 more to 239 more)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Sustaine	ed Virological	l Respon	se at 72 week	s (SVR 72)								
1	randomized trials	not serious	serious ¹⁰	serious ⁵	not serious	publication bias strongly suspected very strong association ²	923/1134 (81.4%)	295/493 (59.8%)	RR 1.36 (1.26 to 1.47)	215 more per 1,000 (from 156 more to 281 more)	⊕⊕⊕⊖ MODERATE	IMPORTANT
Need fo	or transplant											
1	randomized trials	serious 3,8,9	serious ¹	serious ⁵	not serious	publication bias strongly suspected strong association ²	18456/600000 (3.1%)	4890/100000 (4.9%)	RR 0.39 (0.35 to 0.42)	30 fewer per 1,000 (from 28 fewer to 32 fewer)	⊕○○○ VERY LOW	IMPORTANT

Public Health Agency if Canada (PHAC). Treatment of Hepatitis C Virus: a systematic Review and Meta-Analysis.2016; CI: Confidence interval; RR: Risk ratio.

Reasons for downgrading and/or upgrading the quality of evidence

- 1. Heterogeneity was not provided in the meta-analysis
- 2. Funnel plot asymmetry was not provided to assess the publication bias. Because less than 10 studies were included as included- the results may have been impacted by publication bias
- 3. high risk of bias for performance bias
- 4. high risk of bias for detection bias
- 5. The population in this review was treatment-naïve, without HIV or hepatitis B co-infection, without prior liver transplantation, and the majority (over 80%) were noncirrhotic or did not show evidence of cirrhosis or liver damage
- 6. Wide confidence intervals
- 7. High risk of bias for allocation concealment
- 8. High risk of bias for random allocation
- 9. High heterogeneity (I-squared=81%)
- 10. High heterogeneity (I-squared=79%)

Interpreting the Evidence Profile:

- Seven outcomes were included for treatment efficacy of DAA compared to PR (3 outcomes were critical; 3 outcomes were important; 1 outcome was not important)
- Example of assessing the certainty of evidence (hepatic mortality):

- 0 The certainty was downgraded due to inconsistency (heterogeneity cannot be assessed) and publication bias.
- 0 The certainty was upgraded due to the statistically significant large effect [RR 0.45 (95% CI 0.44, 0.46]
- Moderate certainty of evidence on HCV treatment outcomes : hepatic mortality, SVR 12, SVR 24, SVR 72
- · Very low certainty of evidence on HCV treatment outcomes: All-cause mortality, HCC, need for transplant

Interpreting Relative & Absolute Values (e.g. hepatic mortality) from the Evidence Profile:

- Relative Risk: [RR 0.45 (95% CI 0.44, 0.46]- the DAA groups showed a relative risk reduction of 55% in hepatic mortality.
- Absolute risk: The absolute reduction in hepatic mortality was 60 fewer per 1,000 (range: 59 to 62) with DAA treatment compared to PR

APPENDIX 4. Table S6: Chronic HCV burden in migrants: The 10 migrant groups from intermediate/high HCV prevalence countries with the highest number of HCV cases in host EU/EEA countries

Member state	Top migrant groups with HCV by country of origin accounting for ≥70% of HCV cases in migrants	Number (proportion of all migrant HCV cases)
Austria	Romania, Bosnia and Herzegovina, Egypt, Serbia, Turkey, Italy, Russia, Poland, Nigeria, Croatia	9073 (77%)
Belgium	Italy, DR Congo, Morocco, Former Soviet Union, Cameron, Romania, Turkey, Poland, Former Yugoslavia, Spain	13,664 (73%)
Bulgaria	Russia, Ukraine, Romania, Greece, Uzbekistan, Armenia, Moldova, Azerbaijan, Turkey, Syria	1121 (88%)
Croatia	Bosnia and Herzegovina, Serbia, Kosovo, Slovenia, FYR Macedonia, Italy, Montenegro, Russian Federation, Egypt, Switzerland	4795 (99%)
Cyprus	Georgia, Romania, Egypt, Russia, Greece, Bulgaria, Ukraine, Syria, Pakistan, Sri Lanka	2146 (78%)
Czech Republic	Ukraine, Russia, Slovakia, Vietnam, Mongolia, Uzbekistan, Poland, Moldova, Kazakhstan, Romania	5273 (88%)
Denmark	Iraq, Pakistan, Romania, Lebanon, Turkey, Poland, Thailand, Italy, Bosnia and Herzegovina, Lithuania	2517 (65%)
Estonia	Russia, Ukraine, Belarus, Kazakhstan, Uzbekistan, Georgia, Latvia, Lithuania, Azerbaijan, Armenia	5005 (98%)
Finland	Former Soviet Union, Estonia, Russia, Iraq, Thailand, Nigeria, Egypt, China, Former Yugoslavia, Italy	2766 (82%)
France	Algeria, Italy, Morocco, Portugal, Cameron, Senegal, Tunisia, Spain, Egypt, Ivory Coast	63,559 (72%)
Germany	Russia, Poland, Kazakhstan, Italy, Romania, Turkey, Ukraine, Uzbekistan, Greece, Iraq	106,365 (83%)
Greece	Albania, Georgia, Egypt, Russia, Pakistan, Romania, Armenia, Ukraine, Bulgaria, Syria	12,304 (95%)
Hungary	Romania, Ukraine, Former Soviet Union, Serbia, Slovakia, China, Russia, Italy, Egypt, Nigeria	6125 (93%)
Iceland	Poland, Lithuania, Thailand, United States, Latvia, Russia, Italy, Ukraine, Romania, Portugal	158 (77%)
Ireland	Nigeria, Poland, Lithuania, Romania, Pakistan, Latvia, Italy, Egypt, Russia, United States	4113 (75%)
Italy	Romania, Egypt, Albania, Ukraine, Morocco, Moldova, Nigeria, Senegal, Pakistan, Russia	61,134 (78%)
Latvia	Russia, Ukraine, Belarus, Lithuania, Uzbekistan, Georgia, Estonia, Azerbaijan, Moldova	6420 (98%)
Liechtenstein	Switzerland, Italy, Portugal, Turkey, Spain, Bosnia and Herzegovina, Kosovo, Brazil Egypt, Russia	159 (92%)
Lithuania	Russia, Belarus, Ukraine, Kazakhstan, Latvia, Uzbekistan, Georgia, Armenia, Azerbaijan, Estonia	2693 (96%)
Luxembourg	Portugal, Italy, Cape Verde, Romania, Cameroon, Russia, Spain, Montenegro, Bosnia and Herzegovina, Angola	1446 (86%)

Table S6. Chronic HCV burden in migrants: The 10 migrant groups from intermediate/high HCV prevalence countries with the highest number of HCV cases in host EU/EEA countries.

Malta	Australia, Egypt, Italy, Russian Federation, Nigeria,	220 (78%)
Ividita	Canada, Romania, United States, Somalia, Ukraine	200 (70%)
Netherlands	Morocco, Turkey, Egypt, Former Soviet Union, Iraq,	2002 ((70/))
	Italy, Poland, Ghana, China, Former Yugoslavia	8902 (67%)
Norway	Pakistan, Poland, Lithuania, Iraq, Russia, Thailand,	2250 (60 69/)
	Romania, Somali, United States, Latvia	3339 (09.0%)

European Centre for Disease Prevention and Control. Epidemiological assessment of hepatitis B and C among migrants in the EU/EEA. Stockhlom: ECDC; 2016 2016.