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Supplementary Materials  
S1) Re-parametrization of log-Laplace distribution 

The three-parameter log-Laplace distribution, LL( , ,a bδ ) of relative risk, μ , is given by the 
probability density function  
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S2) Bayesian quantile estimation 

Let Yi be the continuous response variable i and Xi be the corresponding vector of covariates 
with the first element equals one. At a given quantile level (0,1)τ ∈ , the τ th conditional quantile 

of yi given Xi is then ( | ) ( )TQ Yi i i i ττ =X X β where ( | )i iQ Yτ X is theτ th conditional quantile and 

( )i τβ is a vector of quantile coefficients. Contrary to the mean regression generally aiming to 
minimize the squared loss function, the quantile regression links to a special class of check or loss 

function. The τ th conditional quantile can be estimated by any solution, ˆ ( )i τβ , such that

ˆ ( ) arg min ( ( ))TYii i i iτ ρ ττ= −β βX  where ( ) ( ( 0))z z I zτρ τ= − < is the quantile loss 

function given in (1) and I(.) is the indicator function.  
The use of independently distributed asymmetric Laplace distributions was proposed by 

Koenker and Machado (2) directly related to the optimization problem in the quantile loss function 
using likelihood-based inference. Then a Bayesian approach to quantile regression was introduced 
by Yu and Moyeed (3). Notably, however, that there were some other proposed Bayesian methods 
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but they mostly focused on median rather than full quantile levels. An approach based on a scale 
mixture of Gaussian variables was suggested by Tsionas (4), which also leads to an AL distribution. 
Other approaches are based on Bayesian non-parametric priors (5, 6) or substitution likelihoods (7). 
Quantile modeling has been adopted in the context of longitudinal studies (8-10). However, the 
semiparametric approaches for quantile modeling require composite structures of prior distributions 
and hyper parameters. The distinct advantages of Bayesian quantile regression based on the AL 
distribution were demonstrated in Hewson and Yu (11) and Yu and Stander (12). The AL can be re-
parameterized in many forms (see Kotz et al. (13)). Yu and Zhang (14) proposed a form AL 
distribution characterized by three parameters of location, precision, and skewness parameters, (

,μ σ  and τ respectively) which can be applied directly to model the quantile of interest as 

( )(1 )( ( ), | ) exp
yi iL i

μ ττ ττ σ ρτσ σ
 −  −= −∏      

β Y . The kernel of the AL is proportional to the 

quantile loss function. Thus minimizing the quantile loss function is equivalent to the optimization 
of the working likelihood using the AL error (3).  

S3) Log-Laplace approximation to quantile error 

The log-Laplace distribution can be derived in forms of other commonly known distributions, 
such as the Pareto, exponential, lognormal, and beta distributions. The log-Laplace density LL( , ,a bδ
) can be also seen as a mixture of lognormal distribution LN( ,μ σ ). This is a result of the fact that an 
AL random variable can be viewed as a normal variable (13). More specifically, the relative risk 
following the log Laplace distribution has a representation as exp( )Rσμ ζ=  in distribution where 

R ~ LN (0,1), 
1 1log( )
a b

ζ δ ψ = + − 
 

 and
2
ab
ψσ = , where ψ  ~ Exp(1) and independent of R 

(15). However, the asymmetric Laplace and log Laplace random variables can be viewed as normal 
and log normal random variables respectively. So as a direct result, the relative risk can be expressed 
as , ,log( ) log( )it it itτ τμ μ ε= + where ,itτμ is modeled as an additive mixed model linked to the 

quantile-specific (non) linear predictor, ,itτη , as , ,log( )it itτ τμ η= . The error term ,itτε is the quantile 

error term with theτ th quantile is zero, i.e. ( 0 | )it itp ε η τ≤ =  or ( ) 0itQτ ε = . Then the density of 

,itτε can be written as 
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which is in a form of asymmetric Laplace distribution. However, as mentioned, the AL distribution 
can be viewed as a scale mixture of normal random variables, facilitating forms of Gibbs sampling 
(16), as   

,
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where ~ ( )it Expψ ω  and ~ (0,1)Z N . Conditional on itψ , the error tern follows a Gaussian 

distribution, i.e. ,
1 2 (1 )~ ,
(1 ) 2it it

it

Nτ
τ δτ τε ψ

τ τ ψ
 − −
 − 

. Hence the posterior computation can be 

conveniently implemented in standard software such as R or BUGS.  

S4) Pseudocode for simulated data 

for each simulation { 
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      assign sigma = 1   
      for each location{ 

generate the non-spatial random effect (vi) ~ Normal(0,0.2) 
      generate the spatial random effect (ui) ~ ICAR(0.2) 
      } 
      for time point { 

generate the temporal effect ( 1λ ) ~ Normal (0,0.2) for the first time point 

            generate the temporal effect ( tλ ) ~ Normal ( 1tλ − ,0.2) for the next time points 

} 
for each location and time point{ 

generate the space-time interaction ( itθ ) ~ Normal(0,0.2) 

            generate a random error ~ t-student(0,1,ei)   
 generate a τ th-quantile error from the same t-student distribution    

 generate τ th-relative risk = exp(vi+ui+ 1λ + itθ + random error +τ th-quantile error) 

 generateτ th-quantile count data as , ,~ ( )it it ity Poisson eτ τμ  

            }   
} 

S5) WinBUGS code for quantile modeling of spatiotemporal relative risk 

model{ 
for(i in 1:I){ 
 for(t in 1:T){ 
  y[i,t] ~ dpois(m[i,t])   
  log(m[i,t]) <- mm[i,t]+qe[i,t]+log(e[i]) 
  qe[i,t] <- ((1-2*q)/(q*(1-q)))*w[i,t]+sqrt((2*w[i,t])/(tau*q*(1-q)))*z[i,t] 
  w[i,t] ~ dexp(tau) 
  z[i,t] ~ dnorm(0,1) 
  mm[i,t] <- a+v[i]+u[i]+lambda[t]+theta[i,t] 
  theta[i,t] ~ dnorm(0,tau.theta) 
 }  
 v[i] ~ dnorm(0,tau.v) 
} 
lambda[1] ~ dnorm(0,tau.lambda) 
for(t in 2:T){ 
 lambda[t] ~ dnorm(lambda[t-1],tau.lambda)  
} 
u[1:I] ~ car.normal(adj[], weights[], num[], tau.u) 
for(i in 1:sumNumNeigh){ 
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 weights[i] <- 1  
} 
} 
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